Успешное испытание водородной бомбы РДС‑37, основанной на новом физическом принципе, состоявшееся 22 ноября 1955 года, открыло путь к созданию термоядерного заряда неограниченной мощности — сверхбомбы. Но мирно собрать и использовать выделившуюся таким образом энергию сложновато: в термоядерном реакторе, в отличие от бомбы, энергия должна выделяться постепенно, небольшими порциями, то есть, быть устойчивой. «взрывает» реакция неуправляемого термоядерного синтеза. Атомная бомба и Манхэтенский проект упомянуты в тексте дважды, но нет ни слова о водородной бомбе, которая в ту пору ещё находилась на этапе создания в Лос-Аламосе. эдакий "дедушка" многих уникальных разработок.
Почему предпочтительнее слияние ядер?
- «Сахаровская слойка»: секреты появления в СССР водородной бомбы
- ВОДОРОДНАЯ БОМБА | Энциклопедия Кругосвет
- Царь-бомба АН602. Рассекреченные кадры взрыва водородной бомбы мощностью 50 млн тонн
- Как создавали супермощную термоядерную бомбу
Общее описание
- «Сахаровская слойка»: секреты появления в СССР водородной бомбы
- Угроза №1. История создания водородной бомбы в СССР
- Предсказание Интернета
- Как Сахаров и Теллер чуть не взорвали мир
Как действует водородная бомба и каковы последствия взрыва? Инфографика
12 августа 1953 года на полигоне в Семипалатинске была испытана первая в мире водородная бомба. Популярная лекция о том, как устроено термоядерное оружие и о том какова роль математиков в его создании. Полностью же на использование твёрдого термоядерного горючего советские разработчики перешли только в водородной бомбе, взорванной в 1955 году. Термоядерное оружие (водородная бомба) — тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия. Как советские физики делали водородную бомбу, какие плюсы и минусы несло в себе это страшное оружие, читайте в рубрике «История науки». это все те же РДС-6с.
История создания
- Царь-бомба АН602. Рассекреченные кадры взрыва водородной бомбы мощностью 50 млн тонн
- Как устроена водородная бомба: принцип и мощность
- Как один солдат водородную бомбу изобрел
- 10 стыдных вопросов о ядерном оружии: отвечает физик Дмитрий Побединский
Сколько водорода в водородной бомбе?
Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. Водородная бомба содержит корпус осесимметричной формы с хвостовыми стабилизаторами, внутри которого смонтирован термоядерный заряд, и систему управления с датчиком инициирования взрыва. Непосредственная работа по изготовлению первой водородной бомбы началась в 1950 году.
Как сделать атомную бомбу
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола. Г Вторая ступень сжимается вследствие абляции испарения под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется… Этот путь не является единственным и уж тем более обязательным. Вместо дейтерида лития можно использовать готовый тритий в смеси с дейтерием. Проблема в том, что оба они — газы, которые сложно содержать и перевозить, не говоря уже о том, чтобы запихнуть в бомбу. Получающаяся конструкция вполне пригодна для взрыва на испытаниях, таковые производились. Проблема только в том, что ее невозможно доставить «адресату» — размеры сооружения исключают такую возможность напрочь.
Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему. Термоядерная установка Ivy Mike незадолго до испытаний. Атолл Эниветок, 1952 г. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил. При этом свойства гидрида лития сами по себе тайной не были, любой мало-мальски компетентный, например в вопросах воздухоплавания, человек о них знал. Неслучайно Виталий Гинзбург , автор идеи применения дейтерида лития в бомбе, на вопрос об авторстве обычно отвечал в том духе, что вообще-то это слишком тривиально.
Конструкция бомбы Лаврентьева в общих чертах повторяет описанную выше. Здесь мы тоже видим инициирующий ядерный заряд и взрывчатку из гидрида лития, причем ее изотопный состав тот же — это дейтерид легкого изотопа лития. Умница Лаврентьев догадался, что твердое вещество удобнее в применении и предложил использовать именно 6Li, но лишь потому, что его реакция с водородом должна дать больше энергии. Чтобы выбрать для реакции другое горючее, требовались данные об эффективных сечениях термоядерных реакций, которых у солдата-срочника, конечно, не было. Допустим, что Олегу Лаврентьеву еще раз повезло бы: он угадал нужную реакцию. Увы, даже это не сделало бы его автором открытия. Описанная выше конструкция бомбы разрабатывалась к тому времени уже более полутора лет.
Разумеется, поскольку все работы были окружены сплошной секретностью, знать о них он не мог. Кроме того, конструкция бомбы — это не только схема размещения взрывчатки, это еще очень много расчетов и конструктивных тонкостей. Выполнить их автор предложения не мог. Надо сказать, что полная неосведомленность о физических принципах будущей бомбы была характерна тогда и для людей куда более компетентных. Много лет спустя Лаврентьев вспоминал эпизод, бывший с ним чуть позднее, уже в студенческие времена. Проректор МГУ, читавший студентам физику, зачем-то взялся рассказать и о водородной бомбе, представлявшей собой, по его мнению, систему полива вражеской территории жидким водородом. А что?
Заморозить врагов — милое дело. У слушавшего его студента Лаврентьева, который про бомбу знал немножко больше, невольно вырвалась нелицеприятная оценка услышанного, но ответить на язвительную реплику услышавшей ее соседки было нечем. Не рассказывать же ей все известные ему подробности. Рассказанное, видимо, объясняет, почему о проекте «бомбы Лаврентьева» забыли практически сразу после его написания. Автор продемонстрировал недюжинные способности, но этим все и кончилось. Иная судьба оказалась у проекта термоядерного реактора. Реактор Конструкция будущего реактора в 1950 году виделась его автору довольно простой.
В рабочую камеру помешается два концентрических один в другом электрода. Внутренний выполняется в виде сетки, ее геометрия просчитывается таким образом, чтобы, насколько это возможно, минимизировать контакт с плазмой. На электроды подается постоянное напряжение порядка 0,5—1 мегавольт, причем внутренний электрод сетка является отрицательным полюсом, а внешний — положительным. Сама реакция идет в середине установки и вылетающие наружу, через сетку, положительно заряженные ионы преимущественно, продукты реакции , двигаясь дальше, преодолевают сопротивление электрического поля, которое в итоге разворачивает большую их часть обратно.
Андрей Сахаров, начало 1950-х. А ведь среди физиков-ядерщиков он был самым молодым и наименее именитым. Здесь и разместили лаборатории. Андрей Сахаров с первой женой у своего дома на объекте.
Начало 1950-х.
Эта атомная бомба содержит корпус с неуправляемыми хвостовыми стабилизаторами, ядерный заряд, содержащий конвенторный взрыватель, плутоний, систему управления с датчиком инициирования взрыва, резервуар бериллиевой смеси. Недостатки те же самые. Задача создания изобретения - повышение скорости полета водородной бомбы и точности попадания при бомбометании с очень больших высот. Система управления снабжена контроллером управления, соединенным с приводом хвостовых стабилизаторов и с бортовым компьютером. Она может быть снабжена контроллером двигателя, соединенным с приводом топливного насоса и с бортовым компьютером. Она может быть снабжена приемно-передающим устройством с антенной, соединенным с бортовым компьютером. Она может быть снабжена приемником системы глобального позиционирования, подключенным к антенне и к бортовому компьютеру. Она может быть снабжена видеокамерой, подключенной к бортовому компьютеру.
Проведенные патентные исследования показали, что предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью. Сущность изобретения поясняется на фиг. Водородная бомба фиг. Внутри корпуса 1 установлены термоядерный заряд 3, выполненный кольцевой формы в виде полого цилиндра , и топливный бак 4. Предпочтительно топливный бак 4 выполнить тороидальной формы. Также внутри корпуса 1, вдоль его оси, в центральной части установлен газотурбинный двигатель 5, работающий на жидком топливе возможно применение сверхзвукового газотурбинного двигателя. Атомная бомба имеет систему управления, установленную внутри корпуса 1. Газотурбинный двигатель 5 состоит из воздухозаборника 6, компрессора 7, состоящего в свою очередь из статора компрессора 8 и ротора компрессора 9, камеры сгорания 10 с форсунками 11, к которым подключен топливопровод 12 с топливным насосом 13, имеющим привод насоса 14. За камерой сгорания 10 установлена турбина 15, содержащая сопловой аппарат 16 и рабочее колесо турбины 17.
Во внешнем слое — взрывчатое вещество, в середине между слоями — термоядерное горючее, в центре — ядерный заряд. Взрывчатое вещество запускали с помощью электродетонаторов, происходило обжатие — сжатие бомбы, ядерный заряд в центре взрывался и смешивался с термоядерным горючим в слоях. Слойка Сахарова стала прорывом в ядерной науке. После испытания первой бомбы было и второе, и третье. Последнее испытание состоялось 30 октября 1961 года на Новой Земле. Ударная волна несколько раз облетела землю и была зафиксирована всеми сейсмостанциями планеты.
Как один солдат водородную бомбу изобрел
Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. Принцип действия водородной бомбы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер.
Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно.
В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом. Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву. Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы — т.
Но это не лучшая идея, поэтому при изготовлении ядерных боеприпасов используются сложно устроенные имплозивные, или шаровые заряды. Их эффект основан на том, что при воздействии силы на поверхность сферы по мере приближения к её центру давление будет возрастать в квадрате. Как следствие, шаровой заряд представляет собой «матрёшку». Внешний сферический слой образует обычная «химическая» взрывчатка, по поверхности которой равномерно распределены 64 детонатора. Все детонаторы должны сработать одновременно — тогда происходит взрыв, который порождает направленную к центру ударную волну. Если хотя бы один детонатор не сработает вовремя, сжатие будет ассиметричным и приведёт лишь к разрушению боеприпаса. И это служит надёжной защитой.
Бомба может выпасть с самолёта, упасть вместе с самолётом, сгореть в вагоне в результате железнодорожной катастрофы, в неё даже может попасть артиллерийский снаряд правда, последнее испытывалось только на макетах. В худшем случае это приведёт к подрыву обычной, химической взрывчатки, но незапланированной детонации ядерного заряда не произойдёт. Следом за взрывчаткой в шаровом заряде располагается слой алюминия. Лёгкий металл нужен, чтобы увеличить радиус заряда, а значит, и итоговое давление в центре сферы. Внутрь полой алюминиевой сферы вкладывается тампер — полая сфера из обеднённого урана, которая служит массивным поршнем Через тампер концентрическая ударная волна передаётся на третью, самую маленькую полую сферу, изготовленную из ядерной взрывчатки — урана или плутония. В самом же центре находится миниатюрный источник нейтронов на основе трития. Масса «ядерной взрывчатки» в шаровом заряде обычно в полтора-три раза меньше критической.
Развитие цепной реакции в боеприпасе происходит благодаря дополнительным нейтронам, испускаемым тритием, увеличению плотности металла в момент максимального сжатия, а также потому, что урановый тампер отражает рождающиеся при распаде ядер нейтроны внутрь, не позволяя им покидать зону реакции. Рекорд здесь принадлежит британцам: они изготовили тонкостенную плутониевую сферу, масса которой превышала критическую в 12 раз! Но тогда сынов Туманного Альбиона просто заели амбиции: как же так, у Советов и Штатов есть водородная бомба, а у них нет. На изготовление этого чуда техники королевство потратило годичный запас расщепляющихся материалов. Повысить мощность боеприпаса можно и без такой траты дефицитных материалов. В активированном шаровом заряде цепной распад продолжается не до исчерпания горючего, как в обычной бомбе, а до разрушения устройства. Испарившийся урановый шар уже не обладает достаточной плотностью, чтобы поддерживать цепную реакцию.
Увеличить степень выгорания можно, обеспечив дополнительное сжатие. Для этого используется большой — до четверти тонны — заряд химической взрывчатки. Хорошо помогает и увеличение толщины тампера. Конечно, дополнительная инертная масса лишь краткий миг способна противостоять рвущемуся из зоны реакции ядерному пламени. Но когда интенсивность реакции нарастает по экспоненте, даже этот миг имеет огромное значение. Водородная бомба На этапе горения лития и урана термоядерная бомба по устройству напоминает звезду. Она полностью состоит из плазмы — раскалённого ионизированного газа, но при этом плотнее свинца Ещё сильнее разрушительную силу современных ядерных боеприпасов можно повысить капсулой с термоядерным горючим.
Рядом с первым шаровым зарядом, играющим роль детонатора, размещается второй, устроенный несколько иначе. Вместо слоя химической взрывчатки он покрыт инертным пластиком. Сразу под ним располагается тампер из обеднённого урана. А между тампером и центральной полой сферой, изготовленной из плутония, размещается слой дейтерида лития-6 — соединения лёгкого изотопа лития с тяжёлым водородом. Этот белый порошок не радиоактивен и совершенно безопасен, если не поливать его водой. Подрыв первого шарового заряда превращает пластиковый слой в перегретую плазму, давление которой приводит к имплозии термоядерной капсулы. Её плутониевая сердцевина достигает критической плотности и тоже взрывается.
Литий, поглощая образовавшиеся нейтроны, разлагается на гелий и сверхтяжёлый водород — тритий.
Весной 1950 года начались работы над созданием бомбы, получившей в дальнейшем название РДС-6с. В числе ее разработчиков оказался и будущий лауреат Нобелевской премии мира Андрей Сахаров, предложивший идею конструкции заряда еще в 1948 году, но позднее выступавший против ядерных испытаний.
Впоследствии, правда, дейтерий предложили заменить на дейтерид лития — это значительно упростило конструкцию заряда и его эксплуатацию. Дополнительным преимуществом было то, что из лития после бомбардировки нейтронами получается еще один изотоп водорода — тритий. Вступая в реакцию с дейтерием, тритий выделяет гораздо больше энергии.
К тому же литий еще и замедляет нейтроны лучше. Такая структура бомбы и подарила ей прозвище «Слойка». Определенная сложность состояла в том, что толщина каждого слоя и их окончательное количество также были очень важны для успешного испытания.
Термоядерная тайна СССР: академик раскрыл секреты создания царь-бомбы
Рассекречены данные об испытаниях «Царь-бомбы»: Оружие: Наука и техника: | Атомные бомбы середины прошлого века, сконструированные в основном по модели «Толстяк» (инициирующий тротиловый заряд приводит к схлопыванию контура, образованного дольками из оружейного плутония), а тем более первая бомба модели «Малыш» были оружием массового. |
Как устроена водородная бомба? - YouTube | Успешное испытание водородной бомбы РДС‑37, основанной на новом физическом принципе, состоявшееся 22 ноября 1955 года, открыло путь к созданию термоядерного заряда неограниченной мощности — сверхбомбы. |
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США - Российская газета | На этапе горения лития и урана термоядерная бомба по устройству напоминает звезду. |
Водородная бомба
Популярная лекция о том, как устроено термоядерное оружие и о том какова роль математиков в его создании. Принцип действия водородной бомбы состоит в следующем: сначала взрывается внутри оболочки HB заряд, который является инициатором термоядерной реакции, как результат возникает нейтронная вспышка. Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. В отличие от атомной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе идет термоядерная реакция, подобная той, которая происходит на Солнце. Результат взрыва водородной бомбы носит тройной характер.
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США
«Вследствие осуществления в водородной бомбе мощной термоядерной реакции взрыв был большой силы, — писали «Известия». В водородной бомбе используется уран-238, который под действием быстрых нейтронов распадается и даёт радиоактивные осколки. В 1945—1946 годах Фукс участвовал в теоретических работах по разработке водородной бомбы, в анализе результатов применения атомных бомб в Хиросиме и Нагасаки, в разработке программы исследований со взрывами атомных бомб на атолле Бикини. Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов.
Формула водородной бомбы. Водородная бомба
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США - Российская газета | Водородные бомбы используют комбинацию ядерного деления и термоядерного синтеза и намного мощнее атомных бомб. |
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США | На этапе горения лития и урана термоядерная бомба по устройству напоминает звезду. |
ВОДОРОДНАЯ БОМБА | это... Что такое ВОДОРОДНАЯ БОМБА? | Мощность термоядерной ВВ 30 кт/кг, хотя я считал по формулам и получилось 70 кт/кг. |