Другой гипотезой абиогенного синтеза РНК, призванной решить проблему низкой оценочной вероятности синтеза РНК, является гипотеза мира полиароматических углеводородов. Поэтому многие учёные придерживаются гипотезы "мира РНК", согласно которой РНК появилась на Земле раньше, чем ДНК.
СВЯЗАТЬСЯ С РЕДАКЦИЕЙ
- Новости компаний
- Рибозим со свойствами РНК-полимеразы синтезировал функциональные молекулы РНК — PCR News
- Биохимики спорят о том, не настаёт ли конец эпохи РНК / Хабр
- РНК умеет все?
- Ученые нашли новое потенциальное объяснение возникновению жизни на Земле
- Научно: Панспермия
Ученые обнаружили новые доказательства гипотезы РНК-мира
Согласно гипотезе мира РНК, эта макромолекула изначально могла быть единственной ответственной за клеточную или доклеточную жизнь. Окончательная уверенность в том, что «мир РНК» действительно существовал, наступила после выявления деталей строения кристаллов рибосом методом рентгеноструктурного анализа. Гипотеза мира РНК — это гипотетический этап процесса зарождения и развития жизни на Земле, когда молекулы рибонуклеиновых кислот (РНК) выполняли две ключевых функции. Одна из научных гипотез предполагает, что первоначально на Земле существовали несвязанные молекулы РНК, возможно, вместе с белками и другими органическими веществами. Идея мира РНК была впервые высказана Карлом Вёзе в 1968 году, позже развита Лесли Орджелом и окончательно сформулирована Уолтером Гильбертом в 1986 году.
Ученые обнаружили новые доказательства теории РНК-мира
Сегодня развиваются представления о том, что каталитический потенциал примитивных РНК мог быть существенно расширен за счет присоединения к их молекулам коферментных групп [7]. Дальнейшие исследования этой же группы исследователей показали, что молекулы РНК при столкновении в водной среде могут спонтанно обмениваться частями, то есть, обладают способностью к неэнзиматической рекомбинации. Возможность легкого распространения молекул РНК через среду, в том числе атмосферную, также было продемонстрирована в прямых экспериментах [32, 36, 37]. В теоретическом отношении это открытие в контексте мировой научной концепции о рибозимах "РНК-мир" способствует возможности в корне пересмотреть теорию происхождения жизни на Земле. Смешанные колонии РНК на твёрдых или полутвёрдых носителях могли быть первыми эволюционизирующими бесклеточными ансамблями, где одни молекулы выполняли генетические функции репликацию молекул РНК всего ансамбля , а другие формировали необходимые для успешного существования структуры например, такие, которые адсорбировали нужные вещества из окружающей среды или были рибозимами, ответственными за синтез и подготовку субстратов для синтеза РНК. Эта коммунальная форма существования мира РНК должна была очень быстро эволюционировать. Что же стало с РНК после распада коммуны? Хотя коммуна распалась, мир РНК сохранился в каждой клетке каждого живого организма. В качестве центрального звена этого процесса биосинтеза белков выступает совокупность взаимодействующих друг с другом молекул РНК различных типов, прежде всего рибосомной РНК, формирующей аппарат белкового синтеза, тРНК, доставляющей в рибосому активированные аминокислоты для построения полипептидных цепей белков, и мРНК, несущей в своей нуклеотидной последовательности программу для синтеза белка. Оказалось, что нкРНК выполняют множество функций с использованием не известных ранее механизмов: нкРНК участвуют в регуляции транскрипции генов, сплайсинге и регуляции деградации РНК. Они вовлечены в трансляцию и её регуляцию, в процессинг и модификацию рибосомной РНК, в защиту от вирусных инфекций и мутагенной активности мобильных генетических элементов, а также в ряд других процессов.
РНК явно потеснили белки на пьедестале главных молекул, обеспечивающих жизнедеятельность клеток [16, 25]. Все рассмотренные аргументы подчёркивают важную, если не исключительную, роль РНК в происхождении жизни на земле. Исследования продолжаются. Современная жизнь - это РНК, передавшая часть свих генетических функций рождённому ею же полимеру - ДНК и синтезирующая белки для всеобъемлющего эффективного функционирования содержащих её компонентов - клеток и многоклеточных организмов [27-29]. Необычные древние особенности РНК нашли в последнее время эффективные практические приложения. Так как практически каждая наноколония происходит из одной матричной молекулы, с помощью наноколоний можно обнаружить и идентифировать одиночные молекулы ДНК и РНК, в том числе - с диагностическими целями. В настоящее время наноколонии применяются в нашей стране и за рубежом для различных научных и прикладных задач. Важнейшим направлением исследований является разработка ранней диагностики онколологических заболеваний. В России от разных видов рака умирает около 300 000 человек в год, что представляет большую демографическую, экономическую социальную проблему. Лечение осложняется тем, что у большинства больных болезнь диагностируется уже на поздних стадиях.
С развитием экономики проблема может только усугубляться, так как частота онкологических заболеваний растёт по мере ухудшения экологической обстановки и увеличения продолжительности жизни населения. Эффективность лечения рака зависит от своевременности диагностики. Однако до сих пор проблема ранней диагностики рака не решена. Наноколонии РНК позволяют создать технологию молекулярной диагностики рака на стадии, когда его ещё невозможно обнаружить существующими методами. Диагностировать болезнь предполагается путём обнаружения в клинических образцах например, в крови, в моче или в мокроте молекул определённых индикаторных "маркёрных" РНК, которые присутствуют во всех раковых клетках независимо от вида рака. Примером такого универсального маркёра является мРНК белковой субъединицы теломеразы - фермента, отвечающего за синтез концевых участков хромосом теломер. Эта мРНК присутствует и в нормальных стволовых клетках, которые, подобно раковым клеткам, способны к неограниченному делению. Однако, в отличие от раковых клеток, стволовые клетки находятся в своих нишах и не распространяются по организму. Поэтому присутствие теломеразной мРНК там, где стволовых клеток быть не должно например, в плазме или в клетках крови , может служить указанием на наличие злокачественного процесса. Существуют также РНК, которые могут служить групповыми маркёрами всех видов рака кишечника, или всех видов рака молочной железы, или всех видов рака печени.
Попытки использовать РНК-маркёры для молекулярной диагностики рака были и раньше, но из-за ограниченной чувствительности и недостаточной специфичности стандартной ПЦР полимеразной цепной реакции они закончились неудачей. Следует отметить исключительно высокий потенциал наноколоний для диагностики любых заболеваний, для которых существуют РНК- или ДНК-маркёры, в т. Например, молекула белка в том числе белка-маркёра рака может быть обнаружена путём размножения суррогатной ДНК-мишени, образованной лигированием фрагментов ДНК, способных одновременно связываться с данной молекулой белка посредством специфических лигандов например, антител. Подобным же образом с помощью наноколоний можно обнаружить одиночные молекулы любого вещества например, наркотика или допинга , достаточно сложные для формирования на своей поверхности, по крайней мере, двух участков специфического связывания лигандов [16]. В помощь антибиотикам Важнейшей проблемой современности является быстрая эволюция бактерий в направлении приобретения устойчивости к антибиотикам, приводящая к возрождению многих заболеваний человека. Профессор Йельского университета США Сидни Альтман, продолжая исследования в области каталитической способности РНК, стал разрабатывать способы борьбы с инфекционными заболеваниями антибактериальная и антималярийная терапия , используя каталитические способности конкретного РНК-фермента - рибонуклеазы Р. Конечная цель - создать препарат, который мог бы быть альтернативой в случае устойчивости инфекции к антибиотикам. На конкретных объектах исследований разрабатываются фундаментальные основы подходов, которые могли бы быть общими для лечения многих инфекционных заболеваний. В перспективе синтезировать определённые соединения, которые могут быть легко модифицированы для борьбы, как с бактериями, так и с малярией. Это направление исследований представляет перспективную альтернативу применению в медицине антибиотиков, возможности которых стремительно тают.
Сидни Альтман разрабатывает это важнейшее направление, в частности, совместно с Институтом химической биологии и фундаментальной медицины СО РАН г. Новосибирск [6]. Как зарождались знания, составляющие основу практического применения теорий и методов молекулярной биологии РНК Лауреат Нобелевской премии за открытие рибозимных свойств РНК Сидни Альтман Олтмен, 1939 г. Заняться молекулярной биологией начинающему учёному Альтману посоветовал русский физик Георгий Гамов. Он понял, что структуры белков, состоящих из 20 основных природных аминокислот - должна быть зашифрована в последовательности из четырёх возможных нуклеотидов, входящих в состав молекулы ДНК. Исходя из простых арифметических соображений, Гамов показал, что при сочетании 4-ёх нуклеотидов тройками получается 64 различные комбинации, чего вполне достаточно для записи наследственной информации. Таким образом, он был первым, кто предложил кодирование аминокислотных остатков триплетами нуклеотидов [17]. Практически генетический код позволил расшифровать метод бесклеточной системы синтеза белка in vitro. Первые результаты в этом направлении были получены в 1961 году, когда М. Ниренберг и Х.
Матеи синтезировали упрощённую форму мРНК, состоящую из одинаковых нуклеотидов и обнаружили, что в её присутствии происходит образование длинной цепи белковоподобной молекулы, состоящей из аминокислот одного-единственного вида. Искусственная мРНК представляла собой полинуклеотид поли-У, в котором все нуклеотиды содержали только одно основание - урацил. Когда поли-У добавляли к экстракту из клеток бактерии E. Так было обнаружено, что кодон УУУ соответствует фенилаланину. Этот первый успех указал путь, следуя которому в скором времени удалось установить кодоны и для ряда других аминокислот; требовалось только перепробовать различные формы синтетических мРНК. Тогда возник вопрос, каким образом некоторые синтетические мРНК, например поли-У, которые, конечно, не содержат таких кодонов, ухитряются как-то заставлять рибосомы синтезировать полипептиды? Вероятно, это происходит по ошибке - из-за того, что рибосомы ведут себя «не по инструкции». Следовательно - ирония судьбы! Каковы же те обстоятельства, которые приводят к тому, что эти системы совершают «нужные» ошибки? Один из факторов был вскоре найден.
Им оказалась высокая концентрация магния в бесклеточных системах. Каким образом магний инициирует синтез? На этот вопрос нет однозначного ответа [25]. О различии молекулярных механизмов формирования морозоутойчивости озимой мягкой пшеницы и озимого ячменя Итак, концентрация магния. Установлено, чем больше содержится магния в рРНК, тем активнее синтезируют белок полифенилаланин рибосомы зародышей пшеницы в бесклеточной системе синтеза белка in vitro на искусственной матрице поли-У [42]. Вполне возможно, что концентрация катионов магния в клетке определяет интенсивность синтеза «ошибочных» полипептидов, предположительно расширяющих адаптационные свойства организмов [19, 20, 21, 25]. Вероятно, этим можно объяснить факт сортоспецифического усиления in vitro трансляционной активности полисом из проростков пшеницы и ячменя под влиянием закаливающей температуры [16, 25], тогда как в этих условиях длина поли-А-хвоста мРНК энхансера трансляции у пшеницы увеличивалась, а у ячменя сокращалась [2, 16].
На молодой Земле они не могли представлять редкости. И в водном растворе вышеуказанные капли действительно обладают свойством накапливать нужные для синтеза РНК реагенты. Предполагается, таким образом, что возникнув внутри капелек, автокаталитические молекулы прошли длительный путь развития, совершенствуясь, образуя «колонии», пополняя и облагораживая микроскопическую среду обитания продуктами реакций, катализ которых они учились осуществлять.
И клетка появилась как результат постепенного замещения абиогенных цитоплазмы и мембраны биогенными уже аналогами. Гипотеза выглядит убедительной, перспективной, но и крайне сложной для экспериментальной проверки. Просто собрать РНК в пробирке, и проделать всё то же самое, но уже внутри плавающих в пробирке коацерватных капелек — две очень большие разницы. О жизни из нафталина? Нафталин — простейший из полиароматических углеводородов, вот и всё. Жизнь же вообще возникла позже.
Оказалось, что короткие цепочки РНК, действуя как праймеры, могут приводить к образованию большого количества копий разрушенного полимера, аналогично процессу регенерации червей. Добавление спонтанно образованных рибозимов к полимерным цепочкам также оказало влияние на процесс самовоспроизводства этих структур. Источник фото: Фото редакции Репликация полимера осуществлялась через циклическое изменение температуры между горячей и холодной фазами, что напоминает циклы день-ночь.
Исследование, опубликованное в журнале eLife, представляет собой модель, которая имитирует случайное разрушение простых РНК-молекул. В ходе экспериментов возникали короткие цепочки РНК, способные служить затравками для синтеза более длинных молекул. Этот процесс приводил к формированию большого количества копий исходного полимера, подобно процессу регенерации у червей, разделенных на части. В дополнение к этому, ученые разработали вторую модель, в которой добавляли способные к самообразованию рибозимы к пулу РНК-цепочек.
ELife: ученые обнаружили спонтанное возникновение самовоспроизводящихся молекул
Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. Другой гипотезой абиогенного синтеза РНК, призванной решить проблему низкой оценочной вероятности синтеза РНК, является гипотеза мира полиароматических углеводородов. Концепцию мира РНК впервые сформулировал в 1962 году Александр Рич (Alexander Rich), термин ввел в 1986 году Уолтер Гилберт (Walter Gilbert). Сторонники гипотезы «мира РНК» указывают на две проблемы в этой теории.
Появилась новая гипотеза возникновения ДНК и РНК
И в водном растворе вышеуказанные капли действительно обладают свойством накапливать нужные для синтеза РНК реагенты. Предполагается, таким образом, что возникнув внутри капелек, автокаталитические молекулы прошли длительный путь развития, совершенствуясь, образуя «колонии», пополняя и облагораживая микроскопическую среду обитания продуктами реакций, катализ которых они учились осуществлять. И клетка появилась как результат постепенного замещения абиогенных цитоплазмы и мембраны биогенными уже аналогами. Гипотеза выглядит убедительной, перспективной, но и крайне сложной для экспериментальной проверки. Просто собрать РНК в пробирке, и проделать всё то же самое, но уже внутри плавающих в пробирке коацерватных капелек — две очень большие разницы.
О жизни из нафталина? Нафталин — простейший из полиароматических углеводородов, вот и всё. Жизнь же вообще возникла позже. Ни коацерватные капли, ни сами по себе автокаталитические молекулы живыми не считаются.
С точки зрения Уиллса, РНК могла бы стать катализатором своего собственного формирования, что сделало бы её «химически рефлексивной», но ей не хватало «вычислительной рефлексивности». Питер Уиллс, биофизик из Оклендского университета в Новой Зеландии «Система, использующая информацию так, как организмы используют генетическую информацию — для синтеза собственных компонентов — должна содержать рефлексивную информацию», — сказал Уиллс. Рефлексивная информация, по его определению, это такая информация, которая «будучи закодированной в систему, создаёт компоненты, проводящие именно это определённое декодирование». РНК из гипотезы мира РНК, добавил он, — это простая химия, потому что она неспособна контролировать свою химию.
Природе нужно было найти другой способ, лучший короткий путь к созданию генетического кода. Картер и Уиллс считают, что они открыли этот короткий путь. Он зависит от небольшой петли обратной связи, которая не выросла бы только из РНК, а могла появиться из комплекса пептидов и РНК. Приобщаем к делу пептиды Картер обнаружил намёки на этот комплекс в середине 1970-х, когда в институте узнал, что определённые структуры, встречающиеся в большинстве белков, «правосторонние».
Атомы в структурах могли быть организованы двумя эквивалентными способами, зеркально отличающимися друг от друга, но все структуры используют только один способ. Картер начал считать РНК и полипептиды дополняющими друг друга структурами, и смоделировал комплекс, в котором «они были созданы друг для друга, как рука и перчатка». Это подразумевает возможность элементарного кодирования, основу для обмена информацией между РНК и полипептидами. Он работал над набросками того, как этот процесс мог выглядеть, экстраполируя назад от современного, гораздо более сложного генетического кода.
Когда гипотеза, которую в 1986 году назвали «мир РНК», набрала популярность, Картер, по его признанию, был выбит из колеи. Ему казалось, что его мир пептидов и РНК, предложенный за десять лет до этого, полностью проигнорировали. С тех пор он, Уиллс и другие совместно работали над теорией, возвращающейся к тому исследованию.
Однако Лорен Уильямс Loren Williams из Технологического Института Джорджии отмечает, что дискуссии со специалистами по геологии заставили его более точно смоделировать условия на Земле, которые существовали во время существования предполагаемого мира РНК, около 2,5 миллиардов лет назад — значительное количество ионов железа II и малая концентрация свободного кислорода в атмосфере. Уильямс отмечает, что в присутствии кислорода железо разрушает РНК, однако в бескислородном окружении этого не происходит. Исследователи использовали стандартную пероксидазную пробу, в которой происходит окисление органического красителя под действием радикал-катиона, образующегося из пероксида водорода. Уильямс отмечает, что если представить сложные метаболитические системы мира РНК, в которых рибонуклеиновые кислоты играли роль первичных ферментов, для таких процессов была необходима реализация переноса электрона.
Среди наиболее важных каталитических свойств, связанных с происхождением жизни, можно выделить: Способность к самодупликации или дублированию других молекул РНК. В лаборатории были получены относительно короткие молекулы РНК, способные дублировать другие.
Самая короткая идентифицируемая длина составляет 165 оснований, хотя считается, что может быть достаточно и меньшего размера. Способность катализировать простые химические реакции, что позволяет создавать новые молекулы. Относительно короткие нити с такими возможностями были изготовлены в лаборатории. Эта операция в настоящее время выполняется рибосомами , комплексами, состоящими из белков и двух длинных молекул РНК известных как рРНК , которые, как полагают, несут главную ответственность за активность синтеза белка. В лаборатории была синтезирована молекула, способная образовывать короткие пептиды. Можно предположить, что современные рибосомы могли произойти из таких молекул. Также было высказано предположение, что аминокислоты могли первоначально образовывать комплексы с молекулами РНК в качестве кофакторов , способных усиливать и диверсифицировать ферментативные способности; мРНК могла произойти из сходных молекул, а тРНК из филаментов, способных катализировать перенос одних и тех же аминокислот к коротким пептидам. Самое главное, эта группа делает молекулу менее стабильной, так как она может атаковать близлежащую фосфодиэфирную связь и разорвать ее. Другим существенным отличием является используемый набор оснований РНК , который включает урацил вместо тимина , используемого ДНК.
Это аналогичные молекулы, хотя для производства урацила требуется меньше энергии. С точки зрения спаривания соответствующих последствий нет: аденин способен безразлично связывать оба основания. Реальным ограничением использования урацила является то, что он может быть результатом дезаминирования цитозина , что делает молекулы РНК особенно восприимчивыми к мутациям, которые заменяют пары оснований , такие как GC на GU. Структура РНК делает ее длинные нити хрупкими по своей природе, которые могут подвергаться деградации посредством гидролиза. Ароматические основания, которые эффективно поглощают УФ -излучение , также очень склонны к структурным модификациям, что делает точность такого сохранения очень низкой. Наличие такой оптимизированной молекулы , как ДНК, объясняет, почему сегодня для этой цели не используется РНК, но не исключает, что это могло иметь место на первобытных стадиях жизни на Земле.
Семь научных теорий о происхождении жизни. И пять ненаучных версий
гипотеза, с которой срослась проблема внезапного (для учёных особенно) возникновения жизни на совсем молодой, не оформившейся, подвергающейся. Мир РНК утверждает, что когда РНК сформировалась на Земле, она начала размножаться, а затем породила такие молекулы, как ДНК. Концепцию мира РНК впервые сформулировал в 1962 году Александр Рич (Alexander Rich), термин ввел в 1986 году Уолтер Гилберт (Walter Gilbert).
Моделирование происхождения жизни: Новые доказательства существования "мира РНК"
Полагаю, что и гипотезу «Мир-РНК», которая по принципу «на безрыбье и рак рыба» пока атеистам кажется убедительной, ждет такое же будущее. ELife: обнаружено случайное возникновение самовоспроизводящихся молекул Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили об обнаружении новых доказательств гипотезы РНК-мира. В рамках своего проекта ученые поставили под сомнение достоверность гипотезы РНК-мира. «Я убежден, что гипотеза РНК-мира неверна», -говорит профессор отделения растениеводства (University of Illinois crop sciences) и Института геномной биологии.