Новости коэффициент джини показывает

Коэффициент Джини. Коэффициент Джини может принимать значения от нуля до единицы (0÷1), расположенные между идеальной прямой равномерного распределения и кривой Лоренца. Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере.

Из Википедии — свободной энциклопедии

  • Коэффициент Джини: формула неравенства
  • Коэффициент Джини — Финуслуги
  • Gini Coefficient
  • Задача №77. Расчёт коэффициента Джини

Среди населения России растет доходное неравенство: почему ускорился этот процесс?

Telegram: Contact @newsturkru В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395.
В России вырос уровень доходного неравенства | Ямал-Медиа Коэффициент Джини – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини.

Gini Coefficient

Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. Как указывает автор, коэффициент Джини лишь один из многих измерителей неравенства, и сказанное относительно коэффициента Джини в равной мере относится и к остальным, близким по содержанию показателям (например, к индексам Тейла, Аткинсона, Херфиналя-Хиршмана. Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения.

Коэффициент Джини, значение по странам мира и в России

Коэффициент джини в России Коэффициент концентрации Джини (G) используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89].
Как рассчитать коэффициент Джини в Excel (с примером) Коэффициент Джини – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини.

Индекс Джини в странах мира

«Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство». «Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство». Коэффициент Джини. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Рассмотрим, что из себя представляет кривая Лоренца и причем тут индекс Джини Телеграм-канал Группа Вконтакте: TikTok: #индексджини #доходы #неравенство Привет, в 2015 году я получил высшее экон. Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель.

Как рассчитать коэффициент Джини в Excel (с примером)

Популярной является точка зрения, что прогрессивные налоги являются более справедливыми, а регрессивные менее справедливыми. Но эта точка зрения ошибочна. Как мы показали раньше, все зависит от того, в рамках какой системы моральных ценностей мы будем говорить о справедливости. Рассмотрим простой пример. Налоговая шкала является регрессивной — средняя ставка падает при росте дохода. Но является ли она несправедливой? Посчитаем сумму налога, уплаченную каждым индивидом.

В результате индивид, зарабатывающий больше, платит и большую сумму налога. И в чем же здесь несправедливость? Для оценки справедливости налоговой системы выделяются следующие постулаты: Принцип получаемых выгод: индивиды должны платить налоги в соответствии с выгодой, которую они извлекают из услуг государства. На этом принципе может быть основана идея, что богатые люди должны платить больше налогов, чем бедные. Поскольку государство является предоставителем общественных благ и гарантом прав собственности, богатые люди извлекают больше выгод от государства, чем бедные, потому что у них есть больше собственности. Также этот принцип оправдывает идею программ по борьбе с бедностью за счет богатых.

Все мы хотим жить в обществе, которое не испытывает революций и социальных потрясений из-за неприемлемого уровня жизни беднейших слоев населения. Поэтому идея помощи бедным за счет богатых кажется оправданной. Принципы платежеспособности: горизонтальная справедливость и вертикальная справедливость. Горизонтальная справедливость означает, что индивиды с одинаковыми доходами должны платить одинаковые налоги. Вертикальная справедливость означает, что индивиды с более высокими доходами должны платить более высокие налоги. Как мы увидели из примера выше, этим принципам может соответствовать не только прогрессивная система налогообложения, но и регрессивная.

В зависимости от того, каким образом налоги собираются в государственный бюджет, различают прямые и косвенные налоги. Прямые налоги — это налоги, которые уплачивает тот, кто является носителем налога. Например, налог на прибыль является прямым налогом, потому что его оплачивает фирма, которая получает эту прибыль. Подоходный налог является прямым налогом, поскольку его уплачивает индивид, который получает налогооблагаемый доход. Косвенные налоги — это налоги, которые уплачивает тот, кто не является носителем налога. Например, акцизы на алкоголь и сигареты уплачивают фирмы.

Однако носителем налога в этом случае является потребитель, потому что акцизы «сидят» в цене товаров, покупаемых потребителем. Косвенными налогами в России являются НДС налог на добавленную стоимость и акцизы. Все косвенные налоги являются регрессивными по отношению к доходам покупателей. Какие налоги являются более популярными: прямые или косвенные? Ответ заключается в том, что косвенные налоги легче собрать, поскольку фактически они вводятся на расходы потребителей. Прямые налоги собрать тяжелее, потому что они вводятся преимущественно на доходы, и в этом случае индивиды имеют стимулы к уклонению от налогов путем сокрытия доходов.

Поэтому косвенные налоги более популярны в государствах с неразвитыми институтами, где индивиды могут и хотят уклоняться от налогов. Еще одним эффектом, который оказывают прямые или косвенные налоги на экономику, являются стимулы индивидов к сбережениям.

Такое распределение отображается прямой, проходящей из нижнего левого угла графика к верхнему правому углу и являющейся линией равномерного распределения. Чем сильнее концентрация изучаемого признака, тем заметнее кривая Лоренца отклоняется вниз от линии равномерного распределения, и наоборот, чем слабее концентрация, тем ближе будет кривая к прямой.

Степень концентрации определяется площадью фигуры А, ограниченной линией равномерного распределения и кривой Лоренца. Чем больше площадь А и чем соответственно меньше площадь В, тем степень концентрации выше.

Она используется в качестве меры экономического неравенства, измеряя распределение доходов среди населения. Индекс Джини представляет собой число от 0 до 1, измеряемое в соответствии с отношением между площадью, заключенной между кривой Лоренца и линией 45 градусов, и площадью всего треугольника того, который находится ниже линии 45 градусов и площадь которого составляет 0,5. Нулевой коэффициент означает полное равенство, то есть у всех одинаковый доход; Тогда как коэффициент 1 означает абсолютное неравенство, означающее, что у одного человека есть весь доход, а у остальных вообще нет дохода.

Джини — это мера статистической дисперсии, и как таковая она может измерять любой ряд числовых данных, а не только доход, богатство или политический риск. Это индекс, который на самом деле пытается объяснить распространение неопределенности, а оценка риска — это на самом деле неопределенность, которую мы пытаемся уменьшить. Когда мы проверяем результаты моделей оценки риска, мы стремимся к как можно более высокому индексу Джини, то есть неравенству, которое будет максимально отражать предсказание только политики высокого риска. В примере мы построили две модели оценки риска страховых полисов в данном случае транспортных средств и оценили риск группы полисов.

Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере.

Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм?

Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма.

Индекс Джини и неравенство доходов

Есть и численные формулы для подсчёта, но, думаю, интересующиеся их найдут и сами. Возьму свой давешний пример с буханками хлеба на пятерых. При равном распределении десяти буханок на пятерых, коэффициент неравенства будет равен нулю. Если же распределить хлеб как 0-1-2-3-4, то коэффициент составит уже 0,4 Теперь можно примерно понимать, что собой представляют реальные цифры. А они таковы. РСФСР на 1991 - 0,27.

По данным Всемирного Банка первые 15 стран с самым высоким неравенством выглядят так: Здесь любопытно нахождение США на 15 месте. Впрочем, ни для кого не секрет что в США достаточно большое расслоение в доходах. Это плата за высокую эффективность экономики. Рейтинг приведен на основе данных за 2019 год, так как за более поздние периоды данные неполные. Россия находится в третьем десятке и имеет средний индекс неравенства, на уровне Китая, Индонезии, Таиланда. Что дает индекс? Равенство распределения доходов часто отождествляют со справедливостью, однако это не совсем так. Справедливым в определенной трактовке смысла можно назвать и обратную ситуацию, когда доходы распределяются на общих условиях в ходе конкурентной борьбы. Какое понимание справедливости более верное — вопрос открытый.

Такая неравномерность возникает в распределении доходов по группам населения, трудовых ресурсов по регионам страны, активов по кредитным организациям и т. Расчёт коэффициента Джини базируется на использовании кривой концентрации кривая Лоренца. Для её построения необходимо иметь частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют пять групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими.

Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков.

Вы точно человек?

Среди преимуществ коэффициента Джини выделяют: Простота интерпретации. Коэффициент Джини - простой и легко интерпретируемый показатель. Он предоставляет наглядное представление о степени неравенства в распределении доходов. Возможность сравнения. Он позволяет сравнивать уровень неравенства между разными странами, регионами и временными периодами, что облегчает анализ динамики и международных различий. Широкое применение. Используется в различных областях, включая экономику , социологию, исследования бедности и общественные науки. Устойчивость к масштабу. Коэффициент Джини устойчив к изменениям масштаба, что делает его применимым при сравнении обществ и групп людей различного размера. Помимо преимуществ у этого коэффициента выделяют и ряд недостатков: Ограниченность в оценке социальной защищенности.

Коэффициент Джини сконцентрирован на распределении доходов, что делает его менее чувствительным к составляющим социальной защищенности, таким как доступ к образованию и здравоохранению. Интерпретационные ограничения. Трудно однозначно интерпретировать, насколько конкретное значение коэффициента Джини является социально справедливым или несправедливым. Неучет разных источников дохода. Не учитывает различные источники дохода, такие как натуральные выплаты, премии в виде активов, что вносит искажения в оценку неравенства. Чувствительность к выбору категорий. Результаты коэффициента Джини зависят от выбора категорий, на которые разбивается население для анализа, что создает потенциальные искажения. Ограничения в оценке социальной справедливости. Индекс Джини не является индикатором справедливости распределения богатства.

Коэффициент используется в скоринговых моделях и машинном обучении в таких секторах, как банковское кредитование, страхование, маркетинг. Коэффициент Джини — статистический показатель меры расслоения доходов или богатства общества. Измеряется по шкале от 0 до 1, где ноль означает полное равенство, а единица — полное неравенство. Нулевое значение будет в стране или в регионе, в которой абсолютно у всех одинаковый доход.

Бедные и богатые по-прежнему существуют даже в самых благополучных высокоразвитых странах. Все эти причины действуют в разных направлениях, увеличивая или уменьшая неравенство. Для того чтобы определить степень этого неравенства, экономисты используют различные показатели.

Кривая Лоренца — это графическое изображение функции распределения. В таком представлении она есть изображение функции распределения, в котором аккумулируются доли численности и доходов населения. В прямоугольной системе координат кривая Лоренца является выпуклой вниз и проходит под диагональю единичного квадрата, расположенного в I координатной четверти. Данная кривая отражает долю дохода, приходящуюся на различные группы населения, сформированные на основании размера дохода, который они получают. На оси абсцисс откладывается доля населения, а на оси ординат - доля доходов в обществе в процентном соотношении. Как видно из графика, в обществе всегда имеет место быть неравенство в распределении доходов, что отражает кривая OABCDE — кривая Лоренца. Коэффициент Джини Gini coefficient — количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини.

Индекс можно рассчитывать по величине заработной платы, по доходу от предпринимательской деятельности, по величине ВВП ВНП на душу населения, валовому доходу домашнего хозяйства и др. Этот коэффициент тесно связан с кривой Лоренца.

Государственная статистика Единая межведомственная информационно-статистическая система ЕМИСС разрабатывалась в рамках реализации федеральной целевой программы «Развитие государственной статистики России в 2007-2011 годах». Целью создания Системы является обеспечение доступа с использованием сети Интернет государственных органов, органов местного самоуправления, юридических и физических лиц к официальной статистической информации, включая метаданные, формируемой в соответствии с федеральным планом статистических работ.

Неравенство и бедность

Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. Коэффициент Джини Всемирного банка - CIA World Factbook. В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно. Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%. Коэффициент концентрации доходов, или индекс Джини, может быть рассчитан и с помощью других методик.

Коэффициент Джини

«Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство». Коэффициент Джини (индекс концентрации доходов) — статистический показатель для оценки экономического равенства. Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини.

Неравенство и бедность

Так, например, индекс прожиточного минимума высчитывает Минтруд, который не учитывает полное изменение стоимости услуг по всей стране, что на выходе дает более красивую картину по прожиточному минимуму, а значит, население кажется менее бедным, чем есть на самом деле. В обзоре ВШЭ сказано, что Росстат тоже не безгрешен. Он определяет инфляцию и прожиточный минимум на основе цен в городах и не учитывает стоимость товаров в несетевых магазинах в сельской местности. То же касается и услуг. Десятка богатых к десятке бедных Для определения неравенства используется еще так называемый децильный коэффициент.

Этот показатель в России менялся за последнее десятилетие примерно в общей парадигме коэффициента Джини и тоже наглядно показывал разницу в доходах бедных и богатых. По данным Росстата, за последние десять лет наиболее низким децильный коэффициент оказался в 2017 году 15,3 , а самым высоким — в 2008-2010 годах 16,6. По другим оценкам, в истории современной России он в реальности мог достигать и 17. Нормально это или нет?

В предвоенной царской России начала XX века, например, по расчетам профессора факультета социологии Санкт-Петербургского государственного университета Бориса Миронова, децильный коэффициент равнялся всего лишь 6,5. В других странах коэффициент сильно разнится, причем далеко не всегда это коррелирует с благополучием страны. Так, в 2015 году в Южной Корее он составлял 7,8, что считается очень хорошим показателем. Сообразно общей картине различается и коэффициент Джини по странам.

В США в 2000-х и 2010-х годах показатель доходил до 0,450, а вот в Великобритании был на уровне 0,360, в Германии — 0,280. Разница очень наглядная. Еще раз доказывающая, что в России действует американская, а не европейская и тем более не восточноазиатская модель экономики. Это тоже официальные данные Росстата, который порой склонен сглаживать реальность в угоду, например, «беспрецедентному росту зарплат».

РБК: Росстат зафиксировал рост концентрации доходов в 2023 году 00:06 29. В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395 В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395. Данные об индексе Джини и другие социально-экономические показатели были опубликованы Росстатом в отчете, выпущенном 28 февраля, сообщает РБК. Важно отметить, что в 2022 году индекс Джини показал падение ниже отметки 0,4 впервые с 2002 года.

Данный показатель является качественным, поэтому требует преобразования с помощью woe функции. Переобучили модель с учетом нового набора предикторов и посчитали Джини. По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку.

Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи.

Минюст предложил штрафовать коллекторов на 2 млн рублей за навязчивые звонки или письма. Ученые выяснили, почему начал таять ледник Туэйтса «ледник Судного дня». Этот процесс связали с феноменом Эль-Ниньо: повышение температуры поверхностного слоя воды на востоке Тихого океана. Когда ледник полностью растает, уровень моря поднимется на 0,6 метра, а в перспективе и на 3 метра. Это может дестабилизировать всю западную часть Антарктического ледяного щита. Депутаты Госдумы от фракций ЛДПР, КПРФ и «Справедливая Россия — За правду» внесли законопроект, разрешающий использовать средства материнского капитала на получение платных медицинских услуг или покупку лекарств для ребенка.

Миссия ООН покинула Судан. В апреле 2023 года между армией Судана и силами быстрого реагирования начались столкновения. Генеральный секретарь ООН Антониу Гутерриш призвал воюющие стороны сложить оружие и приступить к мирным переговорам.

Похожие новости:

Оцените статью
Добавить комментарий