To uncover the mystery behind these differences in motion, a team of researchers in the UCF Department of Mechanical and Aerospace Engineering studied the aerodynamics of bird perching. The aerodynamics are modeled using empirical and analytical methods in both attached and separated flow regimes.
Свинья в облаках.
В бассейн уругвайского миллионера Федерико Альвареса Кастильо неизвестные подбросили свинью. Дело в том, что сзади, устроившись поудобнее и с интересом следившая за дорогой ехала свинья. Аэродинамика совиных крыльев позволит уменьшить шумовое загрязнение. Из-за этого свинья неудачно вписалась в поворот, потеряв задние ноги. Снят он в «сказочном» стиле, где есть несколько необычных героев, включая летающих свиней.
Свинья в скафандре стоит перед самолетом, генерирующим искусственный интеллект
Война свиней у корыта», – написал Медведев в своём телеграм-канале. 23 апреля 2024, Новости. Новый китайский электрокар удивляет аэродинамикой и динамикой. Лорд Брабазон своим опытом опроверг теорию о том, что "свиньи не могут летать.". Однако, по его словам, такие «летающие свиньи» могут и не принести пользу ВСУ на поле боя.
Bird flocking dynamics inspire advancements in technology
Статья опубликована в журнале Physics of Fluids. Звуки, производимые авиационными и газотурбинными двигателями, вносят основной вклад в шумовое загрязнение, представляющее собой серьезную проблему для некоторых районов. В настоящее время конструкции лопастей двигателей постепенно совершенствуется, но шумоподавление по-прежнему остается нерешенной задачей. Чтобы решить эту проблему, ученые из Сиань Цзяотунского университета обратились к природе. Это достигается за счет уникальной конфигурации совиных крыльев, — говорит соавтор исследования Сяоми Лю.
Свиньи переносят опасные заболевания, в том числе в Минсельхозе США опасаются, что свиньи могут принести африканскую чуму свиней, которой ранее в этой стране не было. Чтобы этого избежать, Минсельхоз США рассматривает возможность полного уничтожения популяции диких свиней в регионе.
Российским аграриям «суперсвиньи» не угрожают, считают эксперты НСА.
На данный момент неясно, будут ли свиньи предлагать коммерческие рейсы или их деятельность будет ограничена другими предприятиями. Тем не менее, это, безусловно, одно из самых удивительных и необычных событий года. Мир с нетерпением ждет дополнительных подробностей и надеется на еще больше удивительных новостей от наших летящих друзей.
МАЗ-2000 имел лучшую аэродинамику среди всех тяжелых грузовиков мира. Учитывая шедшую в позднем СССР газификацию грузовиков, он мог стать еще и самым экономичным и экологичным. Чем выше мощность мотора, тем больше мощность торможения двигателем. И дело не только в том, что тормоза типичной фуры при спуске с горки часто перегреваются, но и в том, что на торможении двигателем электрофура получает серьезнейшую подзарядку: ее моторы работают в режиме генераторов, извлекая энергию из замедления своей машины. Это хорошо заметно на графике ниже, показывающем пробег первой серийной Semi.
Мы не будем утомлять читателя перечислением всех оптимизаций грузовика — аэродинамический и регенеративный аспект вопроса и так говорят сами за себя. Подчеркнем лишь результат: Tesla Semi тратит всего 106 киловатт-часов на 100 километров. А вовсе не 150 киловатт-часов эквивалента, как ее дизельные предшественники. Снижение потребления энергии на 29 процентов — неплохой результат для первой серийной фуры компании, которая до того не выпускала их вообще никогда. Из-за неверия в саму возможность дальнобойной электрофуры, конкуренты Маска еще даже не попытались создать грузовик того же класса с большим запасом хода. Легко видеть, что по энергоэффективности традиционные производители грузовиков на фоне новичка выглядят как дети рядом со взрослым. И отчего даже не планировали создавать собственные грузовики с 800-километровой дальностью. Они считали, что традиционные компании не просто так делают грузовики больше века. Что они «вылизали» их конструкцию до оптимальной, что там особенно нечего улучшать. Однако они ошибались.
Но эту ошибку было легко предсказать: ведь совершенно точно так же Tesla Model 3, тратившая менее 16 киловатт-часов на 100 километров, до этого обошла по аэродинамике и энергоэффективности свои ДВС-аналоги. И причины были те же: Маск стремится сделать свои машины явно лучше, чем у окружающих, и при этом не чурается самых радикальных идей. Ни одна из компаний-конкурентов не имеет подобных достоинств, и именно поэтому им так трудно предвидеть саму возможность проектов, за которые он берется. Почему решение Илона Маска далеко от идеала Кажется, что глава Tesla сделал все как можно лучше. Уронил потребление энергии грузовика на 29 процентов и намерен вскоре побить и этот рекорд. За счет этого поставил батарею менее пяти тонн, и потому сможет возить груза по 20 тонн, почти как дизельные аналоги. Экономически Semi — безусловная победа. Как отмечают американские наблюдатели, при типичных для этой страны ценах на электричество и солярку Semi за свой жизненный цикл сэкономит оператору очень немаленькие деньги. Гарантия производителя по ресурсу машины — 1,609 миллиона километров. И в принципе, у дизельных грузовиков такие пробеги тоже не редкость.
При цене за электричество девять центов за киловатт-час столько платят крупные покупатели в Штатах и текущих среднеамериканских ценах на солярку за свою жизнь электрофура потратит на заправку 0,18 миллиона долларов, а дизельная — 0,71 миллиона. Полмиллиона долларов — очень большой зазор. Интерес Маска к грузовому сектору понятен.
Bird flocking dynamics inspire advancements in technology
The wings fling apart by rotating around the trailing edge D. The leading edge translates away and fluid rushes in to fill the gap between the two wing sections, giving an initial boost in circulation around the wing system E. F A leading edge vortex forms anew but the trailing edge starting vortices are mutually annihilated as they are of opposite circulation. As originally described by Weis-Fogh 1973 , this annihilation may allow circulation to build more rapidly by suppressing the Wagner effect. This process generates a low-pressure region between them, and the surrounding fluid rushes in to occupy this region, providing an initial impetus to the build-up of circulation or attached vorticity Fig. The two wings then translate away from each other with bound circulations of opposite signs.
As pointed out by Lighthill 1973 , this phenomenon is therefore also applicable to a fling occurring in a completely inviscid fluid. Collectively, the clap-and-fling could result in a modest, but significant,lift enhancement. However, in spite of its potential advantage, many insects never perform the clap Marden,1987. Others, such as Drosophila melanogaster, do clap under tethered conditions but only rarely do so in free flight. Because clap-and-fling is not ubiquitous among flying insects, it is unlikely to provide a general explanation for the high lift coefficients found in flying insects.
Furthermore, when observed, the importance of the clap must always be weighed against a simpler alternative but not mutually exclusive hypothesis that the animal is simply attempting to maximize stroke amplitude, which can significantly enhance force generation. Animals appear to increase lift by gradually expanding stroke angle until the wings either touch or reach some other morphological limit with the body. Thus, an insect exhibiting a clap may be attempting to maximize stroke amplitude. Furthermore, if it is indeed true that the Wagner effect only negligibly influences aerodynamic forces on insect wings, the classically described benefits of clap-and-fling may be less pronounced than previously thought. Resolution of these issues awaits a more detailed study of flows and forces during clap-and-fling.
Delayed stall and the leading edge vortex As the wing increases its angle of attack, the fluid stream going over the wing separates as it crosses the leading edge but reattaches before it reaches the trailing edge. In such cases, a leading edge vortex occupies the separation zone above the wing. Because the flow reattaches, the fluid continues to flow smoothly from the trailing edge and the Kutta condition is maintained. In this case, because the wing translates at a high angle of attack, a greater downward momentum is imparted to the fluid, resulting in substantial enhancement of lift. Experimental evidence and computational studies over the past 10 years have identified the leading edge vortex as the single most important feature of the flows created by insect wings and thus the forces they create.
Polhamus 1971 described a simple way to account for the enhancement of lift by a leading edge vortex that allows for an easy quantitative analysis. For blunt airfoils, air moves sharply around the leading edge, thus causing a leading edge suction force parallel to the wing chord. This extra force component adds to the potential force component which acts normal to the wing plane , causing the resultant force to be perpendicular to the ambient flow velocity, i. At low angles of attack, this small forward rotation due to leading edge suction means that conventional airfoils better approximate the zero drag prediction of potential theory Kuethe and Chow,1998. However, for airfoils with sharper leading edge, flow separates at the leading edge, leading to the formation of a leading edge vortex.
In this case, an analogous suction force develops not parallel but normal to the plane of the wing, thus adding to the potential force and consequently enhancing the lift component. Note that in this case, the resultant force is perpendicular to the plane of the wing and not to ambient velocity. Thus, drag is also increased Fig. A Flow around a blunt wing. The sharp diversion of flow around the leading edge results in a leading-edge suction force dark blue arrow , causing the resultant force vector light blue arrow to tilt towards the leading edge and perpendicular to free stream.
B Flow around a thin airfoil. The presence of a leading edge vortex causes a diversion of flow analogous to the flow around the blunt leading edge in A but in a direction normal to the surface of the airfoil. This results in an enhancement of the force normal to the wing section. For 2-D motion, if the wing continues to translate at high angles of attack, the leading edge vortex grows in size until flow reattachment is no longer possible. The Kutta condition breaks down as vorticity forms at the trailing edge creating a trailing edge vortex as the leading edge vortex sheds into the wake.
At this point, the wing is not as effective at imparting a steady downward momentum to the fluid. As a result, there is a drop in lift,and the wing is said to have stalled. The first evidence for delayed stall in insect flight was by provided by Maxworthy 1979 , who visualized the leading edge vortex on the model of a flinging wing. However, delayed stall was first identified experimentally on model aircraft wings as an augmentation in lift at the onset of motion at angles of attack above steady-state stall Walker, 1931. As the trailing edge vortex detaches and is shed into the wake, a new leading vortex forms.
The forces generated by the moving plate oscillate in accordance to the alternating pattern of vortex shedding. Although both lift and drag are greatest during phases when a leading edge vortex is present,forces are never as high as during the initial cycle. View large Download slide A comparison of 2-D linear translation vs 3-D flapping translation. A 2-D linear translation.
Закрылков как у самолета у массивной птицы нет, поэтому приходится изощряться. Один профессор аэродинамики, участвовавший в «гусиной дискуссии» в интернете обосновал поведение птицы и нарисовал схему ее движения в воздушных потоках. Но Винсент не во всем согласен с зоологами и аэродинамиками — он упорно твердил, что гусь на его фото даже не собирался снижаться и просто летел кверху лапами по своим гусиным делам. Тогда орнитологи снова подумали и пришли к выводу, что птица просто… выпендривается.
Ну, понимаете, эдакое гусиное «Хоба! Как я могу!
Подъемная сила создается, когда воздух обтекает крылья объекта, создавая область низкого давления над крылом и высокого давления под крылом. Этот перепад давления заставляет объект отрываться от земли и оставаться в воздухе.
Однако для создания подъемной силы объект должен иметь возможность двигаться по воздуху с определенной скоростью, известной как минимальная скорость для продолжительного полета. Миф о летающих свиньях: отделить факты от вымысла На протяжении всей истории идея летающих свиней была популярной темой в литературе, искусстве и фольклоре. От греческой истории о том, как Цирцея превращала людей в свиней, а затем уносила их прочь, до популярной поговорки «когда свиньи летают», идея о том, что свиньи поднимаются в небо, захватила человеческое воображение. Однако реальность такова, что свиньи не умеют летать.
Несмотря на бесчисленное количество изображений летающих свиней в популярной культуре, никогда не было задокументировано случаев, когда бы свинья достигла устойчивого полета. Физика подъемной силы: почему свиньи не могут создать достаточную подъемную силу Есть несколько причин, по которым свиньи не могут создать достаточную подъемную силу для полета. Одним из основных факторов является их вес. Свиньи намного тяжелее птиц, поэтому им требуется большая подъемная сила, чтобы оставаться в воздухе.
Кроме того, у свиней площадь поверхности больше, чем у птиц, а это означает, что они испытывают большее сопротивление или сопротивление воздуха, когда пытаются летать. Это повышенное сопротивление еще больше затрудняет для свиней создание достаточной подъемной силы, чтобы оставаться в воздухе. Дизайн крыла: важность формы и размера Еще одним фактором, влияющим на способность объекта летать, является форма и размер его крыльев. Крылья птиц предназначены для полета, имеют обтекаемую форму и большую площадь поверхности.
Свиньи, напротив, вообще не имеют крыльев, и даже если бы они были, их крылья не подходили бы для полета.
Broader significance The discovery of how birds flock reveals more than just the remarkable abilities of these creatures; it has significant potential implications for human-designed systems and technologies. The insights from studying aerodynamic interactions in bird flocks can enhance machine design. These insights could lead to more efficient, aerodynamically optimized machines. Possible improvements include better vehicle formation dynamics. This would reduce drag and lower energy consumption. There could also be advancements in deploying autonomous drones that need to operate effectively in swarms. Additionally, the principles of bird flocking could enhance the design of wind turbines, optimizing them for better energy capture based on how air flows naturally around objects in motion.
This research bridges the gap between natural phenomena and engineered solutions, offering a blueprint for innovation across various fields. The study is published in the journal Nature Communications.
Дикие свиньи оказались опаснее для экологии, чем миллион автомобилей
UIUC Applied Aerodynamics Group. «Не позволяйте себе трюки и шумные игры». 5. «Аэродинамика коровы». If you have Telegram, you can view and join Аэродинамика NEWS right away. Команда BMW Sauber представит в Сингапуре новую аэродинамику. (2010) Recent progress in flapping wing aerodynamics and aeroelasticity.
Ford вновь уделяет внимание безопасности и аэродинамике пикапов, патентуя новый девайс
ответы на ваши вопросы в виде изображений, Поиск по картинке и фото. Камрад yasviridov порадовал очень: СВИНЬИ В КОСМОСЕ Свиньи летать умеют. новости свиноводства, новости скотоводства, новости агрохолдингов. Смотрите видео на тему «аэродинамика свиньи» в TikTok (тикток). The aerodynamics are modeled using empirical and analytical methods in both attached and separated flow regimes. чума свиней нанесла огромный ущерб популяции кабана в России.