Новости красноярские ученые использовали наноалмазы

Еще в Советском союзе ученые Института биофизики в Красноярске получили первые наноалмазы — серый порошок, получаемый из серии коротких взрывов углерода. Ученые Сибирского федерального университета (СФУ) и Красноярского научного центра СО РАН разработали технологию получения магнитных наночастиц ферригидрита для использования в биомедицине. 21 янв 2022. Пожаловаться. Первые наноалмазы получили красноярские ученые Института биофизики. “Таймырский Телеграф” – Ученые Института физики им. Л.В. Киренского Красноярского научного центра СО РАН научились синтезировать магнитные наночастицы с ядром из никеля и непроводящей ток углеродной оболочкой.

Красноярские учёные создали экологичный пластик

Красноярские учёные разработали уникальный способ анализа воды - Столица 24 Красноярские ученые вместе со специалистами НПП "Радиосвязь" холдинга "Росэлектроника" (входит в Ростех) разработали метод быстрого сращивания костей с помощью доработанных наночастиц, а также слабых магнитных полей.
Сибирские учёные разработали новый композит из нановолокон и наноалмазов красноярские ученые предлагают использовать для этого алмазы.
«Летим на Марс!»: истории самых громких научных открытий в Красноярске Вещество красноярских ученых способно светиться.
Сибирские ученые создали материал из наноалмазов | АиФ Красноярск Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков.

Наноалмазы «в шубе»

Новый материал способен светиться в слабом электрическом поле голубым светом, что предполагает его использование в качестве источника освещения. Например, светодиоды не умеют излучать голубой цвет, и нужного оттенка приходится добиваться с помощью покрытия люминофором трех светодиодов RGB. И хотя Нобелевская премия 2014 года была присуждена именно за создание светодиода с голубым излучением, до промышленного применения технологии еще далеко. Реклама на веке Чтобы создать композитный материал с такими свойствами, ученые разработали недорогую технологию получения модифицированных наноалмазов. По словам младшего научного сотрудника Института неорганической химии СО РАН Юлии Федосеевой, полученный композит может быть применен в совершенно разных сферах — от создания экономных и практичных светильников, до новых дисплеев.

Данная технология может успешно применяться в медицинской диагностике.

Но сибирским ученым удалось выяснить, что наноалмаз засветится, если он будет находиться на кончике углеродной трубки, которая в несколько раз усиливает мощность даже небольшого электрического поля», - сообщил подробности уникальной разработки один из авторов исследования - младший научный сотрудник ИНХ СО РАН Юлия Федосеева. По словам Юлии Федосеевой, полученный сибирскими учеными уникальный материал, созданный по относительно дешевой технологии, найдет применение в медицине в качестве зонда для точной диагностики , электронике при создании дисплеев нового типа или миниатюрных светильников и в других отраслях промышленного производства. Правда произойдет это после небольшой доработки, которая позволит дешевому люминесцентному материалу из России после усиления интенсивности свечения наноалмазов выиграть конкуренцию у западных аналогов.

Интерес к подобным работам проявили китайцы и европейцы. Расшифровка генома лиственницы В начале 2019 года группа исследователей лаборатории лесной геномики научно-образовательного центра геномных исследований СФУ объявила о полной расшифровке генома лиственницы. Отметим, геномы хвойных имеют громадный размер, в несколько раз превышающий геном человека. На сегодняшний лишь две команды ученых в мире смогли расшифровать геном хвойного дерева. Методика расшифровки генома, которую использовали сибирские ученые, позволяет быстро и точно исследовать невероятный объем данных — 12 млрд нуклеотидных оснований. Результаты исследования опубликовал авторитетный журнал BMC Bioinformatics.

Полная расшифровка генома хвойного дерева — результат мирового уровня. Результаты расшифрованного генома могут использованы для создания базы генетических ресурсов лесов и в лесном хозяйстве — например, чтобы использовать для восстановления лесов деревья, оптимально подходящие для конкретных погодных условий и почвы.

Но надо сказать, что аламазы эти — не простые, природные. Детонационные наноалмазых получают при помощи содержащих углерод взрывчатых веществ например, смесь тротила и гексогена. Их взрывают в замкнутой камере при дефиците кислорода.

Модифицированные наноалмазы, полученные красноярскими физиками, способны стать катализатором. Если их добавить к смеси реагента для определения фенолов аминоантипирина, перекиси водорода и фенола, то раствор станет ярко-малиновым.

Красноярские учёные создали экологичный пластик

Учёные из Красноярского научного центра и Сибирского государственного университета создали новый вид биоразлагаемого пластика, который разлагается в лесной почве всего за семь месяцев. Красноярские ученые придумали новый способ лечения онкологических заболеваний с использованием наночастиц золота, сообщает ТАСС. Красноярские ученые разработали метод получения нанокристаллов силицида железа в форме прямоугольных и треугольных нанопластин за счет нанесения частиц золота на кремниевую подложку для выращивания кристаллов. красноярские ученые предлагают использовать для этого алмазы. Новый композиционный материал создали ученые из Красноярска и Новосибирска на основе нанотрубок и наноалмазов. Сотрудники Красноярского института биофизики продемонстрировали, как алмазы можно использовать для выявления фенолов в воде.

Красноярские ученые создали новый нанокомпозитный 2D-материал

Нанокристаллы силицида железа с различной огранкой позволяют связать другие материалы с кремнием — основным материалом электроники. Они могут применяться в качестве электрических наноразмерных контактов в полупроводниках с низким непредусмотренным сопротивлением тока. Также такие материалы можно использовать для создания нанопроволоки или для выращивания светоизлучающих диодов инфракрасного диапазона. Благодаря экологической безопасности кристаллы силицида металла с изменяемой формой и ориентацией будут служить для разработки лазерных диодов в волоконно-оптических линиях. Важное значение — их можно использовать для последующего синтеза на их основе других наночастиц и материалов», — рассказал научный сотрудник Института физики им. Исследование проводилось при поддержке Российского научного фонда, Российского фонда фундаментальных исследований и Правительства красноярского края. Фото: pubs.

Правда произойдет это после небольшой доработки, которая позволит дешевому люминесцентному материалу из России после усиления интенсивности свечения наноалмазов выиграть конкуренцию у западных аналогов.

Стоит напомнить, что наноалмазы, полученные на основе кристаллической решетки алмаза и обладающие в зависимости от способа производства разными свойствами, в настоящее время уже активно применяются в электронике и химической промышленности.

В основе лечения — тепловое воздействие на раковые клетки через наночастицы. Специальные молекулы доставляют наночастицы к злокачественным образованиям. Их нагревают с помощью лазера, это приводит к разрушению злокачественных тканей. Здоровые клетки при этом не затрагиваются.

Если человек профессионально занимается своим делом в своём окопе, боевые действия успешны. Если начинает метаться между окопами, дело потерпит фиаско. Я определил для себя, чем должен заниматься. И к этому призываю молодых коллег. Мы занимаемся фундаментальными исследованиями, получаем новые знания, пытаемся объяснить механизм выявленного феномена, эффекта, явления. Потом подвергаем накопленные экспериментальные данные глубокому и всестороннему анализу, на основании которого делаем более взвешенный вывод о возможности или невозможности применения этого знания на практике. Это абсолютно правильный путь — все практические достижения человечества основаны на фундаментальных знаниях и их анализе. К сожалению, сегодня у нас норовят «поставить телегу впереди лошади».

И часто задают преждевременный вопрос: где вы собираетесь это использовать? Опережая события, хотят сразу видеть практическую реализацию. Но даже при наличии обоснованности практического применения реализовать научную разработку непросто. Приведу пример из нашего опыта. Несколько лет мы пытались «пробить» практическое применение наноалмазов. В частности, их использование в качестве присадок к автомаслам и консистентным смазкам. Мы собрали кипу экспертных заключений с положительными отзывами из целого ряда крупных предприятий. Но осуществить практическое использование так и не смогли.

Конечно, можно переквалифицироваться, но зачем? Когда мы занимаемся несвойственным себе делом, страдает то, чем мы должны заниматься. И при этом, к сожалению, дело никого не интересует в достаточной мере. Досадно, что сейчас между словами и реализацией получается слишком большой промежуток, оттого и практическое внедрение научных разработок существенно хромает. Мне посчастливилось застать времена, когда была бОльшая стабильность в этих вопросах. Когда ты мог планомерно трудиться, не отвлекаясь на посторонние дела, и ощущал значимость того, что делаешь. Сегодня нужна разумная кооперация между учёными, которые получают результаты, пригодные для практического использования, и специалистами, которые отвечают за вопросы их внедрения в практику и умеют это делать. Чтобы развитие шло эффективно и поступательно, такой альянс просто необходим.

Вероятно, это будет как-то меняться в лучшую сторону. Но доживём ли мы до тех радостных времен? В нашей стране есть прекрасные светлые головы, потенциал учёных огромен. Но реализовать его в должной мере не получается — вот что меня огорчает. Вместо того чтобы заниматься своим делом, приходится оформлять ворох ужасных бумаг. Этот бумажный прессинг просто уничтожает интеллектуальный потенциал страны. Хочется, чтобы всё изменилось к лучшему. Потому что в этой чехарде неясности и неопределённости легко увязнуть и потерять ощущение себя как человека, создающего что-то нужное.

Поэтому для себя я решил: нужно заниматься тем делом, для которого был рождён. Пусть результаты моего труда останутся грядущим поколениям — как известно, рукописи не горят. Такой вариант действий я предлагаю молодым коллегам и горд за своих учеников, их желание трудиться и открывать новое вселяет надежду на позитивное будущее нашей отечественной науки. С чего начиналась ваша карьера учёного? По диплому я — врач-лечебник. Но хорошо, что я достаточно быстро понял: практическая медицина — не моё.

Сибирские учёные разработали новый композит из нановолокон и наноалмазов

В итоге без лечения опухоль давала метастазы и животные погибали через 20 дней, то есть, сравнительно быстро. Животные, которым делали химиотерапию, жили ненамного дольше, у них также наблюдались метастазы, сказала Кичкайло. При этом мыши, которым провели терапию с помощью наночастиц и магнитов, прожили от 50 до 100 дней. Также, по словам эксперта, аптамеры можно использовать для блокирования рецептор-связывающих доменов, чтобы предотвратить попадание патогена в клетку, доставки радиофармпрепаратов в клетку - такую работу красноярские ученые ведут совместно с ФМБА, а также для диагностики.

На достигнутом ученые останавливаться не собираются, хотят создать систему определения фенола при помощи твердой подложки. Ее достаточно будет просто опустить в стакан с водой, далее — все тоже самое. Если вода изменит цвет, значит, в ней яд.

Жидкость с раковыми клетками создает благоприятную для заболевания среду, скапливаясь в брюшной или грудной полости. Существующие сейчас методы терапии такого онкологического заболевания малоэффективны и высокотоксичны. Поэтому необходимо разработать новые подходы к лечению асцитных опухолей.

Он способен избирательно разрушать одиночные опухолевые клетки.

Внедрение биополимерных повязок запланировано в лечебно-профилактических учреждениях после проведения всех необходимых исследований, а также получения государственной регистрации. Нашли ошибку? Комментировать статьи на сайте возможно только в течении 90 дней со дня публикации.

Ученые из Красноярска разработали уникальные наночастицы золота для биомедицины

Топ проектов красноярских ученых в сфере биотехнологий Используя биолюминесцентные тесты, ученые выяснили, что токсичность и антиоксидантная активность фуллеренолов зависит от количества присутствующих в них кислородсодержащих заместителей.
Красноярские ученые создали новый нанокомпозитный 2D-материал красноярские ученые предлагают использовать для этого алмазы.
Красноярские учёные изобрели магнитные нанодиски для борьбы с онкологией Красноярские ученые создали технологию переработки рыбных костей, внутренностей и чешуи, способную стать одним из звеньев замкнутой системы жизнеобеспечения человека во время пребывания в космосе.
Красноярские ученые научились выращивать нанокристаллы с заданной формой Красноярские ученые предложили использовать наночастицы золота в борьбе с раком.
Ученые из Красноярска изобрели кристаллы для лечения шизофрении - Красноярские ученые разработали способ разрушения раковых клеток с помощью наночастиц золота, сообщили в понедельник в пресс-службе Красноярского научного центра Сибирского отделения Российской а.

Погода в городе

  • Ученые из Красноярска научились определять загрязнение воды с помощью наноалмазов
  • Поделись позитивом в своих соцсетях
  • Самое читаемое
  • В Сибири разработали композит для обнаружения токсичных веществ в воде
  • Красноярские ученые создали новый нанокомпозитный 2D-материал

Ученые из Сибири создали светящийся материал на основе наноалмазов

Мы узнаем о достижениях красноярских ученых из случайных новостей и разговоров, но порой недооцениваем значимость этих открытий. Еще в Советском союзе ученые Института биофизики в Красноярске получили первые наноалмазы — серый порошок, получаемый из серии коротких взрывов углерода. Это делает возможным использование наноалмазов для оперативного обнаружения фенола в воде. Ученые красноярского центра СО РАН научились определять токсичность наночастиц, которые используют при изготовлении современных лекарств. Красноярские ученые разработали биопластырь Красноярские ученые создали повязки из разрушаемых биополимеров для лечения повреждений кожи. Ученые из Новосибирска и Красноярска создали новый композиционный материал на основе углеродных нанотрубок и наноалмазов.

Красноярские ученые придумали устройство для создания искусственной вечной мерзлоты

Научный коллектив Федерального исследовательского центра «Красноярский научный центр СО РАН» совместно с учеными Сибирского федерального университета разработал новый метод синтеза алюминиевых сплавов, применение которого позволит создавать новые виды. По словам ученой, применение таких микроорганизмов существенно безопаснее для окружающей среды, чем использование традиционных химических реагентов. Красноярские ученые синтезировали гибридные наночастицы, которые в будущем могут применяться в медицине.

Похожие новости:

Оцените статью
Добавить комментарий