Новости термоядерная физика

Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility (NIF). 83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался.

Академик В.П. Смирнов: термояд — голубая мечта человечества

Нынешний рекорд составил 403 секунды чуть менее 7 минут. Предыдущий рекорд был установлен на том же EAST в 2017 году и составлял 101 секунду. С момента начала работы в 2006 году EAST является открытой испытательной платформой для китайских и международных ученых для проведения экспериментов и исследований, связанных с термоядерным синтезом.

Семь партнеров, включая Россию, вкладывают свои ресурсы и технологии. Наша доля — девять процентов. Взамен мы получаем право на безвозмездную лицензию для уже нашей собственной термоядерной программы и создания нашего реактора. Анатолий Красильников: «Понимаете, мир сейчас очень сложный, турбулентный, разные есть события, отношения между странами. А вот ИТЭР — как ледокол: идет, и об его крепкий корпус все мелочные нюансы текущей жизни мировой разбиваются. И люди учатся — и ученые, и не ученые, руководители — учатся работать вместе, имея в виду учет интересов партнера. Причем это разные ментальности, разные цивилизации, империи, если хотите, участвуют в проекте ИТЭР». Главное сейчас — чтобы в этом проекте не было никакого протекционизма или энергетических воин.

Чтобы Европейский союз, который имеет в этом проекте 45 процентов, не стал бы заставлять Россию играть по своим правилам, используя так называемый Европейский энергетический пакет, а США, у которых в ИТЭР, как и у России, 9 процентов, не стали бы потом шантажировать европейские компании, участвующие в строительстве газопровода «Северный поток — 2».

Термоядерный синтез — это процесс, который происходит в звездах, в том числе в нашем Солнце. В масштабах нашей планеты он мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. Однако, чтобы термоядерный синтез, подобный звездному, успешно протекал, необходимы колоссальные температуры и давление. На Земле создать такое уже давно возможно, однако для этого долгое время требовалось больше энергии, чем получалось на выходе. Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров.

Солнце — гигантский термоядерный котел. Несколько миллиардов лет оно питает теплом и светом все живое на Земле. Наш желтый карлик светит и греет из-за постоянного слияния ядер водорода — этот процесс называется термоядерным синтезом. Сливаясь, атомы теряют часть своей массы, которая высвобождается в виде энергии. В результате столкновения ядер водорода возникает ядро более массивного химического элемента — гелия. Выделившаяся при этом энергия в шесть раз выше, чем в ходе реакции деления ядра урана, самого тяжелого долгоживущего элемента в природе время, за которое половина ядер урана распадется на другие элементы, исчисляется миллиардами лет. Именно реакция деления урана — источник энергии в реакторах современных атомных электростанций.

Осуществить управляемую реакцию деления в первом промышленном реакторе удалось в середине XX века. С тех пор силы физиков-ядерщиков направлены на создание устройства, которое позволило бы управлять и термоядерным синтезом. Для реакции управляемого синтеза нужны особые ядра водорода с дополнительными нейтронами, которые называются изотопами, — это дейтерий и тритий. Дейтерий стабилен, и его можно найти в морской воде. Тритий же — более редкий и радиоактивный изотоп, который выделяют на атомных реакторах при получении лития. Заменить тритий может стабильный изотоп гелий-3. Добывать его так же трудно, но огромные залежи можно найти в грунте на поверхности Луны.

Если технологии позволят недорого получать гелий-3 из лунной пыли, то этого будет достаточно для энергоснабжения всей планеты на тысячи лет. Останется лишь построить нужный реактор токамак. Реакция термоядерного синтеза слияния двух легких ядер в одно более тяжелое , в ходе которой высвобождается колоссальное количество энергии Почему сложно построить реактор для синтеза Атомы всех окружающих нас веществ состоят из ядра и электронной оболочки. Ядра заряжены положительно, поэтому, согласно закону Кулона, они отталкиваются. Чтобы соединиться, им нужно преодолеть кулоновский барьер и сблизиться на расстояние действия ядерных сил — 10-15 метра один метр, деленный на единицу с пятнадцатью нулями. Для этого необходима огромная энергия, которую можно получить в виде тепла. Солнечный климат для этого идеален, температура внутри звезды достигает экстремальных величин — 15 миллионов градусов.

Вещество при такой температуре переходит в состояние плазмы, работать с которой в земных условиях не так-то просто. Плазма считается четвертым агрегатным состоянием вещества. Если нагреть твердое вещество, оно становится сначала жидким, затем газообразным и, наконец, — плазмой.

Прорыв в термоядерном синтезе

Я же не разбираюсь в этом во всём, я же не военный эксперт. Я, знаете, дура-баба, в футболе ничего не понимаю. И вот человек, инженер-радиоэлектроник, говорит мне: «Мы еще знали в советское время, что если произвести в сотнях километрах на нашей же территории где-нибудь над Сибирью термоядерный взрыв, например, ядерный взрыв, то ничего не будет на Земле. Ничего такого страшного. Ни ядерной зимы, которую все боятся. Ни чудовищной радиации, которая убьет всех вокруг, а кого не убьет, то те умрут в течение десяти лет от онкологии. Этого ничего не будет. А что будет — так это будет выведена из строя вся радиоэлектроника. Вся цифра, все спутники».

Вот эта камера, на которую меня сейчас снимают, вот этот телефон, который рядом со мной лежит. Мы вернемся с вами в год этак какой-нибудь 93-й. Проводные телефоны. Двушечка или не двушечка, я не помню, в телефоне-автомате. Я вам скажу: чудесно же жили. Вот право. Я даже обрадуюсь. Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет.

Я запрещаю своим детям иметь гаджеты. Это отдельная тема. Сейчас не об этом. Но как минимум вот это будет гора с плеч. Каждый раз, когда дети возвращаются из школы: «Вот, у всех есть телефоны, айпады, а у нас нет, почему у нас нет?

Прорыв, достигнутый после более чем 120 000 попыток, значительно улучшил предыдущий мировой рекорд токамака в 101 секунду, установленный в 2017 году. Такие же процессы происходят на Солнце, а сырьем для термоядерной энергии может быть обычная морская вода. Сун Юньтао, директор ASIPP, сказал, что главное значение этого прорыва заключается в режиме высокого уровня удержания. По его словам, температура и плотность частиц значительно увеличились во время работы с плазмой с высоким уровнем удержания, что заложит прочную основу для повышения эффективности выработки электроэнергии будущих термоядерных электростанций и снижения затрат.

То есть, это получение синтеза, аналогичного тому, что происходит на Солнце. Чтобы объединить, так сказать, на первый взгляд необъединимое все-таки ядра являются одинаково заряженными , надо обеспечить высокую плотность вещества и очень высокую температуру одновременно, чтобы два ядра слились с выделением энергии. Физика процесса была понятна давно, но осуществить ее оказалось не так просто. По замыслу Басова следовало обжать мишень несколькими лазерными пучками с разных сторон. Они бы вызвали нагрев, ударную волну с возникновением плотной плазмы, в которой могут сталкиваться ядра дейтерия и трития. Когда ученые это поняли, скорая идея зажигания мишени с выделением энергии, значительно компенсирующей затраченную, долго грело им душу. Однако эксперименты по сферическому обжатию термоядерной мишени, проводимые в нашей стране они начинались в ФИАНе в начале 70-х годов на установке «Кальмар» и за рубежом долго ни к чему не приводили. Поэтому сейчас, если подтвердятся полученные на установке NIF результаты, их можно будет считать первым экспериментальным подтверждением идеи Н. Г Басова. Это устройство — конвертер - преобразует лазерное излучение в рентгеновское. И мишень симметрично, со всей сторон обжимается именно этим излучением. Идея эта оказалась хорошей, сегодня весь мир пошел по этому пути. Николай Басов. Фото: ru. По сути, это маленький термоядерный взрыв, который отличается от взрыва бомбы тем, что является управляемым.

Токамак - это тот редкий случай, когда название научной установки, созданной в нашей стране, разошлось по миру и стало международным брендом. А что означает словосочетание "токамак с реакторными технологиями"? И какие перспективы у такого, извините за сравнение, мутанта? Или это "токамак плюс"? Виктор Ильгисонис: Это рабочее название установки следующего поколения, сооружение которой должно было стать основной задачей программы РТТН на этапе 2025-2030 годов. Токамак с реакторными технологиями, сокращенно - ТРТ, призван совместить уже имеющиеся достижения в удержании высокотемпературной плазмы с практической отработкой технологий, необходимых для создания энергетического термоядерного реактора. Какие именно технологии и системы для этого нужны? Виктор Ильгисонис: Это инновационные разработки магнитных систем, конструктивных элементов бланкета, дивертора, первой стенки. Это оригинальные системы топливного цикла, нагрева плазмы и отвода энергии и многое другое. Плазма в реакторе ИТЭР должна быть в десять раз горячее солнечного ядра, а температура в его криостате в 30 раз ниже, чем в морозильнике А разве этого нет в проекте ИТЭР? Виктор Ильгисонис: В том-то и дело. Наши решения оригинальны, таких нет ни в проекте ИТЭР, ни в национальных проектах зарубежных коллег. Абсолютно закономерно, что проект ТРТ возник в России - он способен вернуть нашей стране прежнее лидерство, во многом утраченное за постсоветское время. Так что ТРТ - не мутант, а, скорее, естественный продукт эволюции. И его перспективы будут зависеть от той поддержки со стороны правительства в финансировании программы РТТН, о которой мы уже говорили. К концу 2024 года планируем завершить разработку эскизного проекта и отработать ряд ключевых элементов технического проекта. Так что при одобрении "сверху" сооружение ТРТ к 2030 году - вполне реальная задача. У "Росатома" есть действующее соглашение с РАН. Как оцениваете участие академических институтов в совместной реализации федерального проекта "Термоядерные и плазменные технологии"? Виктор Ильгисонис: Как абсолютно необходимое. Дело в том, что все академические институты - участники проекта "Термоядерные и плазменные технологии" - имеют собственные уникальные компетенции, освоение которых в контуре "Росатома" заведомо нецелесообразно, если мы исповедуем государственный подход. О других и не говорим… Виктор Ильгисонис: Так вот: уже упомянутый мною Институт прикладной физики в Нижнем Новгороде разрабатывает и производит лучшие в мире гиротроны - специальные устройства для мощного нагрева электронной компоненты плазмы.

Американцы произвели термоядерный прорыв к 100-летию советского академика Басова

Институт Ядерной Физики (ИЯФ). Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние. Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и. Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного.

Прорыв в термоядерном синтезе

Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции. Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Российские ученые совершили рывок к "главной задаче физики XXI века" — управляемой термоядерной реакции. Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития.

FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв

Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час. Физик объяснил важность создания прототипа российского термоядерного реактора. познакомьтесь с новейшими разработками, впечатляющими функциями и глубоким анализом ядерной физики. Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF. Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку.

Вестник РАН, 2021, T. 91, № 5, стр. 470-478

Поначалу Фукса курировал секретарь советского военного атташе С. Фукс работал исключительно из идейных соображений, на предложение о получении денег от СССР ответил категорическим отказом и попросил более никогда с ним на эту тему не разговаривать. В декабре 1943 года, по рекомендации Пайерлса и Роберта Оппенгеймера, Фукс с группой других учёных был включён в состав участников американского «Манхэттенского проекта» и прибыл в США. Там в феврале 1944 года с Фуксом была установлена новая связь через связника Гарри Голда, коммуниста из семьи украинских евреев, которому Клаус передавал важную информацию, касающуюся своей части исследовательской работы по «Манхэттенскому проекту». Однако во второй половине 1944 года связь оказалась прервана: Фукс был переведён в Лос-Аламосскую лабораторию со строжайшими мерами секретности. Там он работал в группе Ганса Бете и добился выдающихся научных результатов. Восстановить связь советской разведке удалось только в январе 1945 года, до конца года состоялись три встречи, на которых Фукс передал исключительно важную информацию как о ходе работ, так и о первом испытании атомной бомбы, в котором он лично участвовал. Читайте также В Суоми решили исключить из истории Ленина, чтобы снова стать чьим-то областным центром? Финляндия тонко намекает, что может вновь стать частью Российской Империи В 1945—1946 годах Фукс участвовал в теоретических работах по разработке водородной бомбы, в анализе результатов применения атомных бомб в Хиросиме и Нагасаки, в разработке программы исследований со взрывами атомных бомб на атолле Бикини.

В июле 1946 года с другими британскими участниками проекта вернулся в Великобританию, где стал начальником отдела теоретической физики Научно-исследовательского атомного центра в Харуэлле. С 1947 года связь с Фуксом вёл заместитель резидента по технической разведке А. Феклисов, которому Фукс передал информацию о производстве плутония в США, о реакторах британского атомного центра в Уиндскейле, принципиальную схему водородной бомбы, результаты испытаний ураново-плутониевой бомбы на атолле Эниветок, данные о британо-американском атомном сотрудничестве и многое другое. Между тем над головой Клауса начали сгущаться тучи. Среди выданных Гузенко оказался и британский физик-ядерщик Алан Мэй. Он был арестован в марте 1946 года, а уже 1 мая того же года приговорён к 10 годам каторжных работ. Предъявить что-либо конкретное Фуксу британская контрразведка не могла, но за ним была установлена открытая слежка. Фукса допрашивал лучший британский следователь из МИ-5 — Скардон, тот самый, который пытался расколоть и некоторых членов Кембриджской пятёрки.

Это серьезный шаг вперед. Хотя пока еще нельзя говорить, что NIF может устойчиво производить энергию. Установка, созданная Helion Energy — реактор Trenta — использует другой принцип. Плазма разогревается в двух источниках, и ее потоки сталкиваются в камере сгорания. В ней достигаются условия, при которых начинается термоядерный синтез и выделяется энергия. Trenta создает те же 100 миллионов градусов, что и NIF. Но эти «градусы» много дешевле. Сейчас «перезарядка» реактора занимает 10 минут, но усовершенствованная установка должна «стрелять» каждую секунду.

При такой «скорострельности» она может выдавать энергию непрерывно. Может так случиться, что небольшой коммерческий проект Helion Energy первым достигнет энергетической самоокупаемости термоядерной установки, опередив и государственные, и международные программы. А если Helion Energy притормозит, его может опередить другой стартап — Commonwealth Fusion Systems, созданный физиками из Массачусетского технологического института.

При этом лазеры выдали на топливо мощность, равную 2,05 МДж. Конечная реакция произвела 3,15 МДж, предыдущий результат — 1,3 МДж. То есть, именно с точки зрения физики, это действительно успех, получили энергии больше, чем затратили. Но, с точки зрения промышленности, все остается на своих местах: потратили 322 МДж, получили 3,15 МДж», — заявила Бачурина.

Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент. Чтобы добиться эффекта "зажигания", команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча. В этих условиях атомы водорода подверглись слиянию, выделяя 1,3 мегаджоулей энергии за 100 триллионных долей секунды, что составляет 10 квадриллионов ватт мощности. Интенсивная среда, создаваемая направленными внутрь ударными волнами, создала самоподдерживающуюся реакцию ядерного синтеза.

Читайте также:

  • Самая грандиозная научная стройка современности. Мы закуем Солнце в «бублик»
  • Что такое термоядерный синтез и зачем он нужен?
  • Вестник РАН, 2021, T. 91, № 5, стр. 470-478
  • Ученые в США провели третий успешный эксперимент с ядерным синтезом
  • Цитаты о СНГ
  • Быстрее взрыва

Ученые в США провели третий успешный эксперимент с ядерным синтезом

— Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. Глеб Курскиев рассказал ПРОСТО о том, что такое термоядерный синтез и почему он так важен! Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток.

#термоядерный синтез

Зачем на самом деле строится самый большой термоядерный реактор. Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF. В течение четверти века он работал в областях физики плазмы и производства нейтронов, связанных с разработками в области термоядерной энергии. Если в ядерных реакциях ядрам урана, плутония, тория выгодней распадаться для запуска цепной взрывной реакции, то при термоядерном варианте, наоборот, балом правит реакция.

Похожие новости:

Оцените статью
Добавить комментарий