О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Ученые считают, что взрыв мог произойти из-за поглощения огромного облака газа сверхмассивной черной дырой.
К космосе нашли странную звезду: она вспыхивает каждые 80 лет и все равно остается целой
В отличие от сверхновой типа Ia, в которой взрывается белый карлик, обе звезды выживают и продолжают свои отношения, чтобы снова взорваться в другой раз. Сама Новая звезда может продолжать светиться несколько дней или месяцев. Не сразу понятно, какая звезда произвела взрыв V1405 Cas, но есть предположение: затменная переменная двойная звезда CzeV3217, которая находится на расстоянии примерно 5 500 световых лет от Солнечной системы. Дальнейшие наблюдения помогут астрономам лучше изучить взрыв Новой и подтвердят, что источником действительно является CzeV3217.
Японские и швейцарские астрономы показали, что опора на 2200-дневную периодичность может указывать на радиус Бетельгейзе примерно в 1300 раз больше радиуса Солнца, что вносит радикальные коррективы в прогнозирование судьбы этой звезды. Если они правы, Бетельгейзе превратится в сверхновую после 2050 года. Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий. Материалы по теме.
Кроме того, RS Змееносца — двойная система, состоящая из красного гиганта и белого карлика. Такая природа звезды и приводит к её периодическим взрывам. Они возникают в цепочке процессов. Материя красного гиганта входит в аккреционный диск белого карлика, а после накопления достаточной массы звёздное вещество падает на его поверхность.
Они проанализировали сведения, собранные в течение последних 100 лет астрономами-любителями. За счет компьютерного моделирования установлено, что диаметр Бетельгейзе находится в пределах от 702 до 880 диаметров Солнца. Это меньше, чем считалось, на фоне чего снижается и вероятность стремительной трансформации светила в сверхновую. По оценкам ученых, взорваться звезда может спустя 100 тысяч лет.
Произойдет еще один мощный взрыв: хабаровский астроном рассказал, что ждать в небе и на Земле
По сути, происходит термоядерный взрыв колоссальных масштабов. Периодичность взрывов объясняется тем, что накопление вещества красным карликом занимает годы. Критическая масса накапливается примерно за 80 лет, достигает предела и происходит взрыв. Обычно на это уходят тысячи лет, чтобы дойти до момента, когда вы увидите новую звезду. Но Тау Северной Короны, похоже, делает это гораздо быстрее, что делает ее исключительной», — говорит Коррен Макгрегор, один из авторов исследования.
Однако взрыв оказался беспрецедентно плоским, что является очень необычным явлением, поскольку звезды обычно взрываются в сферической форме из-за своей формы. Открытие было сделано случайно, когда ученые зафиксировали вспышку поляризованного света, а затем использовали Ливерпульский телескоп для измерения степени поляризации. Полученные данные были использованы для создания трехмерной модели взрыва.
Второй объект, для которого собран таймлапс из кадров 2000-2022 годов, — Крабовидная туманность Crab Nebula. Это остаток сверхновой, взрыв которой был таким ярким, что в 1054 году ее заметили астрономы в Китае. Она находится на расстоянии 6500 световых лет от Земли.
В центре Крабовидной туманности также, как и у Кассиопеи А, нейтронная звезда, но иного типа. Это пульсар — то есть, излучение от нее исходит в виде импульсов. Звезда вращается со скоростью около 30 раз в секунду, и луч от нее, если фиксировать с земли, напоминает маяк — только космический. Когда молодой пульсар, как в Крабовидной туманности, замедляется, рядом с ним скапливается большое количество энергии. В частности, высокоскоростной ветер, исходящий от звезды и состоящий из частиц материи и антиматерии, врезается в окружающую туманность — это порождает волну наподобие ударной, которую можно увидеть в фильме как расширяющееся кольцо.
Когда масса ядра звезды превышает предел Чандрасекхара максимальная масса, теоретически возможная для стабильного белого карлика, около 1,44 солнечных масс , происходит его имплозия. В конце концов, имплозия отскакивает от ядра и выбрасывает звездный материал в космос — это и есть вспышка сверхновой. В результате остается сверхплотная нейтронная звезда. Существуют две различные подкатегории сверхновых типа II, определяемые изменениями их светимости в течение времени. Свет сверхновой подтипа II-Liner после резкого максимума быстро и линейно затухает, в то время как сверхновые подтипа II-Plateau продолжают светить довольно ярко в течение длительного периода времени. Оба этих типа имеют в своих спектрах сигнатуру водорода. Все сверхновые первого типа не имеют в своем световом спектре линии водорода. Подтип Ia: Считается, что сверхновые данной категории образуются в бинарных звездных системах, включающих умеренно массивную звезду и белый карлик. В таких системах звездный материал перетекает к белому карлику от более крупной звезды-компаньона. Когда белый карлик накопит достаточно материала, чтобы его масса превысила предел Чандрасекхара, происходит взрыв. Сверхновые типа Ia встречаются довольно часто, и все они в момент своего пика имеют одинаковую светимость. Поэтому они нередко используются астрофизиками для оценки космических расстояний. Подтип Ib: Так же как и сверхновые второго типа, эта подкатегория сверхновых тоже переживает коллапс ядра, однако без участия водорода. Поэтому их относят к типу I. Кроме того, в их спектрах присутствуют линии гелия. Изучение сверхновых дало нам понимание того, как эволюционируют звезды и через какие этапы жизненного пути они проходят, прежде чем взорвутся. Благодаря исследованиям ученые поняли важность и роль, которую сверхновые играют в формировании новых звезд, планет и других объектов нашей Вселенной. На фото взрывающаяся сфера. Сверхновые типа Ic, как правило, не имеют в своих спектрах водорода и гелия, так как оба этих элемента были "утеряны" во время жизненного цикла звезды. Кроме этих видов сверхновых существуют еще несколько подкатегорий типа I и II, включая сверхновые типа Ic - BL, которые относятся к гамма-всплескам и сверхновым с очень высокой светимостью. Жизненный цикл звезды, заканчивающийся рождением сверхновой Звезды, подобно живым существам, проходят через определенные фазы жизненного цикла, начиная с рождения и заканчивая смертью. Правда, в отличие от живых организмов, срок жизни звезды может составлять несколько миллиардов лет. Прежде чем произойдет вспышка сверхновой, звезда должна "пережить" несколько стадий. Ниже рассмотрим этапы звездной эволюции. Звездная туманность Рождение формирование звезды происходит в туманности - облаке пыли и газообразного вещества, включая водород и гелий. По этой причине некоторые туманности получили название "звездных яслей. Сами туманности образуются из газа и пыли, выброшенных взрывом умирающей звезды, например, при вспышке сверхновой. Россия, Иран и Китай намерены "перезагрузить" систему коллективной безопасности в Персидском заливе В туманностях частицы газа и пыли сильно рассеяны, но со временем под воздействием сил гравитации они начинают собираться в сгустки. По мере роста сгустков их гравитация также увеличивается, притягивая к себе все новые и новые частицы. В конце концов, фрагмент пыли и газа становится достаточно плотным, чтобы схлопнуться под действием собственной гравитации.
Астрономы зафиксировали крупнейший в истории наблюдений космический взрыв
После обнаружения взрыва астрофизики несколько дней наблюдали за космосом и смогли сделать достаточно интересные дополнительные открытия. Исследовательская команда из Университета Шеффилда зафиксировали крайне редкий тип взрыва звезд в космосе — асферический, размером с Солнечную систему. Эхо взрыва звезд Гамма-всплески открыли в конце 1960-х военные американские спутники с рентгеновскими и гамма-детекторами. Моделирование процесса образования сверхновых звезд говорит о том, что непосредственно перед взрывом яркость звезды должна падать. Британские астрономы обнаружили крупнейший за всю историю наблюдения космический взрыв, который длится уже более трех лет. Звезда при этом не уничтожается, просто взрывается вещество на поверхности.
Россияне в апреле смогут увидеть взрыв двойной звезды: это происходит лишь раз в 80 лет
Но чтобы рассмотреть подробности, уже нужен телескоп с апертурой от 4 дюймов. Сверхновая SN 2023ixf существенно слабее — её яркость на момент открытия оценивалась на уровне 15-й звездной величины как Плутон , и чтобы её заметить в одном из спиральных рукавов M101, потребовался бы телескоп с диаметром объектива сантиметров 20, а то и более. За прошедшие ночи блеск вспышки заметно поднялся — предположительно до 11m, и она стала более легким для наблюдения объектом. Но все равно, отличить её от подобных и многочисленных звездообразных на вид светил не так просто. Так что, это удовольствие для продвинутых любителей астрономии. За эти несколько дней астрономы уже выяснили, что сверхновая принадлежит ко II типу. Это означает, что мы наблюдаем гравитационный коллапс умирающего гиганта — звезды, превосходящей по массе Солнце примерно раз в 10, или более. Именно такие процессы обогащают наш мир тяжелыми химическими элементами. Всё, что тяжелее железа просто так синтезироваться в недрах звёзд не может, нужен на порядок более высокоэнергетический катаклизм. Взрыв сверхновой II типа как раз такой.
И в целом для галактики M101 это событие полезное — будет, из чего строить новые планеты и зарождать на них жизнь.
Лишь два российских прибора и несколько других смогли определить источник и посчитать мощность взрыва. Источник фото: Фото редакции Одним из приборов оказался аппарат «Конус» отечественного производства. После этого учены смогли посмотреть параметры гамма-всплеска.
Для этого, по сообщению представителей NASA, "Хаббл" изменил свой график наблюдений, чтобы заснять последствия этого взрывного события, хотя сама сверхновая уже исчезла из поля зрения. Ранее ГЛАС писал, что стремление наказать Россию через санкции привело к началу процесса дедолларизации мира.
Для ее составления группа исследователей проследила местонахождение около 300 известных астрономам остатков после взрывов сверхновых, группирующихся в галактическом диске и особенно вблизи центра Млечного Пути. Но, что интересно, описанные древними астрономами сверхновые нередко находились максимально далеко от центра нашей галактики. Так, сверхновая 1054 году оставила после себя туманность максимально далеко от нас, с другой стороны Млечного пути. К сожалению, имея всего несколько исторически подтвержденных взрывов сверхновых, исследователи не могут сделать сильных статистических заявлений. Но они подозревают, что своеобразное расположение исторических сверхновых подрывает одно или несколько их предположений. Например, рассматривать Млечный Путь как два жареных яйца — не самая лучшая идея. Такая модель, например, не учитывает близкое расположение звезд в спиральных рукавах, которое группа надеется учесть в будущих исследованиях. Результаты команды также указывают на пробел в исторических хрониках. Так, все отчеты о сверхновых исходят от цивилизаций северного полушария, хотя звездочеты в Южной Америке также могли иметь четкое представление о галактическом диске — главном месте появления сверхновых. Возможно, изображения и записи инков о сверхновой 1054 года и других космических взрывах до сих пор похоронены в перуанской Амазонии. Брэдли Шефер, астроном из Университета штата Луизиана, который не участвовал в исследовании, сказал, что группа проделала хорошую работу и создала правдоподобную карту неба, которая соответствует предыдущим результатам. При этом причудливые местоположения пяти исторических сверхновых не слишком его беспокоят, учитывая их небольшое количество и отсутствие известных записей из южного полушария. Карта распределения вероятности возникновения сверхновых с нанесенными известными остатками звездных взрывов.
Вот-вот взорвётся: Учёные взбудоражены внезапной вспышкой Бетельгейзе
Она произвела взрыв в форме сверхновой. Об этом пишет naked-science. И только сейчас, через столько лет, "Хаббл" запечатлел остатки этого космического взрыва.
При этом, чтобы войти в историческую хронику, сверхновая должна быть не просто видимой, но, как выразился Филдс, «сверкать как новогодняя елка». Его команда подсчитала, что в лучшем случае только одна из пяти сверхновых вспыхивает достаточно ярко, чтобы прожечь пыльную дымку и светить в течение 90 дней, а это означает, что такое исключительное событие можно ожидать в лучшем случае раз в пару столетий — о чем и свидетельствуют исторические записи. Остаток Сверхновой Кеплера SN 1604 — последней яркой сверхновой в Млечном пути, которую можно было наблюдать полтора года. Конечным результатом их работы была карта, показывающая, где в небе наиболее вероятно возникновение самых ярких сверхновых.
Для ее составления группа исследователей проследила местонахождение около 300 известных астрономам остатков после взрывов сверхновых, группирующихся в галактическом диске и особенно вблизи центра Млечного Пути. Но, что интересно, описанные древними астрономами сверхновые нередко находились максимально далеко от центра нашей галактики. Так, сверхновая 1054 году оставила после себя туманность максимально далеко от нас, с другой стороны Млечного пути. К сожалению, имея всего несколько исторически подтвержденных взрывов сверхновых, исследователи не могут сделать сильных статистических заявлений. Но они подозревают, что своеобразное расположение исторических сверхновых подрывает одно или несколько их предположений. Например, рассматривать Млечный Путь как два жареных яйца — не самая лучшая идея.
Такая модель, например, не учитывает близкое расположение звезд в спиральных рукавах, которое группа надеется учесть в будущих исследованиях. Результаты команды также указывают на пробел в исторических хрониках. Так, все отчеты о сверхновых исходят от цивилизаций северного полушария, хотя звездочеты в Южной Америке также могли иметь четкое представление о галактическом диске — главном месте появления сверхновых.
Впервые этот взрыв на расстоянии 3 тысяч световых лет увидел исследователь из южной Германии. Во время наблюдения за созвездием Северная Корона он заметил, что одна из слабых звезд стала ярче, а спустя неделю вернулась в исходное состояние. Это и был один из термоядерных взрывов звезды Тау.
Впоследствии это событие наблюдали каждые 80 лет. Последний раз Тау взрывалась в 1946 году, и недавно астрономы заметили новые признаки скорого взрыва. Вам будет интересно: Правда ли, что в 2025 году у Сатурна исчезнут кольца Как найти созвездие Северная Корона Вспышку сверхновой можно будет увидеть невооруженным глазом, она будет выглядеть как яркая звезда на небе. Чтобы найти ее, в первую очередь нужно понять, где находится созвездие Северная Корона. Оно располагается слева от Большой Медведицы и выглядит как небольшая дуга из семи звезд. Тау находится у левого края — если периодически поглядывать в эту область, летом 2024 года можно будет заметить, что звезда стала ярче.
Примерно через неделю она снова потухнет и будет видна только через бинокль или телескоп.
Ученые полагают, что T CrB — двойная звезда. Состоит она из белого карлика и красного гиганта. Вспышка происходит из-за силы тяготения карлика, перетягивающего к себе газ из внешней оболочки красного гиганта. По сути, происходит термоядерный взрыв колоссальных масштабов. Периодичность взрывов объясняется тем, что накопление вещества красным карликом занимает годы.
Телескоп Джеймса Уэбба сфотографировал фееричные последствия сверхновой
Такие редкие кадры можно получить один раз за век. Ведь не часто такое происходит в космосе.
Согласно модельным вычислениям, для достижения этого порога масса протозвезды должна превысить 0,075 массы Солнца. Существуют и «недоразвившиеся» светила, возникшие из протозвезд с массой от 0,07 до 0,075 массы Солнца, их называют коричневыми карликами. Как это нередко случается в астрономии, они были открыты «на кончике пера»: в 1962 г. Первый коричневый карлик был обнаружен спустя треть столетия, в 1995 г. Считается, что общая масса коричневых карликов составляет десятую часть от массы всех звезд нашей Галактики. В ядрах коричневых карликов идут реакции синтеза гелия из водорода, но их интенсивность очень низка, и выделившаяся энергия покрывает не более половины потерь на излучение.
Поэтому коричневый карлик охлаждается, несмотря на тлеющую в его ядре водородную печь, сохраняющую активность от одного до десяти миллиардов лет. Затем синтез гелия прекращается, хотя в ядре и остается немало несожженного водорода. Наблюдать коричневые карлики сложно из-за их малой яркости. Завершая свою жизнь постепенным остыванием, коричневые карлики никогда не взрываются. Начальные массы настоящих звезд лежат в диапазоне от 0,075 до двух-трех сотен масс Солнца. Все они до конца сжигают свои водородные ядра, после чего теряют стабильность и претерпевают различные изменения. Для достаточно массивных но не самых!
Но начальная масса определяет эволюцию лишь тех звезд, которые не имеют близких соседей. Однако примерно половина светил не существуют, как Британия былых времен, in splendid isolation: звезды любят объединяться в пары, связанные взаимным притяжением. В таких системах возможен, и часто происходит, перенос или, если угодно, «перетек» вещества с одной звезды на другую. Эти процессы имеют прямое отношение ко вспышкам новых звезд различных типов. Однако в бинарных системах взрываются звезды и с весьма скромной начальной массой, с которых мы и начнем. Звезды с массами до половины солнечной красные карлики синтезируют в своих ядрах гелий из водорода и на этом успокаиваются. Светила потяжелее ведут себя гораздо интересней.
Когда в центре такой звезды образуется гелиевое ядро, где горение уже не идет, оно начинает сжиматься под действием тяготения. При сжатии температура ядра возрастает, и прилегающий слой водорода нагревается до порога, за которым начинаются термоядерные реакции. Поскольку тепло перетекает из этого слоя к поверхности звезды, ее атмосфера раздувается настолько, что звезда разбухает в десятки и сотни раз. В процессе расширения звездная оболочка постепенно остывает, максимум ее оптического спектра смещается в сторону длинных волн, и звезда превращается в красный гигант. Такая судьба ожидает и наше Солнце. Судьба звездного ядра также зависит от начальной массы звезды. Если она ненамного больше половины солнечной, ядро остается гелиевым.
До поры до времени оно продолжает сжиматься, но не нагревается до температур порядка 100 млн градусов, когда начинаются новые термоядерные превращения. Ядра более массивных звезд нагреваются так, что становятся способны производить углерод и кислород. Если же начальная масса звезды в несколько но не более, чем в восемь раз превосходит солнечную, то в ее ядре синтезируются неон и магний. А вот элементы с большими атомными номерами там не возникают, поскольку такая звезда не способна спрессовать ядро для достижения температур, нужных для их синтеза. Пока в ядре и вокруг него продолжается генерация термоядерной энергии, оболочка звезды еще больше расширяется, и красный гигант становится сверхгигантом. Однако эти космические исполины не отличаются устойчивостью. Но одиночный карлик обречен на постепенное остывание.
Он будет желтеть, краснеть, а потом и вовсе потухнет в оптическом диапазоне. Дело это небыстрое, счет идет на многие миллиарды лет. Пока что самые тусклые белые карлики, внесенные в астрономические каталоги, немногим холоднее Солнца. Радиус типичного белого карлика сравним с земным, а масса составляет 0,6—1,2 массы Солнца. Белые карлики с массами свыше 1,44 солнечной массы не существуют и не могут существовать, но об этом позже. Материя белого карлика сжата до давлений, при которых разрушаются атомные электронные оболочки. Возникает особого рода плазма, состоящая из атомных ядер и вырожденного газа обобществленных электронов, движением которых управляют законы квантовой механики.
Давление такого газа так называемое давление Ферми не зависит от температуры и определяется исключительно плотностью, поэтому остывание белого карлика не сказывается на его внутренней структуре. В отличие от звезды-родительницы, это чрезвычайно устойчивая физическая система: если белый карлик не будет проглочен черной дырой, он просуществует до тех пор, пока протоны не начнут распадаться, как им предписывают современные теории физики элементарных частиц. Период же их полураспада заведомо превышает 1032 лет. Коллапсирующие ядра Звезды с начальной массой свыше восьми солнечных заканчивают жизнь взрывами фантастической мощности, вызванными очень быстрым сжатием коллапсом их ядер. Одна сотая этого остатка т. И хотя световые вспышки гибнущих массивных звезд представляют из себя феерическое зрелище, на их долю приходится лишь одна сотая доля процента высвобожденной энергии. Именно эти космические катаклизмы и называют сверхновыми звездами, или просто сверхновыми.
Их подразделяют на группы в соответствии с оптическими спектрами. Эту классификацию 80 лет назад предложили Бааде и его коллега по обсерватории Маунт-Вильсон Рудольф Минковский, племянник знаменитого математика, эмигрировавший из Германии. Излучение сверхновых I типа не содержит линий испускания водорода, которые есть у сверхновых II типа, зато они включают семейство, спектры которого демонстрируют наличие ионизированного кремния. Представители группы Ia взрываются на основе иного механизма, нежели гравитационный коллапс их ядер, поэтому о них поговорим позднее. Открытые в 1985 г. В среднем в каждой крупной галактике типа Млечного Пути ежегодно загораются две-три сверхновые, причем на каждую вспышку из группы Ia приходится три-пять сверхновых прочих разновидностей. Хотя в наши дни процессы коллапса массивных звезд обсчитывают с использованием хорошо проработанных физических моделей и мощных компьютерных ресурсов, многие детали этого процесса еще далеки от ясности.
Для иллюстрации рассмотрим в общих чертах типичную судьбу голубого сверхгиганта с начальной массой порядка 20—25 солнечных масс.
Сверхновая Кеплера. Изображение: nasa. Она была похожа на яркую точку на небе, которая не исчезала на протяжении целого года. После нее остались облака, которые ученые могут найти в созвездии Змееносец даже сегодня.
Читайте также: Ближайшая к Земле сверхновая стала причиной массового вымирания 2,6 млн лет назад Когда вспыхнет сверхновая Точно предсказать, когда произойдет следующий взрыв сверхновой, не может ни один ученый. Они могут разве что назвать очень широкий промежуток времени, в рамках которого может произойти астрономическое событие. Например Бетельгейзе, яркая звезда в созвездии Ориона, может вспыхнуть в ближайшие тысячу лет. Но более точных прогнозов при нынешнем уровне развития технологий не существует. Бетельгейзе тоже может вспыхнуть в любой момент.
Изображение: rg.
Увидеть взрыв сверхновой звезды еще не удавалось никому из ныне живущих. В последний раз подобное событие произошло 9 октября 1604 года, тогда взорвалась SN 1604 — самая последняя сверхновая, видимая из нашей галактики. Ее остатки в виде газового облака еще видны в созвездии Змееносца. Почему она двойная? Звезда Тау относится к категории «повторных новых» и может взрываться несколько раз с периодом в 80 лет.
Это небесное тело представляет собой пару — красный гигант и белый карлик, вращающихся друг вокруг друга. Карлик обладает куда большей гравитацией и притягивает на себя вещество красного гиганта.
Как найти звезду?
- Звезда Тау: когда взорвется, как найти на небе
- Подписка на дайджест
- Опасность из космоса: к чему приводит взрыв звезд
- Опрос: подписки Mail.ru
- Такое случается раз в 80 лет: на Земле увидят взрыв «полыхающей звезды»
Взорвётся ли Бетельгейзе и чем это нам грозит?
Исследовательская команда из Университета Шеффилда зафиксировали крайне редкий тип взрыва звезд в космосе — асферический, размером с Солнечную систему. Они пронзили звезду, которая, вероятно, в 30-40 раз больше Солнца, после чего произошло рентгеновское и гамма-излучение в космос. Ученых встревожил странный взрыв в космосе, произошедший в восьми миллиардах световых лет от. Ученые впервые смогли увидеть взрыв красного сверхгиганта и его коллапс, представшей сверхновой звездой. После обнаружения взрыва астрофизики несколько дней наблюдали за космосом и смогли сделать достаточно интересные дополнительные открытия.
Астрономы зафиксировали крупнейший в истории наблюдений космический взрыв
В гигантской галактике Вертушка взорвалась звезда, в результате чего образовалась удивительная сверхновая. Согласно сообщению в The Astronomer's Telegram, звезда в районе созвездия Кассиопеи только что перешла в разряд Новой, а свечение от взрыва все еще видно на ночном небе. Это остаток сверхновой, взрыв которой был таким ярким, что в 1054 году ее заметили астрономы в Китае. Звезда коллапсирует со взрывом, который разбрасывает ее вещество по космосу. В 2008 году столкнулись две звезды, и их взрыв породил звезду, которая называется Red Nova. Всё это будет происходить совсем рядом, а вот увидеть взрыв в глубоком космосе очень тяжело.