Новости реактор брест од 300

За прототип в проекте «Прорыв» взяли реактор «Брест ОД-300», работоспособность которого не доказана. Согласно планам, реактор БРЕСТ-ОД-300 должен начать работу в 2026 году. Используемый в реакторе БРЕСТ свинцовый теплоноситель является радиационно стойким и слабо активируемым.

Завершено создание фундамента под реактор БРЕСТ-ОД-300

На площадке «Сибирского химического комбината» (к), принадлежащего госкорпорации «Росатом», стартовало строительство уникального энергоблока БРЕСТ-ОД-300. Вернёмся к началу нашего выпуска и двум важным новостям – о запуске в Обнинске модели самого мощного в мире ядерного реактора, а также о начале монтажа реакторной установки четвёртого поколения БРЕСТ-ОД-300 в Северске. Старт строительству атомного энергоблока мощностью 300 МВт с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300 со свинцовым теплоносителем в торжественной обстановке, в присутствии первых лиц российского и зарубежного атомного сообщества, руководства. Специалисты Белоярской АЭС в Свердловской области, которые проводят испытания для реактора БРЕСТ-300 в Северске Томской области, протестировали более 20 вариантов конструкций для загрузки топлива.

Энергия без границ

  • Вступай в наши группы и добавляй нас в друзья :)
  • Атомные реакторы нового поколения
  • Вступай в наши группы и добавляй нас в друзья :)
  • Россия строит в Сибири ядерный реактор будущего

К «Прорыву» добавляется реактор

Россия создала нейтронный «Прорыв» В составе реакторной установки «БРЕСТ-ОД-300» будут работать восемь парогенераторов массой 72 тонны каждый.[33].
Строительство реактора “БРЕСТ-ОД-300” вышло на “нулевую” отметку Росатом приступил к тестированию первого объекта энергоблока нового поколения с реактором на быстрых нейтронах БРЕСТ-ОД-300 (проект "Прорыв").

Поделись позитивом в своих соцсетях

  • Инфосайт АО "НИКИЭТ"
  • Уникальный реактор БРЕСТ-300 начали строить в Томской области
  • Россия создала нейтронный «Прорыв»: ss69100 — LiveJournal
  • Российское предприятие поставило основные элементы градирни для «реактора будущего» БРЕСТ-ОД-300
  • ВЗГЛЯД / Уникальный реактор обеспечит энергетическое будущее России :: Общество

В Северске началась установка ядерного реактора БРЕСТ-300

В Северске началась установка ядерного реактора БРЕСТ-300 Постройка реактора БРЕСТ-300 служит логичным шагом к главной цели масштабного многоступенчатого проекта «Прорыв», известного ещё со времен СССР, когда на первом этапе «увидят мир» сам реактор, модули переработки и топлива.
Росатом изготовит уникальное оборудование для энергоблока с реактором БРЕСТ-ОД-300 По словам главного конструктора реакторной установки БРЕСТ-ОД-300 Вадима Лемехова, строящийся реактор является «металлобетонной конструкцией, в которой предусмотрены металлические полости под размещение оборудования первого контура.
Началось строительство опытного реактора на быстрых нейтронах БРЕСТ Реактор БРЕСТ-ОД-300 Росатом проект Прорыв. Ключевым элементом ОДЭК является первый в мире инновационный демонстрационный опытно-промышленный энергоблок на базе быстрого реактора БРЕСТ-ОД-300 со свинцовым теплоносителем.
В Северске начали монтировать инновационный реактор БРЕСТ-ОД-300 Специалисты Белоярской АЭС в Свердловской области, которые проводят испытания для реактора БРЕСТ-300 в Северске Томской области, протестировали более 20 вариантов конструкций для загрузки топлива.
Россия уходит вперед. Началась стройка уникального реактора на быстрых нейтронах БРЕСТ-​ОД-300 В этом году начнётся монтаж корпуса и установка механизмов первого в мире энергетического реактор-размножителя бассейного типа 'Брест-ОД300' в г – Самые лучшие и интересные новости по теме: Росатом, аэс, бридер на развлекательном портале

На СХК завершен монтаж оборудования по изготовлению таблеток СНУП-топлива для реактора БРЕСТ-ОД-300

Строительство ведется на площадке опытно-демонстрационного энергокомплекса ОДЭК в рамках проекта «Прорыв». Помимо ключевого элемента системы — энергоблока мощностью 300 МВт — ОДЭК будет включать объекты пристанционного ядерного топливного цикла — комплекс по производству смешанного уран-плутониевого нитридного топлива, а также модуль переработки облученного ядерного топлива. По словам главного конструктора реакторной установки БРЕСТ-ОД-300 Вадима Лемехова, строящийся реактор является «металлобетонной конструкцией, в которой предусмотрены металлические полости под размещение оборудования первого контура.

Во время происшествия строительно-монтажные работы не велись, пострадавших не было, падение конструкции на график работ не повлиял. Больше ничего пресс-служба «СХК» не пояснила: ни что это было за задние, ни для чего его строили. Если судить по фото, упали металлические конструкции, возведенные для установки 95-метровой трубы, необходимой для вентиляции модуля фабрикации и рефабрикации МФР ядерного топлива. Любопытно, что в день инцидента «СХК» бодро сообщала о том, что монтажники генподрядчика АО «Концерн Титан-2» смонтировали основание башни, четырехгранную усеченную пирамиду из металлоконструкций высотой 10 метров, которую позже залили бетоном. Затем рабочие поэтапно установили стальные металлоконструкции удерживающего каркаса и части трубы из вальцованного листового металлопроката. Вероятно, именно об их падении и шла речь. И если все так, то происшествие может иметь серьезные последствия. Сейчас объясним почему.

Ржавчина на нержавеющей стали В Арбитражный суд Томской области с иском к «СХК» обратилось Межрегиональное территориальное управлением по надзору за ядерной и радиационной безопасностью Сибири и Дальнего Востока федеральной службы по экологическому, технологическому и атомному надзору Ростехнадзор. Оказывается, еще в октябре 2019 и ноябре 2020 года Ростехнадзор провел проверки строящихся объектов и в очередной раз выявил нарушения, из-за чего выдал предписание об их устранении. Однако никто ничего не исправил, ведомство обратилось в суд. Нарушения оказались куда более серьезные, чем раньше подробнее о прошлых нарушениях в материале: « «Прорыв» в нарушениях технологий строительства? Наличие ржавчины, по мнению специалистов Ростехнадзора, доказывает недостаточность принятых «СХК» мер по борьбе с коррозией, что критически важно для строящегося модуля фабрикации-рефабрикации ядерного топлива. Следы ржавчины во время проверок находили неоднократно, их пытались устранить. Однако коррозия разъедала нержавеющую сталь снова и снова. Ржавчина появлялась в разных помещениях и местах. Поскольку никто действенных мер по ее ликвидации так и не предпринял, Ростехнадзор решил действовать через суд. В ходе судебного процесса выяснилось, что в нержавеющей стали для облицовки здания МФР содержится пониженное содержание хрома металл препятствует окислению и повышенное содержание свободного феррита железа.

Из-за чего и происходит постоянное окисление. Справилась ли компания с ржавчиной, неизвестно. Логично было бы совсем избавиться от имеющейся листовой облицовки, так как ее сложно назвать «нержавеющей».

В этом смысле она идеально отвечает запросам современной цивилизации. Доллежаля и проектного направления «Прорыв». В момент запуска над стройплощадкой взвились в воздух гигантские флаги России и «Росатома», поднятые двумя башенными кранами.

Фейерверк ознаменовал начало нового этапа в развитии отечественной атомной энергетики. На сегодняшний день в реализации проекта «Прорыв» участвуют более 30 организаций, свыше полутора тысяч ученых, инженеров и конструкторов. О ближайших перспективах рассказал журналистам Евгений Адамов: - Мы сформировали четкую дорожную карту работ, от полномасштабных научных исследований, конструирования и производства оборудования до проектирования, строительства и ввода объектов ОДЭК в эксплуатацию. К 2023-му мы хотим освоить производственный комплекс по выпуску топлива. А к 2024 году предполагается начать сооружение модуля переработки облученного топлива. БРЕСТ будет экспериментальной установкой малой мощности.

По словам Лихачева, весь Опытно-демонстрационный энергокомплекс заработает в 2030 году. Надеемся, что в 2030 - 2040 годах это станет объектом российского экспорта.

Реакторы на быстрых нейтронах у России и так имеются, БН-600 и БН-800 в составе Белоярской АЭС работают уверенно, всему миру на зависть — ни в одной другой стране такого и в помине нет. Равновесный режим, экологическая проблема, "Фукусима" и "Чернобыль" невозможны, какой-то "горючий" плутоний горит, но не сгорает, а безопасность — естественная. Все слова написаны на русском языке, но смысл предложений далеко не очевиден.

Скандал в Чехии: Марцинкевич объяснил, чем обернется для Праги атомный разрыв с РФ 21 апреля 2021, 21:36 Необходимость "расшифровать" всю эту терминологию очевидна: вся мировая наука замерла в восхищении, а мы сами не можем понять, что же такое у нас на глазах "Росатом" начинает реализовывать. В Северске начали строить нечто невероятно инновационное, что решит кучу каких-то проблем и гору задач, потому что там в реакторе будет свинец и нитридное топливо — звучит прекрасно, но это уровень — "Дети, а вот эта очень сложная машина делает очень интересные вещи, которые всем нам необходимы, а потому машина — очень хорошая и нужная, ни у кого больше такой нет". Об изотопах урана и о цепных реакциях деления Для того, чтобы начать разбираться, что к чему, в общем-то, достаточно припомнить школьную "формулу" цепной ядерной реакции деления: "Свободный нейтрон, врезаясь в ядро атома урана, разваливает его на части, при этом образуются два новых свободных нейтрона, они врезаются уже в два ядра атомов урана, следующие четыре свободных нейтрона... Все совершенно точно, но есть ряд деталей, в которых известно, кто всегда прячется. Это описание касается не всего урана, который мы добываем из руды, которую мы добываем в шахтах и карьерах, а только его изотопа урана-235 — в его ядре "упакованы" 92 протона и 143 нейтрона.

Такого изотопа у природной руды — всего 0,7 процента, а почти все остальное, то есть 99,3 процента - это уран-238 все те же 92 протона, но нейтронов — 146. А уран-238 в цепной реакции не участвует — невозможны для него "один нейтрон выбил два нейтрона, два нейтрона выбили четыре", уран-238, грубо говоря, просто "съест" этот свободный нейтрон, на том все и закончится. Уран обогащенный и уран обедненный Из этих физических свойств изотопов урана-235 и урана-238 — сразу два следствия. Урановой руды атомной энергетике нужно не просто много, а очень много. Богатыми считаются руды, в которых содержится один процент природного урана — следовательно, из 100 тонн руды можно получить тонну урана, в котором необходимого энергетике урана-235 всего семь килограммов.

На горно-обогатительных заводах в "хвосты" уходят 99 тонн пустой породы, а на предприятиях, где происходит обогащение урана по содержанию урана-235, "хвостами" станут 993 килограмма урана-238. Технологии обогащения урана по изотопу-235 совершенствовались с самого начала "атомной эры", но и сейчас, и даже в России, все 0,7 процента урана-235 извлечь из "балласта" в виде урана-238 не получается. В хвостах российских обогатительных заводов остается 0,1 процента урана-235, в хвостах европейских обогатительных заводов — до 0,3 процента. Именно более развитые российские технологии — причина того, что европейские государства время от времени отправляют свои хвосты на переработку "Росатома": то, что для Европы не более чем неиспользуемый балласт, для заводов холдинга ТВЭЛ — вполне приличное, пригодное к обработке сырье. Но это, конечно, отдельная история, к ней можно вернуться в следующий раз, а пока второе следствие, тоже вполне очевидное: ядерное топливо для АЭС стоит достаточно дорого, а природного урана при таком способе его использования, как сейчас, надолго не хватит.

Мало того — как известно, уран един, но он в двух лицах, поскольку его можно использовать в атомной энергетике, а можно и для создания атомного и ядерного оружия.

Росатом продолжает строительство энергоблока для уникального реактора БРЕСТ-ОД-300

Добавляется, что большинство проектных и технических решений для самой реакторной установки БРЕСТ-ОД-300 и ее основного оборудования являются инновационными и ранее не применялись на промышленных атомных объектах. Реактор 'БРЕСТ-ОД-300' (установка с пристанционным ядерным топливным циклом) строится на площадке Сибирского химического комбината (СХК) в Северске в рамках проекта Росатома 'Прорыв' по созданию новейшего топлива, на котором атомная энергетика будет работать. Переработка ОЯТ БРЕСТ-300 будет происходить непосредственно на площадке ОДЭК, в модуле переработки (МП) комплекса ОДЭК. За прототип в проекте «Прорыв» взяли реактор «Брест ОД-300», работоспособность которого не доказана. Инновационный реактор БРЕСТ-ОД-300 на быстрых нейтронах обладает мощностью 300 МВт.

Ядерный реактор будущего

Подписан договор на строительство энергоблока с реактором «БРЕСТ-ОД-300» в рамках проекта «Прорыв» Испытания перспективного смешанного нитридного уран-плутониевого топлива российского реактора на быстрых нейтронах со свинцовым теплоносителем (БРЕСТ-ОД-300).
«Прорыв» к замкнутому ядерному циклу – «быстрым» ядерным технологиям брест-од-300 новости сегодня.
6-й реактор Белоярской АЭС - БРЕСТ ОД 300? Генеральный директор госкорпорации «Росатом» Алексей Лихачев (в центре) во время церемонии начала строительства новейшего атомного реактора на быстрых нейтронах БРЕСТ-ОД-300 в Северске.

Новейший энергоблок БРЕСТ: мир замер в восхищении от проекта "Росатома"

российский проект реакторов на быстрых нейтронах со свинцовым теплоносителем. Используемый в реакторе БРЕСТ свинцовый теплоноситель является радиационно стойким и слабо активируемым. Специалисты НИУ «МЭИ» приняли участие в создании заготовки выходной части МГД-насоса для нового типа реактора на быстрых нейтронах БРЕСТ-ОД-300. Как и любой другой реактор, БРЕСТ-ОД-300 снабжен системой аварийного охлаждения реактора. Вернёмся к началу нашего выпуска и двум важным новостям – о запуске в Обнинске модели самого мощного в мире ядерного реактора, а также о начале монтажа реакторной установки четвёртого поколения БРЕСТ-ОД-300 в Северске.

Росатом начал строительство первого в мире реактора на быстрых нейтронах БРЕСТ-ОД-300

российский проект реакторов на быстрых нейтронах со свинцовым теплоносителем. Изделие для реактора изготавливают с применением аддитивной технологии электронно-лучевой наплавки проволоки (ЭЛНП), схожей с действием 3D печати. В январе 2024 г. начался монтаж реакторной установки В составе реакторной установки «БРЕСТ-ОД-300» будут работать восемь парогенераторов массой 72 тонны каждый. Прорыв в атомной энергетике от РОСАТОМ | Геоэнергетика Инфо. первый в мире Perpetuum Mobile мощностью 300 МВт – АЭС с замкнутым топливным циклом.

Первые в мире

  • Росатом начал строительство уникального энергоблока с реактором на быстрых нейтронах БРЕСТ-ОД-300
  • Ядерный реактор будущего — все самое интересное на ПостНауке
  • Бесконечная энергия: «Росатом» строит первый в мире реактор с замкнутым циклом // Новости НТВ
  • «Росатом» приступил к строительству первого в мире безопасного ядерного реактора
  • Информация

Выдана лицензия на создание реактора БРЕСТ-ОД-300. Что это значит

С другой стороны считается, что при аварии с прорывом теплоносителя свинец просто застынет и тем самым позволит минимизировать ущерб. Оксиды урана и плутония всплывают в свинце, что недопустимо по существующим нормам. Для решения проблемы пришлось разрабатывать нитридное топливо для реактора. Никто никогда такого топлива не делал. Судя по информации из открытых источников, пока нитридное топливо всё ещё экспериментальная технология и имеет немало детских болезней. Решение избавиться от промежуточного контура между водой и теплоносителем реактора привело к необычному решению: колонку парогенератора решили погрузить напрямую в расплавленный свинец.

Решение, мягко говоря, экзотичное. Во-первых, неизвестно как себя поведёт корпус парогенератора при длительном нахождении в расплаве свинца. Во-вторых, ремонт парогенератора и некоторые аварийные действия с ним возможны только при использовании роботизированного комплекса, так как работа человека вблизи расплава свинца, требует специальной термостойкой экипировки. В-третьих, ремонт будет осложнён наведённой от свинца радиацией в конструкциях парогенератора. В-четвёртых, возможно радиационное загрязнение воды в парогенераторе и от неё всего насосно-турбинного оборудования.

Как решили эти проблемы, неизвестно. Выглядит интересно и необычно, но насколько эффективно — неясно Можно заметить, какое количество проблем а перечислены далеко не все , новых подходов и решений требует БРЕСТ. Это действительно прорывной проект, который в случае успеха может стать такой же вехой для ядерной энергетики, как ITER— для термояда. Но цена провала тут гораздо выше. Всё дело в амбициях и ресурсах.

Перспектива, которая может стать собственным гробовщиком Проект БРЕСТ рождался, наверное, в самое неудачное время, какое только было для отечественной атомной индустрии — в 90е: денег нет, перспективы туманные, на государственном уровне всем просто не до атомки. Так как денег было всё равно мало, а проект требовал масштабной проработки, то приходилось выбирать тот вариант строительства опытного реактора, который дал бы максимальную отдачу. Обычно в качестве демонстраторов технологии используют реакторы небольшой мощности — 10-50 МВт электрических. Но при такой мощности ни продемонстрировать концепцию «естественной безопасности», ни замкнутого топливного цикла не получится, так как достигнуть коэффициента воспроизводства даже в 1 на столь маленьком образце не представляется возможным. При этом денег на разработку и сооружение реактор малой мощности потребует не на порядок больше, чем более мощный вариант.

Проект, почти полностью сотканный из новых непроверенных решений, предлагалось построить без отработки элементов проекта в меньшем масштабе. В случае успеха — прорыв в новую эру, а вот в случае провала велик шанс, что, при имеющейся в отрасли конкуренции, всё направление на долгие годы будет дискредитировано. Тем не менее ставка была сделана, и работа проектантов закипела. Пока Адамов был министром, а позже советником председателя правительства, всё было хорошо, но в 2005 году в карьере Евгения Олеговича наступила чёрная полоса — обвинения со стороны США в коррупции и присвоении денег во время реализации программы ВОУ-НОУ, суд на родине и тюремный срок. Когда главный защитник проекта в высоких кабинетах лишился силы, то против БРЕСТа выступили представители конкурирующих проектов.

Будучи сугубо бумажным, БРЕСТ мало чем мог соперничать с натриевыми или свинцово-висмутовыми реакторами, так как те имели воплощения в металле и были отработаны, а насчёт БРЕСТа такой уверенности нет. По сути, с 2011 по 2021 год шла самая настоящая война проектантов с представителями конкурирующих проектов, скептиками из Росатома и Ростехнадзором. Последний должен был согласовать проектную документацию и выдать разрешение на строительство, но долгое время отказывались это делать из-за принципиальных разногласий с разработчиками. Множество возвратов на доработку, комиссий, экспертных оценок и заключений потребовались, чтобы в конце концов в 2018 году выдать заключение об утверждении проектной документации. Куда там.

В 2017 году финансирование проекта заморозят до получения всех разрешений из-за сложной финансовой обстановки в отрасли.

К началу реализации проекта «Прорыв» мировой опыт по облучению смешанного уран-плутониевого нитридного топлива был ограничен 150—200 твэлами, включая и наши экспериментальные твэлы, исследованные в реакторе БОР-60. На старте проекта была разработана комплексная программа расчетно-экспериментального обоснования твэлов со смешанным нитридным уран-плутониевым топливом реакторов БН-1200 и БРЕСТ-ОД-300. По результатам послереакторных исследований твэлов проведена верификация топливных кодов и их аттестация. Более тысячи экспериментальных тепловыделяющих элементов с различными характеристиками изготовил Сибирский химический комбинат за 10 лет участия в проекте «Прорыв», чтобы совместно с ВНИИНМ найти и обосновать наиболее удачную конфигурацию ядерного топлива нового поколения. Безусловно, у регулирующих органов остаются вопросы, требующие дополнительных исследований, в частности поведение твэлов в свинцовом теплоносителе не в стендовых условиях, а в реакторных. Еще одно направление работ — твэлы с жидкометаллическим подслоем. Результаты облучения ЭТВС в реакторах БОР-60 и БН-600 и послереакторных исследований подтвердили перспективность применения твэлов с жидкометаллическим подслоем на основе сплавов свинца для достижения высоких выгораний.

Для МФР впервые в мире были созданы уникальные многофункциональные комплексы: установки карботермического синтеза, изготовления таблеток и участок технологического сопровождения. Компанией «Диаконт» изготовлены и проходят испытания роботы — прототипы для роботизированных комплексов фабрикации смешанного уран-плутониевого топлива с включением дожигаемых минорных актинидов, переработки отработавшего ядерного топлива и обращения с радиоактивными отходами. Разработаны исходные данные для проектирования, прорабатываются компоновочные решения, дорабатываются технические проекты оборудования. Применена комбинированная технология, состоящая из пирохимических процессов на начальных стадиях переработки и гидрометаллургических процессов на последующих. Подобный подход позволяет сочетать, казалось бы, труднореализуемые подходы в единую технологию — перерабатывать «горячее» ОЯТ с минимизацией выдержки и регулировать чистоту продуктов переработки от продуктов деления, тщательно контролировать состав направляемых на захоронение радиоактивных отходов. Как результат, достигаются высокие экономические и экологические показатели. Технологические решения содержат ряд уникальных разработок. Продемонстрирована технологическая готовность к выделению америция для трансмутации.

Разработан процесс малоотходной дезактивации оборудования со сложной геометрией. Разработан технологический процесс изготовления таблеток из порошков, полученных после переработки СНУП-топлива.

В отличие от атомных электростанций с водо-водяным энергетическим реактором, где перегрузку производят на «расхоложенной» реакторной установке, на БРЕСТ-ОД-300 те же операции будут проходить при температуре более 400 градусов по Цельсию. Перед загрузкой в активную зону тепловыделяющие сборки будут разогревать в специальной камере и помещать в активную зону, заполненную расплавом свинцового теплоносителя, в разогретом состоянии. Известно, что комплекс создают в рамках отраслевого проекта «Прорыв». Реактор начнет работу во второй половине 2020-х годов.

Такого рода утверждения были названы Пономарёвым-Степным: не только не доказанными научными и техническими работами, но и спорными по ряду основных положений. Кроме неотработанности технологии, были обозначены «узкие» технические вопросы: в большом объёме интегральной схемы «БРЕСТ» не обеспечивается равномерность поддержания кислородного потенциала в узком разрешённом диапазоне если он будет подтвержден. Чтобы обеспечить работоспособность тепловыделяющих элементов, необходимо найти оптимальное для заданного уровня и диапазона изменения температур содержание кислорода в теплоносителе и стабильно поддерживать его на этом уровне в течение всего срока эксплуатации реакторной установки; не обоснована работоспособность конструкционных материалов в свинце при принятой температуре и при высоком облучении нейтронами расплавленный свинец вызывает сильную коррозию конструкционных материалов ; не изучено влияние облучения в реальных реакторных условиях на поведение в свинце тепловыделяющих элементов и топливной композиции; сама по себе проблема смешанного нитридного топлива требует значительных усилий и времени для её разрешения; технические решения по переработке топлива находятся на начальной стадии разработки. Вследствие наличия этих вопросов: По состоянию обоснования технических решений проект «Брест» — быстрый реактор со свинцовым теплоносителем — не подготовлен для стадии технического проектирования и не может быть выделен в настоящее время как единственный вариант долгосрочной стратегии развития ядерной энергетики России. Доллежаля» В. Орлова [19] , опубликованной в том же 2001 году на сайте НИКИЭТ, практически не содержится ответных доводов в технической части, напротив, подтверждаются слова академика Пономарёва-Степного о начальности стадии разработки проекта, неотработанности и неисследованности многих важных вопросов, однако содержатся нападки на личность критика: «статья Н. Пономарева-Степного не содержит каких-либо новых возражений против Стратегии или идей по её корректировке, которые не были бы обсуждены в ходе её выработки и принятия. Африкантова » В. Кроме того, при облучении свинцово-висмутового теплоносителя дополнительно образуется большое количество радиоактивного полония этот процесс характерен и для свинцового теплоносителя [21]. К этому следует добавить проблему накопления трития во втором пароводяном контуре этих реакторных установок ; большие энергетические и временные затраты для расплавления и поддержания теплоносителя в жидком состоянии на разогрев реактора в РУ БРЕСТ-ОД-300 по проекту потребуется 7 месяцев ; токсичность «тяжёлых» теплоносителей и образование долгоживущих изотопов альфа-активного свинца, альфа- и бета-активного висмута с периодом полураспада более 106 лет, что усугубляет проблему их утилизации после прекращения эксплуатации реактора. Также в этой статье высказываются сомнения вообще относительно возможности создания надёжных реакторных установок с «тяжёлым теплоносителем» с длительным сроком эксплуатации, ставится вопрос об экономической целесообразности создания таких установок, а также высказывается мнение, что: РУ с «тяжёлыми» теплоносителями не имеют новых качеств и в отношении возможности утилизации долгоживущих актинидов по сравнению с быстрыми реакторами, охлаждаемыми натрием. Общий вывод, который в своей статье делает Костин: Таким образом, предлагаемые ядерные технологии на основе свинцово-висмутовых или свинцовых быстрых реакторов по комплексу определяющих характеристик не имеют преимуществ по сравнению с освоенными ядерными технологиями тепловых легководных и быстрых натриевых реакторных установок. Поэтому использование «тяжелого» теплоносителя в реакторных установках для широкомасштабной гражданской атомной энергетики представляется совершенно нецелесообразным. Развертывание работ по созданию таких технологий приведёт к большим затратам при отсутствии положительного результата в конечном итоге.

«Прорыв» к замкнутому ядерному циклу – «быстрым» ядерным технологиям

Части плиты сварили на стройплощадке. Она обеспечит удержание теплоизоляционного бетона и сформирует дополнительный локализующий барьер за границей контура теплоносителя. До 2042 года предстоит ввод 10 энергоблоков с реакторами на быстрых нейтронах».

Облученное топливо после переработки будет направляться на рефабрикацию с многократным рециклом делящихся материалов. То есть, система со временем станет автономной и независимой от внешних поставок энергоресурсов. Преимущество реакторов на быстрых нейтронах — способность эффективно использовать для производства энергии вторичные продукты топливного цикла, в частности, плутоний.

Для справки: Российская отраслевая стратегия предполагает создание двухкомпонентной атомной энергетики с реакторами на тепловых и быстрых нейтронах и замкнутым ядерным топливным циклом. ОДЭК возводится в рамках стратегического проектного направления «Прорыв» Госкорпорации «Росатом», направленного на создание новой технологической платформы атомной энергетики.

Она предполагает широкое внедрение технологий рециклинга ядерных материалов. Это позволит не только многократно расширить сырьевую базу атомной энергетики, но и решить вопросы накопления отработавшего топлива и ядерных отходов — повторно использовать продукты переработки ОЯТ вместо хранения, радикально снизить объемы образования и активность отходов. Преимущество реакторов на быстрых нейтронах — способность эффективно использовать для производства энергии вторичные продукты топливного цикла в частности, плутоний. При этом обладая высоким коэффициентом воспроизводства, «быстрые» реакторы могут производить больше потенциального топлива, чем потребляют, а также «дожигать» то есть утилизировать с выработкой энергии высокоактивные трансурановые элементы актиниды. Ожидается, что внедрение таких технологий повысит эффективность использования природного урана.

В 2022 году начаты работы по пусконаладке основного технологического оборудования и установок для фабрикации СНУП-топлива. Модуль переработки Предназначен для переработки отработавшего ядерного топлива, извлечения полезных ядерных компонентов, которые будут использованы при изготовлении рефабрикации СНУП-топлива. Для пирохимического передела на лабораторном уровне подтверждена техническая реализуемость основных операций. Выбран окончательный вариант технологической схемы пирохимического передела.

Выдана лицензия на создание реактора БРЕСТ-ОД-300. Что это значит

Успешная реализация этого проекта позволит нашей стране стать первым в мире носителем атомной технологии, полностью отвечающей принципам устойчивого развития — в экологичности, доступности, надежности и эффективности использования ресурсов», — сказал Алексей Лихачев. Интегральная конструкция и физика реакторной установки позволяют исключить аварии, требующие эвакуации населения. Ранее, к 2023 году, планируют построить комплекс по выпуску топлива, а к 2024 году — модуль переработки облученного топлива. Такие аппараты ранее не строились, то есть это принципиально новые реакторы. Их сторонники делают упор на важные преимущества свинцовых реакторов с точки зрения безопасности и экономики, свои аргументы есть у скептиков», — говорит директор автономной некоммерческой организации для поддержки развития атомной науки, техники и образования «АтомИнфо-Центр» Александр Уваров.

В мае 2021 года, перед началом заливки первого бетона, был создан макет фундаментной плиты, где эксперты протестировали качество швов между бетонными блоками. Фундаментная плита находится на уровне минус 6,4 метра. Сейчас строители приступили к возведению контурных стен. Старт строительству атомного энергоблока мощностью 300 МВт с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300 со свинцовым теплоносителем в торжественной обстановке, в присутствии первых лиц российского и зарубежного атомного сообщества, руководства региона, сотрудников и ветеранов АО «СХК», бойцов Всероссийского студенческого строительного отряда «Мирный атом — Прорыв». Северск объединяет четыре завода по обращению с ядерными материалами. Одно из основных направлений работы СХК — обеспечение потребностей атомных электростанций в уране для ядерного топлива.

К сожалению, такие ядра выражаясь учёным языком, «минорные актиноиды» имеют период полураспада от нескольких десятков тысяч до сотен тысяч лет. А новый аппарат замыкает цикл. После его работы остаются отходы, которые уже через 300 лет становятся абсолютно безвредными. Именно поэтому такие агрегаты и называют "быстрыми реакторами", потому что после них не остаётся бесконечно опасных по времени нейтрализации продуктов распада».

Не просто полностью безопасный, но ещё и сугубо мирный Но есть у нашего реактора и ещё одна особенность: оказывается, при помощи «Прорыва» нельзя получить оружейный уран. Такую силовую установку можно поставлять куда угодно, потому что она принципиально не в состоянии произвести оружие. Кстати, до того, как Россия представила неопровержимые доказательства, многие зарубежные учёные просто отказывались верить, что созданная на нашей земле новая силовая установка не только не оставляет после себя грязных радиоактивных отходов, но ещё и полностью безопасна: она может выдержать и ураган, и землетрясение, и наводнение, не навредив ни людям, ни окружающей среде. Одна из тайн нашего чудо-реактора заключается в том, что, в качестве теплоносителя, он использует свинец. Этот металл, даже в случае попадания в «горячую зону» силовой установки, не вступает в реакцию. Соответственно, отравления окружающей среды не произойдёт. Да и заставить кипеть свинец крайне трудно.

Эксперт отмечает, что разработчики концепции БРЕСТ предлагают новый тип топливного цикла — пристанционный, при котором переработка отработавшего ядерного топлива ОЯТ и фабрикация из него нового топлива осуществляются непосредственно на площадке АЭС. Например, так называемые миноры — нептуний, америций и кюрий, также образующиеся при работе реактора. С ними нужно что-то делать — вернуть ли их в реактор как часть топлива, дожечь ли в специализированной установке реактор или ускоритель , или, например, отдать космонавтам, чтобы они производили из них плутоний-238 для своих нужд. Постоянный адрес новости: eadaily.

«Росатом» начал строить первый в мире атомный энергоблок с безотходным циклом

К началу 2019 года на территории нашего Сибирского химического комбината АО «СХК» ведется строительство вспомогательных объектов, в частности пристанционных заводов фабрикации топлива и переработки ОЯТ Отработанного ядерного топлива для демонстрации замыкания топливного цикла. Завершить работы планируется до конца 2026 года. На момент начала строительства реактора Росатом планировал, что запуск реактора состоится в 2026 году. В ходе испытаний отдельных модулей потребовалась дополнительная «обкатка» технологии на промышленных стендах, а также проведение дополнительных научно-исследовательских и конструкторских работ НИОКР.

Целевым параметром испытаний являлись пороговые значения среднерадиальной энтальпии топлива, при которой происходят необратимые изменения конструкции твэла фрагментация топлива, разгерметизация оболочки твэла по различным механизмам ее разрушения, вплоть до ее плавления. Испытания СНУП-топлива включали в себя методические и исследовательские пуски, которые были проведены в режимах «вспышка» и «импульс». По результатам методических пусков три эксперимента были проверены расчетные модели и результаты расчетов, уточнены параметры настройки систем реактора ИГР при проведении исследовательских пусков. Кроме этого, были проверены средства измерения параметров, выполнена тарировка детекторов контроля гамма-излучения и маломасштабных детекторов нейтронного потока. Исследовательские пуски были спланированы и проведены таким образом, чтобы реализовать в топливе энерговыделение в широком диапазоне значений — от номинального эксплуатационного уровня энерговыделения на постоянной мощности до предельных значений энерговыделения в условиях моделирования вспышек мощности, характерных для реактивностных аварий.

К 2023 году должен быть запущен завод по выпуску топлива, к 2024 году предполагается начать сооружение модуля переработки облученного топлива, а сам реактор должен начать работу в 2026 году. Ожидается, что в ходе работы комплекса позволит отработать технологии создания плотного нитридного СНУП-топлива, переработки облученного топлива и обращения с отходами и управления работой реактором со свинцовым теплоносителем, что должно сыграть большую роль в замыкании топливного цикла. Ранее мы рассказывали про начало выхода на мощность 10 мегаватт нового нейтронного реактора ПИК. Об истории и предназначении этой уникальной установки можно прочитать в нашем материале «Энергетический пуск». Александр Войтюк Нашли опечатку?

Проект разрабатывался с 1999 года на основе концепции ядерной энергетики естественной безопасности, работы над которой велись с конца 80-х годов в рамках специального конкурса, объявленного государственным комитетом СССР по науке и технике. Первоначально проектировалась установка БРЕСТ, обеспечивавшая в составе энергоблока электрическую мощность 300 МВт, позже возник и проект с мощностью энергоблока 1200 МВт, однако на данный момент разработчики сосредоточили свои усилия на менее мощном БРЕСТ-ОД-300, где ОД обозначает «опытный демонстрационный», в связи с отработкой большого количества новых в этой области конструктивных решений и планами опробования их на относительно небольшом и менее дорогом в реализации проекте. Кроме того, выбранная мощность 300 МВт и 700 МВт является минимально необходимой для получения коэффициента воспроизводства топлива в активной зоне, равного единице. Представители Росатома рассматривают БРЕСТ как составную часть проекта «Прорыв», «консолидирующего проекты по разработке реакторов большой мощности на быстрых нейтронах, технологий замкнутого ядерного топливного цикла, а также новых видов топлива и материалов и ориентированный на достижение нового качества ядерной энергетики» В конце 2018 года получено заключение Главгосэкспертизы на откорректированный проект реактора «БРЕСТ-ОД-300», утверждена проектная документация.

Похожие новости:

Оцените статью
Добавить комментарий