На этой странице представлен самый простой онлайн переводчик единиц измерения метры в нанометры. 1 метр = 1000000000 нанометров (нм). Изображение с названием Конвертировать нанометры в метры, шаг 02. Конвертировать из Нанометр В Метр. нанометра до метры (nm до m) преобразования калькулятор измерения: measurement, 1 нанометра = 1.0E-9 метры. Conversion-Calculator to convert measurement units. Supports a huge number of measurement units.
Перевести м в нм и обратно
Преобразовать метры в нанометры с помощью того же преобразования единиц измерения очень просто. Решение: 1 метр = 10 9 нанометров Настройте преобразование так, чтобы желаемая единица была отменена. Квадратный Нанометр. n m². Наш инструмент для преобразования нанометров в метры (нм в м) — это бесплатный онлайн-конвертер нанометров в метры, который позволяет легко конвертировать нанометры в метры. Conversion-Calculator to convert measurement units. Supports a huge number of measurement units. Дан 1 ответ. Нано это 10^-9 метра. Похожие задачи.
Перевод единиц измерения:
- Навигация по записям
- Как перевести нанометры в метры, помогите пожалуйста?
- 1 нанометр (нм) равно:
- Конвертер нанометров (нм) в метры (м) и обратно онлайн
- Конвертер длины онлайн (55+ единиц расстояния)
Как переводить метры в нанометры. Просто о сложном: нанометр — это вообще сколько
Перевод метров в нанометры | нанометра до метры (nm до m) преобразования калькулятор измерения: measurement, 1 нанометра = 1.0E-9 метры. |
Нанометры в метры - 87 фото | Посмотрите, как конвертировать Нм до Метры, и проверьте таблицу конвертации. |
Перевод единиц измерения:
- Нанометры в метр
- Conversion-Calculator / Convert Measurement Units
- Конвертер величин онлайн
- Конвертер единиц расстояния и длины
Из Н в Нм (перевести силу в Ньютонах в момент в Ньютон-метры)
Как перевести нанометры в метры - пример задачи - Наука Технология Математика 2024 | Конвертер единиц измерения длины поможет перевести значения из одних единиц в другие, таких как миллиметры, сантиметры, дюймы, дециметры, метры, километры. |
Convert nm to m - Conversion of Measurement Units | Посмотрите, как конвертировать Нм до Метры, и проверьте таблицу конвертации. |
Онлайн калькулятор. Конвертер величин. Нанометр | Перевод нанометров в метры. Микрометр нанометр таблица. Таблица как перевести единицы измерения. Таблица перевода различных единиц измерения длины в метры. |
Нм равно м
В будущем можно ожидать применения нанометров при создании: Квантовых наноструктур в оптике и электронике Нанороботов в медицине Мемристоров и других наноэлементов для нейроморфных вычислений Так что нанометры - это не просто очередная единица измерения, а ключ к принципиально новым технологиям будущего! Стандартизация нанометровых измерений Для получения надежных и воспроизводимых результатов при работе с наноструктурами крайне важна стандартизация измерительных процедур и эталонных образцов. В частности, Международное бюро мер и весов BIPM разработало ряд стандартных образцов длины на основе моноатомных ступенек кристаллов кремния с высотой в несколько нанометров. Такие эталоны используются для калибровки зондовых и электронных микроскопов.
Кроме того, NIST и другие национальные метрологические институты поддерживают рабочие эталоны единиц для передачи размера с точностью до десятков нанометров. Перспективные нанотехнологии Активное использование нанометров связано с развитием перспективных нанотехнологий, позволяющих создавать и манипулировать наноразмерными структурами. К таким технологиям относятся: Зондовая нанолитография для "написания" наноструктур Самосборка наночастиц и блок-сополимеров Методы выращивания нанотрубок, графена и других аллотропных форм Подобные технологии позволяют создавать материалы и устройства с уникальными характеристиками: сверхпрочные композиты, сенсоры для медицины и др.
Нанометры в массовой культуре Несмотря на кажущуюся сложность, тема нанометров и нанотехнологий понемногу проникает и в массовую культуру. В частности, все больше научно-популярных фильмов и книг знакомят широкую аудиторию с "миром нано". Элементы нанотехнологий также находят отражение в научной фантастике.
Популяризация нанонауки способствует лучшему пониманию роли фундаментальных исследований, в том числе работы с наномасштабной точностью измерений. Вызовы наномира Несмотря на очевидный прогресс в изучении и применении наноструктур, перед исследователями стоит еще множество фундаментальных и прикладных задач. В частности, остаются вызовы в понимании: Физических свойств вещества на наноуровне Закономерностей самоорганизации наносистем Взаимодействия наноматериалов с живыми организмами Их решение требует дальнейшего развития нанометрологии - науки об измерениях в наномасштабе.
Микрометры перевести в мм. Пересчитать микроны в мм. Площадь кратные и дольные. Таблица дольных и кратных величин массы. Микрометр единица измерения обозначение. Таблица мкм в мм. Размер пыли. Размер пыли в микронах. Размер частицы вируса.
Сравнительный размер вирусных частиц. Метр миллиметр микрометр нанометр. Размер микрометр в нанометр. Размер кварка в нанометрах. Распечатка нанометр. Из нанометр. Нанометр в химии. Нанотехнологии Размеры частиц. Нанометр сравнение.
Что меньше нанометра. Единица измерения 1 микрон. Ангстрем мера измерения. Система си приставки к единицам измерения. Таблица приставок единиц измерения физика. Приставки си в физике таблица. Множители и приставки си таблица. Рис 155 шкала электромагнитных волн. Шкала электромагнитных волн рис 136.
Шкала электромагнитных волн 9 класс перышкин. Проникающая способность электромагнитных волн таблица. Перевести в мкм. Единицы измерения мкм в мм. Размеры веществ. Микрофарад обозначение. Микрофарады в Фарады обозначение. Конденсатор 10 нанофарад маркировка. Маркировка конденсаторов Фарадов.
Самый маленький атом.
Единицы массы. Соотношение между единицами массы. Единицы измерения массы. Единица массы килограмм. Болт м6х1 10. Крутящий момент затяжки болтов. Момент затяжки НМ В кг. Момент силы действующей на рычаг. Силы действующие на рычаг.
Сила действующая на рычаг. Плечо силы действующей на рычаг. Поглощаемая мощность детектора формула. Детектор полностью поглощает падающий. Мощность поглощения. Мощность поглощающего детектора. Денежные агрегаты м0 м1 м2 м3 схема. Рассчитать скорость оборота денег. Скорость оборота денег формула. Скорость оборота безналичных денег.
Унция в граммах таблица. Таблица oz в граммах. Измерение oz в граммах. Вес oz в граммах. Фазовая скорость электромагнитной волны формула. Фазовая скорость волны формула. Фазовая скорость волны в среде. Скорость и длина волны. Бар единица измерения давления. Сигма через модуль Юнга.
Формула модуля Юнга через напряжение. Как вычислить модуль Юнга. Модуль упругости модуль Юнга формула. Сколько метров в километре. Перевести ньютоны в килограммы. NM перевести в кг. Усилие в ньютонах перевести в кг. Ньютон в кг перевести. Таблица измерения длины по математике 2. Как объяснить ребенку единицы длины.
Единицы измерения длины таблица 5 класс математика. Скорость изменения энергии. Эквивалент массы и энергии. Энергия покоя и кинетическая энергия. Энергия уровня формула. Единицы измерения давления psi. Таблица давления МПА В бар и атм. Единицы давления перевод таблица. Опыт Юнга интерференция. Интерференция света опыт Юнга.
Опыт Юнга длина волны. В опыте Юнга отверстия освещались монохроматическим светом 600 НМ. Квадратные метры и дециметры. Таблица квадратных см дм м км. Таблица квадратных дм см мм. Квадратные метры дм см таблица. Таблица квадратных метров сантиметров и дециметров.
Объём, вместимость Объем — это пространство, занимаемое телом или веществом. Объем тела определяется его геометрическими характеристиками. Измеряется объем в производных единицах измерения — метр в кубе или можно сказать по-другому — кубический метр. Обозначение единиц измерения объема в СИ: м3 — русское, m3 — международное. Площадь Площадь — это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой. Измеряется площадь в производных единицах измерения — метр в квадрате или можно сказать по другому — квадратный метр. Обозначение единиц измерения площади в СИ: м2 — русское, m2 — международное.
Convert nm to m - Conversion of Measurement Units
Conversion-Calculator to convert measurement units. Supports a huge number of measurement units. From smallest to largest (left to right). Commonly used units shown in bold italics. From smallest to largest (left to right). Commonly used units shown in bold italics. Квадратный Нанометр. n m².
Конвертер мер длины
Как переводить метры в нанометры. Просто о сложном: нанометр — это вообще сколько | Перевести нанометры в метры. |
Степень метра | Преобразовать метры в нанометры с помощью того же преобразования единиц измерения очень просто. |
Нанометр — Карта знаний | Как перевести микрометры в метры. |
Таблица единиц измерения длины: см, м, мм, дм, км, нм, фут, дюйм, миля, ярд | Нанометр – это дольная единица измерения длины в Международной системе единиц (СИ), равная одной миллиардной части метра (0,000000001 м или 10−9 метра). |
Единицы длины \ КонсультантПлюс | Посмотрите, как конвертировать Нм до Метры, и проверьте таблицу конвертации. |
Нанометры в метры - 87 фото
Нанометр — дольная единица измерения длины в Международной системе единиц (СИ), равная одной миллиардной части метра (то есть 10−9 метра). Перевод: квадратных метров в квадратные миллиметры, сантиметры, дециметры, километры, микрометры, нанометры, гектары, ары, футы, ярды, дюймы, мили, акры, руды, десятины, версты, аршины и обратно. Преобразуйте нанометры в метры (нм в м) с помощью калькулятора преобразования длины и выучите формулу преобразования нанометра в метр. Чтобы перевести нанометры в метры, необходимо значение в нанометрах умножить на 10-9. Конвертер метров в нанометры и обратно позволяет легко и быстро перевести значения длины из метров в нанометры и обратно. Как перевести 7200см в метры квадратные.
Перевод нанометров в метры
Nanometer to meter conversion (nm to m) helps you to calculate how many meter in a nanometer length metric units, also list nm to m conversion table. километр, км метр, м дециметр, дм сантиметр, см миллиметр, мм микрометр (микрон), мкм нанометр, нм ангстрем, А миля, mi морская миля, NM ярд, yd фут, ft дюйм, in пиксель, px. Сколько метров в миллиметре: в 1 миллиметре 0.001 метров. Вы переводите единицы длина из метр в нанометр.
Конвертация
- Оглавление:
- Конвертер единиц длины
- Nanometer to Meter Conversion (nm to m)
- конвертировать Микроны в Метры
- Как считают нанометры, как их на самом деле надо считать, и почему не все с этим согласны
Нанометры в метр
Для расчета мы взяли отправленное вами значение и разделили его на 1 000 000 000, чтобы получить результат. Как перевести нанометры в метры Чтобы преобразовать нанометры нм в метры м , разделите длину на коэффициент преобразования. Поскольку один метр равен 1 000 000 000 нанометров, вы можете использовать эту простую формулу для преобразования: По какой формуле перевести нанометры в метры? Микрометр — это метрическая единица измерения длины, равная 0,001 мм или примерно 0,000039 дюйма. Его символ — мкм. Микрометр обычно используется для измерения толщины или диаметра микроскопических объектов, таких как микроорганизмы и коллоидные частицы.
Также стоит отметить, что в нанотехнологии возможно создание и манипулирование объектами на наномасштабе, например, синтез и управление наночастицами или построение наноструктур с определенными свойствами. В целом, нанометр является очень маленькой единицей измерения длины и играет важную роль в современной науке и технологии, особенно в областях, связанных с микроэлектроникой и нанотехнологиями.
Эта единица измерения позволяет измерять размеры атомов, молекул, кристаллов и других микроструктур. Например, размеры транзисторов в современных процессорах могут быть измерены в нанометрах. Технологические процессы производства микрочипов, такие, как 7 нм или 10 нм, указывают на размеры основных структур на кристалле кремния.
Нанометр или нанометр кратен метру, который является базовой единицей измерения длины в системе СИ. В метрической системе "нано" является префиксом 10-9. Как перевести нанометры в метры в секунду? Сколько метров в миле? Нанометр - самая маленькая единица измерения? Нанометр нм равен В 1000 раз меньше микрометра.
Онлайн калькулятор. Конвертер величин. Нанометр
Along with other units like a kilometer or an inch, a meter is one of the fundamental units in SI. About nm to m Converter This is a very easy to use nanometer to meter converter. Meter value will be converted automatically as you type.
На этой странице представлен самый простой онлайн переводчик единиц измерения метры в нанометры. С помощью этого калькулятора вы в один клик сможете перевести м в нм и обратно.
Общие сведения Длина — это наибольшее измерение тела. В трехмерном пространстве длина обычно измеряется горизонтально. Расстояние — это величина, определяющая насколько два тела удалены друг от друга. Измерение расстояния и длины Единицы расстояния и длины В системе СИ длина измеряется в метрах. В странах, где не пользуются метрической системой, например в США и Великобритании, используют такие единицы как дюймы, футы и мили.
Расстояние в физике и биологии В биологии и физике часто измеряют длину намного менее одного миллиметра. В биологии в микрометрах измеряют величину микроорганизмов и клеток, а в физике — длину инфракрасного электромагнитного излучения. Парусник проходит под мостом Золотые Ворота.
В частности, он упрощает просмотр очень больших и очень маленьких чисел.
Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 121 413 529 759 330 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.
Единицы измерения длины
В теории, конечно же. На практике ионы все-таки немного расползаются в стороны, хоть и на гораздо меньшие расстояния, чем при диффузии. Тем не менее, если мы возвратимся к рисунку транзистора, то увидим, что разница между топологической и эффективной длиной канала начинается именно из-за этого небольшого расползания. Ей, в принципе, можно было бы пренебречь, но она — не единственная причина различия. Есть еще короткоканальные эффекты. Их пять, и они разными способами изменяют параметры транзистора в случае, если длина канала приближается к различным физическим ограничениям. Описывать все их я не буду, остановлюсь на самом релевантном для нас — DIBL Drain-Induced Barrier Lowering, индуцированное стоком снижение потенциального барьера. Для того, чтобы попасть в сток, электрон или дырка должен преодолеть потенциальный барьер стокового pn-перехода. Напряжение на затворе уменьшает этот барьер, таким образом управляя током через транзистор, и мы хотим, чтобы напряжение на затворе было единственным управляющим напряжением. К сожалению, если канал транзистора слишком короткий, на поведение транзистора начинает влиять стоковый pn-переход, который во-первых, снижает поровогое напряжение см.
Рисунок 5. Источник — википедия. Кроме того, уменьшение длины канала приводит к тому, что носители заряда начинают свободно попадать из истока в сток, минуя канал и формируя ток утечки bad current на рисунке ниже , он же статическое энергопотребление, отсутствие которого было одной из важных причин раннего успеха КМОП-технологии, довольно тормозной по сравнению с биполярными конкурентами того времени. Фактически, каждый транзистор в современной технологии имеет стоящий параллельно ему резистор, номинал которого тем меньше, чем меньше длина канала. Рисунок 6. Рост статического потребления из-за утечек в технологиях с коротким каналом. Источник — Synopsys. Рисунок 7. Доля статического энергопотребления микропроцессоров на разных проектных нормах.
Источник — B. Dieny et. Собственно, примерно в момент, когда это стало важной проблемой, и начался маркетинговый мухлеж с проектными нормами, потому что прогресс в литографии стал опережать прогресс в физике. Для борьбы с нежелательными эффектами короткого канала на проектных нормах 800-32 нанометров было придумано очень много разных технологических решений, и я не буду описывать их все, иначе статья разрастется до совсем уж неприличных размеров, но с каждым новым шагом приходилось внедрять новые решения — дополнительные легирования областей, прилегающих к pn-переходам, легирования в глубине для предотвращения утечек, локальное превращение кремния в транзисторах в кремний-германий… Ни один шаг в уменьшении размеров транзисторов не дался просто так. Рисунок 8. Эффективная длина канала в технологиях 90 нм и 32 нм. Транзисторы сняты в одном и том же масштабе. Полукруги на рисунках — это форма дополнительного слабого подлегирования стоков LDD, lightly doped drain , делаемого для уменьшения ширины pn-переходов. Типичные размеры металлизации и расстояния между элементами при переходе от 90 нм до примерно 28 нм уменьшались пропорционально уменьшению цифры проектных норм, то есть типовой размер следующего поколения составлял 0.
Одновременно с этим длина канала уменьшалась в лучшем случае как 0. Из рисунка выше хорошо видно, что линейные размеры транзисторов при переходе от 90 нм к 32 нм изменились вообще не в три раза, и все игры технологов были вокруг уменьшения перекрытий затвора и легированных областей, а также вокруг контроля за статическими утечками, который не позволяли делать канал короче. В итоге стали понятны две вещи: спуститься ниже 25-20 нм без технологического прорыва не получится; маркетологам стало все сложнее рисовать картину соответствия прогресса технологии закону Мура. Закон Мура — это вообще противоречивая тема, потому что он является не законом природы, а эмпирическим наблюдением некоторых фактов из истории одной конкретной компании, экстраполированном на будущий прогресс всей отрасли. Собственно, популярность закона Мура неразрывно связана с маркетологами Intel, которые сделали его своим знаменем и, на самом деле, много лет толкали индустрию вперед, заставляя ее соответствовать закону Мура там, где, возможно, стоило бы немного подождать. Какой выход нашли из ситуации маркетологи? Весьма изящный. Длина канала транзистора — это хорошо, но как по ней оценить выигрыш площади, который дает переход на новые проектные нормы? Довольно давно в индустрии для этого использовалась площадь шеститранзисторной ячейки памяти — самого популярного строительного блока микропроцессоров.
Метр, стандартная единица измерения длины в Системе интернациональных единиц СИ , используется во всем мире для измерения расстояний. Перевод из нанометров в метры позволяет лучше понять размеры на микроскопическом уровне в более привычных единицах. Это преобразование помогает визуализировать и сравнивать микроскопические объекты с объектами повседневного масштаба, облегчая понимание их реальных размеров.
Такой перевод особенно важен в научных исследованиях, технологии и медицине, где точность измерений играет ключевую роль в понимании и манипулировании микромиром. Примеры перевода из нанометров в метры Перевод длины из нанометров в метры может показаться абстрактным, но на практике он находит множество применений. Давайте рассмотрим несколько примеров, которые иллюстрируют, как этот перевод помогает в различных ситуациях.
Диаметр двойной спирали ДНК составляет около 2 нанометров. Это помогает ученым точно работать с генетическим материалом. Размеры вирусов, например, ВИЧ, составляют около 120 нанометров в диаметре.
Современные транзисторы в микросхемах могут быть шириной всего 14 нанометров. Частицы пигмента в краске могут иметь размер от 100 до 300 нанометров. Частицы, используемые в солнцезащитных кремах для блокировки УФ-лучей, обычно имеют размер около 200 нанометров.
Нанометры и другие малые меры длины В научном мире для измерения крайне малых объектов используются специализированные единицы длины. Нанометры и другие подобные меры позволяют ученым точно описывать размеры от атомов до микроорганизмов. Вот как работают эти единицы и какими методами достигается их измерение.
Нанометр нм Нанометр, равный одной миллиардной части метра 10-9 метра , является стандартной единицей для измерения длины в нанотехнологиях, биологии и физике. Для визуализации объектов в нанометровом масштабе используются электронные микроскопы, которые позволяют наблюдать за структурой материалов, вирусами и даже отдельными молекулами.
При обычных условиях очень твёрдое вещество с кристаллической структурой типа вюрцита.
Прямозонный полупроводник с широкой запрещённой зоной — 3,4 эВ при 300 K. Растровый электронный микроскоп РЭМ, англ. Scanning Electron Microscope, SEM — прибор класса электронный микроскоп, предназначенный для получения изображения поверхности объекта с высоким до 0,4 нанометра пространственным разрешением, также информации о составе, строении и некоторых других свойствах приповерхностных слоёв.
Основан на принципе взаимодействия электронного пучка с исследуемым объектом. Наночастица англ. Скотофор — это материал, обладающий обратимым свойством потемнения и обеления при воздействии определенных типов излучения.
Название означает носитель тьмы, в отличие от фосфора, что означает носитель света.. Скотофор темнеет при воздействии интенсивных излучений, таких как солнечный свет. Минералы, показывающие такое поведение включают в себя гакманит, содалит, сподумен и тугтупит.
Некоторые чистые галогениды щелочных металлов также показывают такое поведение. Поликристалл — агрегат кристаллов какого-либо вещества в противоположность монокристаллу — отдельному кристаллу. Составляющие поликристалл кристаллы из-за неправильной формы называют кристаллическими зёрнами или кристаллитами.
Поликристаллами являются многие естественные и искусственные материалы минералы, металлы, сплавы, керамики и др. Дефектами кристалла называют всякое устойчивое нарушение трансляционной симметрии кристалла — идеальной периодичности кристаллической решётки. По числу измерений, в которых размеры дефекта существенно превышают межатомное расстояние, дефекты делят на нульмерные точечные , одномерные линейные , двумерные плоские и трёхмерные объёмные дефекты.
Зерно иногда употребляется термин кристаллит — минимальный объём кристалла, окружённый высокодефектными высокоугловыми границами, в поликристаллическом материале. Спектрофотометр лат. Позволяет производить измерения для различных длин волн оптического излучения, соответственно в результате измерений получается спектр отношений потоков.
Обычно используется...
Если к примеру речь идет о очень больших расстояниях, таких как объекты вселенной, то измерения расстояний в миллиардах километрах очень неинформативно и не удобно. Поэтому в астрономии более распространены единицы измерения — один световой год, парсек, астрономическая единица. А к примеру, в микромире наиболее удобно применять малые единицы измерения — микрон, нанометр. Объём, вместимость Объем — это пространство, занимаемое телом или веществом. Объем тела определяется его геометрическими характеристиками. Измеряется объем в производных единицах измерения — метр в кубе или можно сказать по-другому — кубический метр.
Обозначение единиц измерения объема в СИ: м3 — русское, m3 — международное.
Конвертер длины
Современная российская система длин имеет существенные различия как между системами длин других стран и народов, так и от старорусской системы длин. Другие калькуляторы.
You can find metric conversion tables for SI units, as well as English units, currency, and other data. Type in unit symbols, abbreviations, or full names for units of length, area, mass, pressure, and other types.
На этом сайте никогда не будет вирусов или других вредоносных программ. Наша задача упростить вашу работу и постараться помочь Вам по мере своих сил. Данный сайт является бесплатным сервисом предназначенным облегчить Вашу работу.
Источник — википедия. Кроме того, уменьшение длины канала приводит к тому, что носители заряда начинают свободно попадать из истока в сток, минуя канал и формируя ток утечки bad current на рисунке ниже , он же статическое энергопотребление, отсутствие которого было одной из важных причин раннего успеха КМОП-технологии, довольно тормозной по сравнению с биполярными конкурентами того времени. Фактически, каждый транзистор в современной технологии имеет стоящий параллельно ему резистор, номинал которого тем меньше, чем меньше длина канала. Рисунок 6. Рост статического потребления из-за утечек в технологиях с коротким каналом.
Источник — Synopsys. Рисунок 7. Доля статического энергопотребления микропроцессоров на разных проектных нормах. Источник — B. Dieny et. Собственно, примерно в момент, когда это стало важной проблемой, и начался маркетинговый мухлеж с проектными нормами, потому что прогресс в литографии стал опережать прогресс в физике. Для борьбы с нежелательными эффектами короткого канала на проектных нормах 800-32 нанометров было придумано очень много разных технологических решений, и я не буду описывать их все, иначе статья разрастется до совсем уж неприличных размеров, но с каждым новым шагом приходилось внедрять новые решения — дополнительные легирования областей, прилегающих к pn-переходам, легирования в глубине для предотвращения утечек, локальное превращение кремния в транзисторах в кремний-германий… Ни один шаг в уменьшении размеров транзисторов не дался просто так. Рисунок 8.
Эффективная длина канала в технологиях 90 нм и 32 нм. Транзисторы сняты в одном и том же масштабе. Полукруги на рисунках — это форма дополнительного слабого подлегирования стоков LDD, lightly doped drain , делаемого для уменьшения ширины pn-переходов. Типичные размеры металлизации и расстояния между элементами при переходе от 90 нм до примерно 28 нм уменьшались пропорционально уменьшению цифры проектных норм, то есть типовой размер следующего поколения составлял 0. Одновременно с этим длина канала уменьшалась в лучшем случае как 0. Из рисунка выше хорошо видно, что линейные размеры транзисторов при переходе от 90 нм к 32 нм изменились вообще не в три раза, и все игры технологов были вокруг уменьшения перекрытий затвора и легированных областей, а также вокруг контроля за статическими утечками, который не позволяли делать канал короче. В итоге стали понятны две вещи: спуститься ниже 25-20 нм без технологического прорыва не получится; маркетологам стало все сложнее рисовать картину соответствия прогресса технологии закону Мура. Закон Мура — это вообще противоречивая тема, потому что он является не законом природы, а эмпирическим наблюдением некоторых фактов из истории одной конкретной компании, экстраполированном на будущий прогресс всей отрасли.
Собственно, популярность закона Мура неразрывно связана с маркетологами Intel, которые сделали его своим знаменем и, на самом деле, много лет толкали индустрию вперед, заставляя ее соответствовать закону Мура там, где, возможно, стоило бы немного подождать. Какой выход нашли из ситуации маркетологи? Весьма изящный. Длина канала транзистора — это хорошо, но как по ней оценить выигрыш площади, который дает переход на новые проектные нормы? Довольно давно в индустрии для этого использовалась площадь шеститранзисторной ячейки памяти — самого популярного строительного блока микропроцессоров. Именно из таких ячеек обычно состоит кэш-память и регистровый файл, которые могут занимать полкристалла, и именно поэтому схему и топологию шеститранзисторной ячейки всегда тщательно вылизывают до предела часто — специальные люди, которые только этим и занимаются , так что это действительно хорошая мера плотности упаковки. Рисунок 9. Схема шеститранзисторной ячейки статической памяти.
Рисунок 10. Разные варианты топологии шеститранзисторной ячейки статической памяти. Источник — G. Apostolidis et. А дальше случилась интересная подмена понятий. В момент, когда прямое масштабирование перестало работать, и длина канала перестала уменьшаться каждые два года по закону Мура, маркетологи догадались, что можно не выводить площадь ячейки памяти из проектных норм, а выводить цифру проектных норм из площади ячейки памяти! Так давайте всем скажем, что у нас проектные нормы 28 нм, а про длину канала 54 нм никому говорить не будем? Рисунок 11.