Новости светодиодная подсветка для телевизора

Сделал фоновую подсветку для телевизора на основе датчиков цвета. Наиболее распространённым типом после ЖК-телевизоров 4К с боковой подсветкой идут модели со светодиодной подсветкой Direct-LED. предлагает светодиодная лента для подсветки телевизора, 42399 видов. Что такое светодиодная LED подсветка в телевизоре – это источник света, ответственный за появление картинки на экране. Светодиодная подсветка. В LCD-телевизорах за подсветку экрана отвечали флуоресцентные лампы, но эта технология сейчас считается устаревшей. С появлением ЖК-панелей начали использовать светодиодную подсветку – Direct LED или Edge LED.

Как заменить светодиод в подсветке телевизора?

  • Nanoleaf представила 4D-подсветку для телевизора в стиле Ambilight
  • ЖК и светодиоды
  • Типы подсветки LED телевизоров — какая лучше Edge или Direct
  • Интересно знать - Гильдия мастеров (Ремонт)

Edge LED против Direct LED – какая светодиодная подсветка лучше для ЖК-экрана

Если вдруг на ТВ пропало изображение, а звук остался – то скорее всего сгорела светодиодная подсветка. Большинство телевизоров, представленных в продаже, оснащены экранами со светодиодной подсветкой. Наиболее распространенной подсветкой для ЖК-дисплеев (и светодиодов) является холодная люминесцентная лампа с задней подсветкой (CCFL) и светодиодная подсветка с краев. Светодиодная лента для подсветки клеится сзади телевизора по всему периметру.

Nanoleaf представила 4D-подсветку для телевизора в стиле Ambilight

Обеспечивает равномерный засвет всей LCD-панели. В торцевой подсветке устанавливают только светодиоды белого свечения [1]. В большинстве LED-телевизоров для белой подсветки используют синие диоды и желтое люминофорное покрытие, что позволяет создавать достаточно качественный спектр белого света. С потребительской точки зрения ЖК-телевизоры и мониторы со светодиодной LED подсветкой отличают пять улучшений относительно ЖК c подсветкой люминесцентными лампами : Улучшенная контрастность не реализовано на Edge-LED ; Улучшенная цветопередача , больший цветовой охват только с RGB -матрицей ; Пониженное энергопотребление. Недостатки[ править править код ] Множество пользователей мониторов с подсветкой на белых светодиодах жалуется на то, что при высокой яркости «выгорают глаза» возможно, это связано с воздействием интенсивного коротковолнового сине-фиолетового света на сетчатку глаза.

Из недостатков телевизоров с WLED отмечается некоторая « синеватость » изображения в сравнении с подсветкой на основе люминесцентных ламп. Для решения данной проблемы LG Electronics в 2010 году представила технологию «Nano full LED», позволяющую получить более глубокий уровень черного цвета, равномерное изображение и экономию электроэнергии [4]. Мерцание экрана Если управление яркостью подсветки осуществляется широтно-импульсной модуляцией , экран едва заметно мерцает частота мерцания составляет обычно до 200 герц, максимум до 400. Это можно проверить, быстро покачав ручкой или карандашом на фоне экрана.

Если частота слишком маленькая, силуэт ручки распадётся на несколько стробоскопический эффект. Если отдельных контуров ручки не видно, значит, мерцания нет [5].

К тому же, эта технология приспособлена к расположению на любых поверхностях, что удобно для каждого пользователя. Direct-модели превосходно работают при любых углах наклона, не теряя при этом своих характеристик Составные светодиоды Подсветку экрана создают стандартные светодиодные компоненты с соответствующими значениями силы тока, напряжения и мощности. От последнего параметра зависит световой поток, который формируется определенной моделью светодиодных элементов, и эффективность системы. Direct подсвечивание имеет отличия от классического RGB. Трехцветные светодиоды должны были сделать цветовой охват лучше, но это не получилось, так как цвета могло не хватать. Поэтому инженеры разработали другие светоизлучающие диоды для получения необходимого результата.

Отличаются они тем, что в первом случае синий и зеленый светодиод объединяются в один и покрываются красным люминофором, а во втором случае объединяются красный и синий и покрываются зеленым люминофором. В подсветке Edge led используются небольшие белые светоизлучающие диоды. Каждый из компонентов отвечает за подсветку определенной части экрана. Типы подсветок Чтобы понимать особенности вариантов, надо разобраться в устройстве каждого. В этом нет ничего сложного, так как система проста и имеет аналогичную конструкцию независимо от производителя телевизора или монитора и даты выпуска. Конечно, устройство постоянно совершенствуется для улучшения эффекта, поэтому в новых телевизорах подсветка может быть на порядок лучше при аналогичных характеристиках. Direct LED Эта разновидность используется как в дорогих, так и в дешевых моделях и имеет такие особенности: Светодиоды расположены за матрицей и равномерно распределены по всей поверхности экрана. Это обеспечивает качественную подсветку, но ее характеристики зависят от количества диодов.

Если в недорогих телевизорах может быть установлено 100 диодов, то в топовых моделях 1000 или даже больше.

Поэтому даже при просмотре динамических кадров отсутствует инерционность. Яркость свечения OLED зависит от величины электротока. Управляя им, можно, не потеряв в качестве картинки, получить требуемую яркость.

На LCD технологии это было невозможно. Поэтому на такой экран приятно смотреть в любое время. Однако на практике этот показатель меньше в 100 раз. Потому что эксплуатационный срок светодиодов при таком режиме быстро сокращается.

Уменьшаются вес и габариты ТВ; Оптимальное свечение пикселей, которыми можно еще и управлять; Малое потребление электроэнергии; Идеальные углы для обзора. Искажения отсутствуют; Улучшенная яркость и контрастность, по сравнению с подсветкой LCD; Возможность производства прозрачных экранов, способных функционировать в широком температурном диапазоне; Отсутствие подсветки. Минусы: Органические светодиоды отдельных цветов могут непрерывно функционировать в малом промежутке времени. Однако проблема уже решается; Существует эффект выжигания дисплея.

Во-вторых, в комплекте с девайсом можно заказать «пиксели» — маленькие фонарики, которые своим мерцанием усиливают, как считают в компании, процесс «погружения» при просмотре. В-третьих, Lightpack 2 работает как с телевизорами, так и с мониторами предыдущая версия, Lightpack без индекса, была разработана исключительно для компьютеров , и для начала работы ее требуется просто включить в розетку. В-четвертых, новинку можно использовать в качестве уютной лампы, настраивая освещение с помощью приложения для мобильных устройств при выключенном телевизоре. К комплекту прилагаются устройства SmartCorners, которые, как видно из названия, крепятся по углам и позволяют девайсу определить диагональ экрана. Процесс выглядит так: от мотка светодиодной ленты необходимо отрезать куски правильных размеров, закрепить их на задней стенке телевизора, установить SmartCorners и начать просмотр.

Что такое Ambilight и почему, попробовав однажды, вы не захотите телевизор без этой подсветки

USB cветодиодная LED лента подсветка для телевизора и монитора 1 м, IP65, 5050 Зеленая. В живую телевизоры с встроенной подсветкой не пробовал, поэтому сравнить заводской амбилайт и амбилайт с амазона могут обладатели телевизоров Phillips в комментариях. У современного OLED-телевизора 55″ Philips 55OLED807/12 четырехсторонняя подсветка Ambilight с динамической сменой цвета светодиодов под изображение на экране или ритм музыки. В наличии более 300 моделей светодиодных подсветок для телевизоров всех известных производителей, таких как lg, самсунг, филипс и т.д.

Интересно знать

Ещё нужен качественный 5-метровый usb кабель, у меня такой совершенно случайно валялся уже много лет. Все провода дополнительно приделываются пластиковыми хомутами, кое-где фиксируются армированным скотчем, чтобы не болтались. В процессе отладки выяснился нюанс, о котором никто не удосужился написать ранее в статьях. Если брать ленту, в которой контроллеры будут встроены прямо в светодиоды, то каждый диод будет адресуем. А если взять ленту как у меня, то адресуются только кусками по 5 см! Три диода с точки зрения софта — это один! Потратил часа полтора наверное, пока понял, в чём подвох. В итоге получилось не 168 "диодов", а 56, после указания верного количества всё заработало.

Если частота слишком маленькая, силуэт ручки распадётся на несколько стробоскопический эффект. Если отдельных контуров ручки не видно, значит, мерцания нет [5].

Органы зрения и мозг способны воспринимать невидимую пульсацию света с частотой до 300 Гц [5]. У людей, чувствительных к мерцанию, устают глаза и может начаться мигрень [6] [7]. В СанПиН 2. История[ править править код ] Lay repair of diodes used to illuminate the display at the television. It may look barbaric, but 4 times the TV was fixed so much that the backlight was almost like new. Современные сверхъяркие светодиоды позволяют достичь той же светимости при меньших энергетических затратах. Однако внедрению светодиодной подсветки мешали технологические и экономические трудности. К началу 90-x годов была известна простейшая боковая светодиодная подсветка СД-подсветка ЖК-дисплеев и ЖК-индикаторов малых размеров, которую невозможно было использовать в экранах больших размеров. Начиная с 2007 года на рынке появились модели планшетов, мониторов, телевизоров и ноутбуков [11] со светодиодной подсветкой.

Довольно очевидная идея состоит в том, что мы светим уже не с боков, а сзади. Размещаем массив обычных светодиодов под экраном. Этих диодов может быть несколько десятков. Здесь нам гораздо легче размазать свет по всему экрану. Подсветка MiniLED: очень много светодиодов под экраном Как правило, оно используется с квантовыми точками, поэтому имеет синий цвет Эволюционное развитие DirectLED и FALD — теперь у нас не сотни, а тысячи или даже десятки тысяч маленьких светодиодов размером около 200 мкм — почти как человеческий волос.

Поэтому дела с равномерностью и энергоэффективностью обстоят ещё лучше. На горизонте уже маячат варианты с сотнями тысяч и даже миллионами зон подсветки. Изначально эта технология появилась в профессиональных мониторах для точной передачи цвета. А затем эта грубая цветная картинка уточняется жидкими кристаллами и докрашивается светофильтрами. Таким образом, в телевизорах с RGB-LED-подсветкой цвет рождается дважды: грубо в подсветке, и уточнённо в слое со светофильтрами.

С одной стороны, это действительно улучшает цветопередачу, с другой — лишает нас возможности вместо светофильтров использовать более технологичный и качественный способ получения цвета — квантовые точки. Квантовым точкам обязательна именно синяя подсветка, цветная или белая работать не будут. Но самое главное во всех этих вариантах с большим числом светодиодов сзади — не их количество, а то, что ими можно управлять по отдельности. Функция подсветки LocalDimming меняет всё Однажды ЖК телевизоры сильно приблизились к светодиодным по уровню чёрного и контрастности. Сейчас практически всё, кроме EdgeLED, обладает этой функцией.

Изначально эта функция была только в профессиональных ЖК дисплеях, но потом попала в потребительский сектор и просто перевернула рынок: ЖК вплотную подобрались к OLED почти по всем характеристикам и обогнали их по яркости. Идея проста: давайте, раз уж у нас тут в подсветке куча лампочек, управлять ими отдельно — превратим подсветку в такой себе недодисплей низкого разрешения, который будет помогать жидким кристаллам делать дело. Подсветка будет грубо накидывать картинку крупными мазками, а дальше мы будем её уточнять жидкими кристаллами и раскрашивать. Мы затемняем подсветку в тех областях, где изображение тёмное естественно, в меру возможности. Например, у нас луна на фоне черного неба — давайте включим подсветку только под луной, а в остальных местах её ослабим.

Такое поведение очень хорошо борется с проблемой плохого контраста и недочёрного цвета у ЖК дисплеев. Нет света — нет проблем со светом. Хотя подсветка и может затемняться где нужно, «подражая» яркости картинки в разных местах, разрешение у этой подсветки, мягко говоря, небольшое, даже у MiniLED с его десятками тысяч зон. Пикселей-то на дисплее миллионы, а не тысячи. Поэтому подсветка будет либо откусывать участки ярких объектов, занижая подсветку вблизи их краёв, либо наоборот, создавать толстые размытые ореолы вокруг ярких объектов на темном фоне.

MiniLED пытается в контраст. Эти смачные синие ореолы вокруг микроперсиков — артефакт дисплея, на самой картинке их нет. На DirectLED всё было бы ещё суровее Например, такой дисплей хорошо справится с луной на темном фоне, но вот со звездным небом — кучей маленьких белых точек — у него будут проблемы: вокруг звезд будут ореолы и разводы. Между близко расположенными звездами и вовсе будет не чёрный, а темно серый. Изделие будет отчаянно метаться между недобелым и светящимся чёрным, в итоге, завалит и то, и другое, и до кучи похоронит контраст с цветовым охватом.

Но проблемы всё равно не уйдут, пока светодиодов меньше, чем пикселей. А если будет столько же, сколько пикселей — то зачем нам вообще ЖК слой, у нас тут уже светодиодный телевизор. Локальное затемнение бывает у всех подсветок, кроме ртутных — эти слишком древние. Хотя, имхо, было бы забавно поставить в жидкокристаллический 8K дисплей вместо подсветки цветную плазменную панель FullHD. Жидкокристаллический плазменный телевизор не путать с PALC — там подсветка не плазменная.

Спектр, цвета, контраст, яркость — всё это должно получиться идеальным. А если ещё сделать два слоя ЖК кристаллов, а цвета получать квантовыми точками... На EdgeLED локальное затемнение ставят, но от там от него толку маловато. Благодаря этой функции, они могут держать уровень чёрного на уровне OLED, обгоняя, при этом, его по яркости. Мухлёж выдают только противные ореолы, засветки, и провал контраста в местах соседства ярких и тёмных областей, особенно, если они маленькие и их много.

Но, справедливости ради, все эти ореолы и провалы подсветки заметны не так сильно. В случае локального затемнения в SLED технологии, то здесь цветные светодиоды дополнительно помогают картинке окрашиваться нужным образом, а не просто меняют яркость. Дальше цвет проходит через жидкие кристаллы и докрашивается дополнительно светофильтрами. Теоретически, у такой подсветки тоже проблемы с ореолами, причём, эти ореолы цветные, а у двух соседних областей с яркими, но разными цветами, на месте резкого перехода с цветами происходит цирк. Однако, в большинстве случаев, это малозаметно — разрешение глаза по цвету ниже, чем по яркости.

Здесь можно отследить забавную закономерность: по мере приближения качества картинки жидкокристаллического дисплея к светодиодному, количество светодиодов в подсветке ЖК экрана возрастает настолько, что эта подсветка сама постепенно превращается в светодиодный дисплей. Жидкие кристаллы Жидкие кристаллы используются как электронная версия жалюзи, чтобы заслонять или не заслонять свет в определённых пикселях, как-бы меняя прозрачность. Это жидкость, состоящая из очень вытянутых молекул, с одной стороны, воздействующих на свет, с другой — поддающихся управлению с помощью электрического поля. ЖК используют не только в дисплеях — из них, например, делают детекторы химических соединений, измерители давления и датчики ультразвука. Оболочки живых клеток — это тоже лиотропные жидкие кристаллы.

На деле эту аббревиатуру вешают только на старые-старые, первые, самые примитивные толстые ЖК телевизоры с подсветкой на ртутных лампах. Сами по себе жидкие кристаллы прозрачность менять не умеют, вместо этого они умеют поворачивать поляризацию света. В комбинации с поляризационными фильтрами это свойство можно использовать для регулировки прозрачности. Что такое поляризация понятным языком и понятными картинками Поляризация — это одно из свойств света. Люди поляризацию не различают, потому что у нас нет нужных органов чувств.

По этой причине феномен поляризации не является интуитивно понятным, и чтобы его объяснить, нужно много букв. Свет — это электромагнитные волны. Любые электромагнитные волны состоят из электрического и магнитного полей, которые колеблются с какой-то частотой, и при этом распространяются со скоростью света. В случае с видимым светом, эти колебания происходят сотни триллионов раз в секунду. Поля колеблются не «сильнее-слабее», а «выше-ниже», «левее-правее», то есть они ориентированы в пространстве.

Направление колебаний электрического поля всегда перпендикулярно направлению колебаний магнитного поля. Оба направления колебаний одновременно перпендикулярны направлению их распространения. В общем, все три направления перпендикулярны. Отсюда растут ноги таких картинок в учебнике физики. Типичные электромагнитные волны в типичном учебнике Электромагнитное поле, тем более волны электромагнитного поля — довольно сложный объёмный объект.

Представьте себе, что из каждой точки некоторого объёмного трёхмерного пространства торчит сразу два вектора-стрелочки, при этом стрелочки не замерли, а шевелятся: колеблются волнами по определённым законам, как волна из болельщиков на стадионе. Если теперь взять какую-нибудь прямую, параллельную направлению распространения электромагнитных волн в этом объёмном пространстве, и скрыть все векторы-стрелочки, кроме тех, начальная точка которых лежит на этой прямой, то получится картинка выше. Но это не важно. Важно другое: направление колебания поля — это и есть поляризация. Именно направление колебания, а не направление распространения.

Например, поляризация может быть горизонтальной, или вертикальной. Или диагональной. Поляризация относительна и зависит от того, под каким углом смотришь — повернёшь голову на бок, и поляризация уже другая. Может даже существовать вариант, когда направление поляризации постоянно меняется вместе с колебаниями электромагнитного поля — тогда получается закрученная электромагнитная волна. Светящийся объект обычно состоит из очень большого количества источников электромагнитных волн говоря упрощённо, каждая молекула выступает «антенной» — самостоятельным источником волн видимого спектра.

При этом, направления колебания поля — поляризация — у каждого источника-молекулы случайные. Поэтому суммарно светящийся объект излучает электромагнитные волны сразу под всеми возможными углами поляризации. Из всех имеющихся колебаний мы можем отсечь только те, которые происходят в определённом направлении. Для этого существуют поляризационные фильтры. Например, можно оставить только горизонтальную поляризацию, или вертикальную: Разумеется, возможны и промежуточные углы.

В любом случае, поляризационный фильтр отсеет только волны, которые колеблются в определённом направлении. Остальные он не удалит полностью, вместо этого он будет их подавлять, и чем больше направление колебаний волны отклонено от направления поляризации в фильтре, тем сильнее он их подавит. В пределе подавление света будет максимальным, если волна колеблется перпендикулярно направлению поляризации фильтра. Свет, отражённый от воды, поляризован — его легко убрать поляризационным фильтром Поляризационные фильтры активно используют на объективах фотоаппаратов. Свет, отражающийся от неметаллических поверхностей, поляризуется.

При этом свет, падающий по касательной к поверхности, поляризуется сильнее, чем тот, который падает прямо. Этот эффект используется для удалений всяких бликов, туманов, дымок с отражениями на воде. В век вычислительной фотографии большую часть задач хорошо делают алгоритмы , но некоторые вещи оптика всё ещё делает лучше. Жидкие кристаллы не умеют менять прозрачность, вместо этого они поворачивают поляризацию света, проходящего через них. Или не поворачивают.

Если поместить жидкие кристаллы в электрическое поле — то есть, подать напряжение — то так можно управлять, насколько именно они повернут или не повернут поляризацию. Из двух поляризационных фильтров и жидких кристаллов между ними мы можем создать бутерброд с изменяемой прозрачностью — те самые электронные жалюзи: Берём свет. Горизонтальным поляризатором оставляем только горизонтальные волны. ЖК поворачиваем или не поворачиваем поляризацию вертикально. Вертикальным поляризатором удаляем всё, что не было повёрнуто вертикально.

После горизонтального фильтра остаются горизонтальные волны — они не пробьются через стоящий дальше вертикальный фильтр. Но если в промежутке между горизонтальным и вертикальным фильтрами мы повернём волны с помощью жидких кристаллов — тогда они смогут пройти через второй фильтр. Гипотетически жидкие кристаллы можно заменить поляризационным фильтром с двигателем, который бы его поворачивал, но на сегодняшний день это слишком сложно, дорого, ненадёжно и неэффективно, даже если использовать MEMC. Жидкие кристаллы инертны, и поворачиваются не мгновенно, поэтому у жидкокристаллических дисплеев есть проблема со шлейфами от быстро движущихся обьектов. Время полного переключения кристалла между двумя крайними состояниями называется временем отклика.

Раньше оно измерялось десятками миллисекунд, сейчас некоторые дисплеи вплотную подобрались к показателю в 1 мс. Теперь разберём виды жидких кристаллов. Жидкие кристаллы TN TN англ. При подаче напряжения спиральки распрямляются, и перестают разворачивать поляризацию — свет начинает блокироваться вторым поляризационным фильтром. В настоящее время единственный плюс TN — скорость.

Бешеные геймерские мониторы с разверткой 500 Гц сделаны как раз из таких кристаллов, просто потому, что другие так быстро переключаться не умеют. С остальными характеристиками всё плохо — контрастность ужасная, углы обзора ужасные, точность ужасная, яркость ужасная. Распрямление скрученных кристаллов тяжело контролировать точно, поэтому матрицы TN, зачастую, имеют 6-битный цвет, а 8 бит достигается путём той самой ШИМ — кристалл «дрожит» между двумя положениями, и достигается промежуточная яркость. Интересно, когда доберутся до 1 КГц. Впрочем, одна из возможных реализаций дисплеев светового поля потребует частоты обновления экрана в десятки МГц Когда говорят «TFT дисплей», зачастую, подразумевают именно TN-кристаллы.

Напомню: TFT — это не тип дисплея, и не вид ЖК, а способ управления пикселями, он есть в любых дисплеях, даже в светодиодных. Чтобы хоть как-то улучшить углы обзора TN, на них стали наносить специальную плёнку. Её так и называют — film. Кроме того, при увеличении разрешения углы обзора TN матриц улучшаются, поэтому в современных дисплеях дела с углами обзора обстоят не так плохо, как раньше. Кристаллы не скручиваются, а просто поворачиваются в плоскости экрана.

Их положение можно очень точно регулировать, поэтому экраны с IPS-кристаллами имеют очень хорошие, точные и сочные цвета с 8-ми или даже 10-битной градацией. К недостаткам можно отнести медлительность и проблемы с чёрным цветом. Первые матрицы имели время отклика порядка 50 мс. Сейчас самые быстрые умеют переключаться за 5 мс — по современным меркам это не предел мечтаний, но неплохо. IPS в закрытом положении плохо блокирует свет, поэтому такие дисплеи вместо чёрного показывают серо-сине-фиолетовое марево.

IPS дисплей может выручить подсветка с локальным затемнением, выключающая свет в областях, где он не нужен — тогда проблемы чёрного остаются только в виде ореолов вокруг ярких объектов. Samsung выпускает свою, немного улучшенную версию IPS, и называет её PLS — расстояние между субпикселями чуть меньше, сами они чуть больше, поэтому такой дисплей чуть ярче, чем IPS, и плотность пикселей у него может быть выше. Это вещество немного сдвигает спектр в правильную сторону, благодаря чему цвета и улучшаются легче «пролезают» через светофильтры. Эти кристаллы тоже поворачиваются, только не в плоскости экрана, а перпендикулярно ему. Изначально кристаллы находятся в плоскости экрана вертикально.

При подаче напряжения они поворачиваются перпендикулярно экрану, то есть как-бы смотрят торцом на наблюдателя. Долгое время VA означало, что у экрана средняя хуже, чем у TN, но лучше IPS скорость, средний уровень цветопередачи, отличный уровень чёрного и отличный контраст. Потом VA развилась, победили проблему углов обзора, научились добиваться высокой точности цветопередачи — у субпикселей появились субсубпиксели , выключая и включая их можно достичь большего числа промежуточных состояний — а это повышает точность цвета. Сейчас это одни из самых распространённых типов матриц и в мониторах и телевизорах. Как покрасить свет?

ЖК у нас или светодиодный телевизор — свет получен и дозирован. Теперь надо его покрасить. Красящие светофильтры Элементарно — это цветные стёкла. Если стараться не погружаться в толщу физики, смысл такой: белая подсветка — это смесь всех возможных цветов. Светофильтр может пропустить какой-то один цвет из этого света, а все остальные нет.

При этом, всё, что не пропущено, не исчезает, а трансформируется в тепло. Закон сохранения энергии никто не отменял. У светофильтров может быть не только разный цвет, но и разная плотность Например, если мы светим белым светом сквозь красное стекло, то из белого цвета стекло пропустит красный, а зелёный и синий цвет превратит в тепло. В результате получаем два недостатка: плохая энергоэффективность и низкая яркость — мы тут большую часть света просто гасим. Если мы хотим сделать цвета точнее и насыщеннее, нам нужно сильнее фильтровать свет — для этого фильтр должен быть плотнее.

Например, при CCFL подсветке достаточно сложно реализовать действительно глубокие чёрные тона — постоянно включенные лампы всё равно создают определённую "утечку" света даже на тех фрагментах изображения, которые по задумке в данный момент должны быть тёмными. Отсюда также логически вытекает субъективно воспринимаемое снижение чёткости картинки. Помимо этого, подсветка с помощью флуоресцентных ламп затрудняет передачу множества цветовых оттенков, в результате чего добиться хорошей цветовой насыщенности оказывается очень сложно. Среди других проблем технологии CCFL LCD также нельзя не отметить сложность с достижением высоких частот развёртки, ограниченный срок службы ламп, сравнительно высокое энергопотребление, и, наконец, экологический нюанс - необходимость использования ртути в составе ламп.

Словом, так или иначе, но необходимость замены флуоресцентных ламп на что-то более эффективное созрела давно, и в результате многочисленных экспериментов выбор пал на светодиодную подсветку. С её помощью можно улучшить как минимум четыре ключевых фактора качества изображения: яркость, контрастность, чёткость изображения и цветовую гамму. Не говоря уж о более равномерном характере такой подсветки, что немаловажно при просмотре слабо освещённых сцен с изначально малым контрастом. LED-подсветка бывает разная К настоящему времени разработан ряд различных технологий подсветки ЖК экранов с помощью светодиодов.

Принцип подсветки также представлен двумя основными вариантами прямой Direct и торцевой Edge. В первом случае это массив светодиодов, расположенный позади ЖК-панели. Другой способ, позволяющий создавать сверхтонкие дисплеи, получил название Edge-LED и предусматривает размещение светодиодов подсветки по периметру внутренней рамки панели, а равномерное распределение подсветки осуществляется с помощью специальной рассеивающей панели, расположенной за ЖК экраном — как это делается в мобильных устройствах. Сторонники прямой светодиодной подсветки обещают более качественный результат за счёт большего количества светодиодов и технологии локального затемнения для снижения цветовых разводов.

Обратная сторона прямой подсветки — большее количество светодиодов и сопутствующее повышение расхода энергии и цены. К тому же о сверхтонком дизайне телевизора придётся забыть. Сторонники торцевой подсветки, кроме экономии энергии, обещают не худшее качество при более тонком дизайне. В своих ЖК телевизорах и мониторах со светодиодной подсветкой каждая компания использует вариации выше указанных технологий.

Так, например, в телевизорах Sony используется технология Edge LED, что позволило значительно уменьшить толщину достаточно больших телевизоров. LED-подсветка в исполнении Samsung: как это работает По своей сути ЖК экран - это многослойный "пирог", составленный из фильтров цвета, массивов жидких кристаллов, ламп подсветки и пр. Ячейки жидких кристаллов сами по себе не светятся, но, в зависимости от уровня поданного на них напряжения, открываются для пропускания света полностью, приоткрываются частично или просто закрыты в случае отображения тёмного участка картинки. Роль ламп подсветки во всей это истории — просветить приоткрывшиеся ЖК ячейки, чтобы на экране получилась финальная картинка.

Несмотря на столь упрощённый пересказ принципа работы ЖК-дисплея, этого вполне достаточно чтобы понять назначение его основных компонентов. Толщина слоёв "пирога" различных ЖК экранов разная.

Типы, виды и недостатки LED-подсветки экранов

Светодиодная подсветка имеет долгий срок эксплуатации. Установить фоновую подсветку можно не только на телевизор, но и на монитор компьютера. Преимущество жидкокристаллического телевизора — светодиодная подсветка, есть у всех LED моделей. После приобретения телевизора с большей диагональю и погружения в геймерство это стало ещё более актуально, ведь светодиодная подсветка не только создаёт идеальную атмосферу для просмотра фильмов. В поисках ответа появилось несколько типов светодиодной подсветки, среди которых выделяют два основных. Если вдруг на ТВ пропало изображение, а звук остался – то скорее всего сгорела светодиодная подсветка. Чтобы модернизировать LCD-телевизоры начали использовать подсветку с помощью светоимитирующего диода – Light-Emitting Diode (сокращено LED).

Лучшие светодиодные ленты 2024

Подсветка Govee Immersion TV Backlight обещает не только сохранить ваше зрение, но и обогатить впечатления от просмотра телевизора. USB светодиодная лента 5 В SMD 2835 светодиодная фоновая подсветка для телевизора 1 м 2 м 3 м 4 м 5 м теплый белый гибкий светодиодный светильник Рождественская лампа для домашнего декора. QLED телевизоры отличаются типом подсветки и конечный результат в качестве изображения зависит именно от неё.

Похожие новости:

Оцените статью
Добавить комментарий