Новости телескоп горизонта событий

Ученые коллаборации Телескопа горизонта событий EHT показали первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути. Изображение: Event Horizon Telescope. EHT (Event Horizon Telescope) представляет собой глобальный радиоинтерферометр со сверхдлинной базой, работающий на длине волны 1,3 миллиметра. 20 мая сотрудники Европейской южной обсерватории (ESO) и команда, занимающаяся исследованиями на Телескопе горизонта событий (EHT, Event Horizon Telescope), провели пресс-конференцию, на которой показали фото черной дыры в центре нашей Галактики.

3. Представлено первое фото черной дыры в центре нашей Галактики

Коллаборация Телескопа горизонта событий (EHT) показала первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути. Результаты 11 новостей. В 2019 году с помощью «Телескопа горизонта событий» (Event Horizon Telescope) удалось сделать первый снимок крайней части невероятно большой черной дыры из галактики M87, вокруг которой скапливаются специфические газы.

Телескоп горизонта событий разглядел рекордно далекий для себя квазар

Национальный научный фонд выделил грант в размере 12,7 миллиона долларов США на разработку улучшений, в результате которых должно появиться новое поколение Телескопа горизонта событий (next-generation Event Horizon Telescope — ngEHT). Исследователи проекта Телескоп горизонта событий (Event Horizon Telescope, EHT) представили результаты наблюдения за квазаром NRAO 530, свет от которого двигался до Земли 7,5 млрд лет. Всего в проекте Event Horizon Telescope задействовано восемь обсерваторий, в частности, радиотелескоп ALMA в чилийской пустыне Атакама и SPT (South Pole Telescope) на Южном полюсе.

3. Представлено первое фото черной дыры в центре нашей Галактики

Речь про объект, известный как «Стрелец A» или сокращенно Sgr A. Изображение сформировано световыми лучами, искривленными мощной гравитацией черной дыры, масса которой в четыре миллиона раз превышает массу нашего Солнца», — говорится на сайте Европейской южной обсерватории. Теперь они имеют возможность сравнивать изображения черных дыр друг с другом и искать отличия.

In 2019, EHT reported the first-ever picture of the black hole with the observation of the nuclear black hole in the galaxy M87 EHT Collaboration et al. I carried out the following steps of the receiver development from inception to implementation: 1 electromagnetic simulations of the millimeter receiver components, 2 assembly of specially manufactured components, 3 system testing, and 4 the software development.

Когда ученым надоело мелочиться, они решили использовать всю территорию Земли и объединили несколько радиотелескопов в один массив, с помощью которого получают координаты и угловые размеры далеких астрономических объектов. Одну из таких сетей назвали Телескопом Горизонта Событий. Галилей оценил бы эту иронию — телескоп ведь смотрит на горизонт. Да, мы видели их в «Интерстелларе» и других научно-фантастических фильмах, но обычно это работа графических дизайнеров, пусть в некоторых случаях и подкрепленная научной основой. Парадоксально, что слово «фотография» буквально означает «запись света», а согласно теории относительности Эйнштейна черная дыра — это сверхтяжелый объект, из гравитационного поля которого ничто не может вырваться, даже свет.

Тот порог, до которого свет может избежать затягивания в черную дыру, а после которого — уже нет, и называется горизонтом событий. В 2012 году известный физик Стивен Хокинг поставил под сомнение существование горизонта событий, предложив переформулировать термин в «видимый горизонт». По мнению Хокинга, подобная сфера не поглощает материю, информацию и свет, а только временно удерживает их, потом «выбрасывая» в космос в искаженном виде. Обратное противоречило бы законам квантовой физики. Но человечество, тем не менее, твердо решило сфотографировать то, что свет не излучает, а, наоборот, поглощает. Еще и техникой с существенными недостатками. Подобная возможность дала бы человечеству материал для изучения общей теории относительности в режиме сильного поля, прояснила бы научное положение горизонта событий и фундаментальную физику черных дыр, самых загадочных объектов во Вселенной, чья мистическая природа давно будоражит умы мечтателей и исследователей. В космических масштабах черные дыры считаются объектами не очень большими, но находятся они от нас в миллионах световых лет.

Event Horizon Telescope, EHT — проект по созданию большого массива телескопов, состоящего из глобальной сети радиотелескопов и объединяющего данные нескольких станций интерферометрии с очень длинной базовой линией VLBI по всей Земле. Алгоритм визуализации сверхмассивной чёрной дыры по данным, полученным радиотелескопами, разработала Кэтрин Боуман.

5 неподвластных учёным загадок космоса, которые раскроет только телескоп Уэбб

#Event Horizon Telescope По словам Татьяны Ларченковой, на сегодняшний день наиболее перспективными наземными партнерами «Миллиметрона» являются интерферометрическая сеть «Телескоп горизонта событий» (Event Horizon Telescope) — телескопы восьми обсерваторий на разных.
Event Horizon Telescope - today's latest news and major events - Sputnik International The Event Horizon Telescope (EHT) is a network of synchronized observatories around the world and is famed for capturing the first image of a black hole.

Телескоп Event Horizon показал магнитные поля вокруг черной дыры Стрелец А*

Консорциум Event Horizon Telescope (EHT) с 2006 года работал над тем, чтобы получить снимок горизонта событий сверхмассивной черной дыры. Using the Event Horizon Telescope, scientists obtained an image of the black hole at the center of galaxy M87, outlined by emission from hot gas swirling around it under the influence of strong gravity near its event horizon. Данные проекта «Телескоп горизонта событий» позволили ученым получить изображение тени сверхмассивной черной звезды.

Первый снимок чёрной дыры в центре нашей Галактики

Источник: EHT Collaboration Черные дыры — это космические объекты с крайне сильной гравитацией, поглощающие всё вещество и свет, попадающее в их горизонт событий. Это делает их практически невидимыми для обычного наблюдения. Несмотря на то, что саму чёрную дыру невозможно наблюдать, вращающийся газ и вещество в её окрестностях излучают достаточно яркий свет, который можно зарегистрировать.

Она всё втягивает в себя, ничего не возвращая обратно, и поэтому она — дыра. Но есть и нестыковки. Грубо говоря, чёрная дыра — это "дырка от бублика", а сам "бублик", или "аккреционный диск" — насильно притянутая к ней материя. Диск вращается вокруг дыры со страшной скоростью, из-за чего и светится так, что только по нему и можно определить наличие чёрной дыры в космосе. Граница чёрной дыры — горизонт событий, её размер — гравитационный радиус.

Эти характеристики зависят от типа чёрной дыры, а тип её зависит от происхождения. Как появляется чёрная дыра в космосе? На месте сколлапсировавшей звезды в сколлапсировавшей части галактики в момент начального расширения Вселенной в ядерных реакциях высоких энергий — на Земле это можно "провернуть" только в Большом адронном коллайдере. Есть малые чёрные дыры, массивные, сверхмассивные и ультрамассивные. Космическое приключение: Зонд "Паркер" "нырнул в Солнце" и взбудоражил астрофизиков неожиданными данными Что будет, если попасть в чёрную дыру в космосе? Горизонт событий — это события, которые мы, наблюдатели, никогда не увидим. Они спрятаны внутри чёрной дыры.

Что такое оказаться внутри горизонта событий, или в чреве чёрной дыры?

Горизонт событий и тень черной дыры — темный круг, окруженный полумесяцем из яркого света, как и предсказывала теория относительности. Джет — струи плазмы, вырывающиеся из центра черной дыры. У М87 длина джета — около пяти тысяч световых лет. Скорее всего, она вращается. I never would have thought I could tweet those words. May not look like much but an amazing testament to the power of human ingenuity. Никогда бы не подумал, что смогу твитнуть эти слова. Это может показаться не таким уж серьезным, но это удивительное свидетельство силы человеческой изобретательности» — Лоуренс Краусс, физик, популяризатор науки.

Считается, что это активные ядра галактик , которые находятся на начальном этапе развития. В этот момент сверхмассивная черная дыра в центре такого активного ядра поглощает окружающее вещество, формируя аккреционный диск. Это подтип блазара — активного галактического ядра с мощной релятивистской струей или джетом, направленным в сторону наблюдателя. На изображениях, полученных Телескопом горизонта событий, видна яркая особенность, расположенная на южном конце джета. Снимок квазара NRAO 530, полученный с использованием различных методов визуализации.

#Event Horizon Telescope

But capturing these beacons is like photographing a mushroom cloud during an atomic blast, when the real science is happening on the level of atoms at the heart of the explosion. Scientists have long desired to see inside the disk to where the material actually disappears into the black hole. Before EHT, that level of detail had eluded them. Why the Event Horizon Telescope took so long to image a black hole Occasionally, this semi-chaotic swirl of accretion disk material collides with itself, launching matter out in jets that extend thousands of light-years and travel at nearly the speed of light.

But the exact cause of these extreme speeds remains unclear. Scientists say that magnetic fields are a prime suspect. Imaging the central area of the black hole should give that proof.

In addition to the jets, studying the swirl of material near M87 also gives astronomers the most accurate weight ever for this monster black hole, which is one of the most massive in the known universe. And in fact, some those individual observatories, like the massive Atacama Large Millimeter Array, or ALMA, are themselves interferometers, arrays of telescopes spread across many miles. The idea behind interferometry is to create one telescope with an enormous collecting area out of many smaller telescopes.

That increases the resolution of the final configuration of observatories. But interferometry also has tradeoffs.

Напомним, что аккреационный диск черной дыры представляет собой большую массу вещества, которое разогревается до огромных температур и вращается вокруг галактического центра. Это интересно: Что скрывают звезды, вращающиеся вокруг сверхмассивной черной дыры в центре нашей галактики? Телескоп горизонта событий Телескоп горизонта событий EHT улавливает излучение, испускаемое частицами внутри аккреционного диска черной дыры: пятнистое гало на полученных изображениях показывает свет, искривляемый мощной гравитацией черной дыры. Event Horizon Telescope работает как единое целое Event Horizon Telescope — это глобальный радиоинтерферометр со сверхдлинной базой. Свое название EHT получил в честь «горизонта событий» — точки в пространстве, покинуть которую не может даже свет. И если говорить простым языком, то EHT, по сути, образует единый виртуальный телескоп «размером с Землю». Целью будущих исследований может стать «Единорог» — ближайшая к Земле черная дыра Все восемь радиотелескопов на разных континентах синхронизируются друг с другом при помощи атомных часов и суперкомпьютеров для обработки данных.

Стоимость этого уникального проекта составляет около 60 миллионов долларов, 28 из которых поступили от Национального научного фонда США. Снимок, представленный на официальной пресс-конференции 12 мая, составлен из нескольких тысяч изображений черной дыры. Еще больше интересных статей о звездах, галактиках и тайнах Вселенной читайте на нашем канале в Яндекс. Там регулярно выходят статьи, которых нет на сайте В конечном итоге ученые надеются, что наблюдение за целым рядом черных дыр, как довольно спокойных, так и турбулентных, может помочь ответить на многочисленные вопросы об эволюции галактик — сегодня ответа на вопрос о том, что появилось раньше — галактика или черная дыра — не существует.

Это позволяет предположить, что такое явление общее для таких объектов в космосе. Изображение: EHT Для визуализации астрономы использовали поляризацию света — когда свет создаётся колеблющимися в определённом направлении электромагнитными волнами. Именно так работают 3D-очки — две линзы имеют разную поляризацию, пропускающую только часть света, поэтому наш мозг может создавать в голове объёмное изображение. Поляризованный свет помогает уменьшить блики от ярких источников света, что и позволило команде учёных получить более чёткое представление о краях черной дыры и составить карту линий магнитного поля. Благодаря поляризации света эти изображения показывают удивительно подробную и упорядоченную магнитную структуру вокруг чёрной дыры.

Непрерывные наблюдения продолжались в течение 10 суток в апреле 2017 года. Каждый из телескопов собрал по 500 ТБ информации. На расшифровку и анализ полученных данных у ученых ушло два года. При изучении результатов наблюдений ученые прибегли к помощи суперкомпьютеров в обсерватории Хайстак Массачусетский технологический институт, США и Институте радиоастрономии имени Макса Планка в Бонне Германия. Между тем в состав EHT в 2018 году добавился еще один телескоп GLT, миллиметровый телескоп в Гренландии, который серьезно увеличит базу интерферометра. Самым известным в массовой культуре изображением черной дыры стал образ Гаргантюа в фильме «Интерстеллар». За создание визуального образа черной дыры и его научную достоверность отвечал американский астрофизик Кип Торн, получивший Нобелевскую премию за открытие гравитационных волн.

Search code, repositories, users, issues, pull requests...

Телескоп Event Horizon показал магнитные поля вокруг черной дыры Стрелец А* • AB-NEWS Как предполагают теоретики, "Телескоп горизонта событий" (Event Horizon Telescope) сможет зарегистрировать изображение тени сверхмассивной черной дыры, находящейся в центре нашей Галактики, а также и.
Впервые представлено фото черной дыры и горизонта событий Команда проекта «Телескоп горизонта событий» (EHT) получила самое четкое изображение сверхмассивной черной дыры, на котором видна ее «граница», так называемый горизонт событий.
Event Horizon Telescope captures images of NRAO 530 quasar A large team of scientists has used data from the Event Horizon Telescope (EHT) project to create images of the NRAO 530 quasar.

5 неподвластных учёным загадок космоса, которые раскроет только телескоп Уэбб

12 мая астрофизики проекта Event Horizon Telescope опубликовали первую в истории фотографию сверхмассивной чёрной дыры Стрелец A из самого центра нашей Галактики. видимой границы черной дыры получено в рамках международного проекта Event Horizon Telescope (EHT) / «Телескоп горизонта событий». Телескоп горизонта событий заметил круговую поляризацию излучения от сверхмассивной черной дыры в галактике М87. Кстати, «Телескоп Горизонта Событий» будет не единственным участником операции. Next Generation Event Horizon Telescope. Европейская южная обсерватория (ESO) совместно с Телескопом горизонта событий (Event Horizon Telescope, EHT) представили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный Путь, в которой располагается Земля.

Use saved searches to filter your results more quickly

  • Газета «Суть времени»
  • Новый телескоп поможет с поиском планет, напоминающих Землю
  • Астрономы впервые получили фото черной дыры в центре Млечного Пути
  • ESO показала первую в истории фотографию черной дыры в центре Млечного Пути
  • Впервые получено изображение тени черной дыры в центре Млечного Пути
  • Последние новости:

Сообщить об ошибке в тексте

  • Телескоп горизонта событий заглянул в «сердце» далекого квазара
  • Джеймс Уэбб поможет найти жизнь в Солнечной системе
  • A story of overcoming differences between people and telescopes
  • A VLBI receiving system for the South Pole Telescope
  • Event Horizon Telescope releases first ever black hole image

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

Он обнаружил, что мощные магнитные поля определенным образом закручивают волны света и заставляют его поляризоваться. Оказалось, что магнитные поля действительно играют важную роль в движении потоков материи в окрестностях горизонта событий. Декстер и его коллеги надеются, что дальнейшее изучение данных EHT поможет уточнить, как именно магнитные поля влияют на формирование выбросов черных дыр. Понимание этого критически важно для оценки влияния сверхмассивных черных дыр на рост галактик, в том числе и Млечного Пути, заключают ученые. Заметили ошибку?

Credit: Event Horizon Telescope collaboration et al.

This is because the last major announcement from the Event Horizon Telescope project was three years ago when they released the first-ever image of a black hole and its shadow see above image.

Материал - газ, пыль, измельченные звезды - который падает в черную дыру, нагревается до миллионов градусов. Большая часть этого вещества попадает в черную дыру, но некоторая часть выталкивается, как зубная паста, огромным давлением и магнитными полями. Как вся эта энергия возникает и направляется, астрономам неизвестно. Такие фейерверки, которые могут в тысячу раз затмить галактики, можно увидеть по всей Вселенной; когда они впервые были обнаружены в начале 1960-х годов, они были названы квазарами. Это открытие заставило физиков и астрономов серьезно отнестись к идее о существовании черных дыр. В 2009 году, стремясь изучить лежащие в основе механизмы и проверить предсказания Эйнштейна о черных дырах, доктор Доулман и его коллеги создали телескоп Event Horizon Telescope, и международный союз, в который сейчас входят около 300 астрономов из 13 организаций.

Телескоп назван в честь точки невозврата вокруг черной дыры; за горизонтом событий весь свет и материя исчезают. В апреле 2017 года, когда телескоп в течение 10 дней наблюдал за M87, он состоял из восьми радиообсерваторий по всему миру - «телескоп размером с весь мир», как любит говорить д-р Доулман, способный улавливать даже самые мелкие детали. Затем команде потребовалось два года, чтобы обработать данные. Результаты были получены в апреле 2019 года, когда доктор Доулман и его коллеги представили первые в истории изображения - точнее, радиокарты - черной дыры, монстра в M87.

Анализ квазара показал, что он оптически агрессивен, а еще его можно причислить к блазарам. От обычного квазара они отличаются расположением. Объединив данные с нескольких телескопов, исследовательская группа смогла создать два изображения.

Оба показывают яркость на южном конце одной струи, которая, по мнению исследователей, является радиоядром. Разрешение изображений было достаточно высоким, чтобы были видны два компонента ядра.

Похожие новости:

Оцените статью
Добавить комментарий