Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Значит, реакция холодного ядерного синтеза эффективней реакции распада урана минимум в 9 раз.
Холодный ядерный синтез
Нестабильность мюонов приводит к тому, что процесс их создания в ускорителях частиц потребляет намного больше энергии, чем количество, которое возникает при их последующем использовании. Это обстоятельство делает весь этот процесс бессмысленным. И его можно использовать для бомбардировки и осаждения на поверхность металла, такого как титан. Когда кристаллическая решётка металла оказывается заполнена, часть дейтерия начинает вступать в реакцию синтеза. Этот процесс называется синтезом твёрдого тела. И его используют для производства нейтронов в лаборатории. Металл помогает уменьшить кулоновский барьер и облегчает процесс синтеза. Однако в этом случае скорость синтеза крайне низка. А количество вводимой энергии значительно превышает количество получаемой на выходе. На самом деле учёные считают, что, возможно, другие типы металлов будут иметь ещё более низкий кулоновский барьер.
У исследователей Мартина Флейшманна и Стэнли Понса однажды возникла подобная идея. И они выбрали палладий в качестве металла-катализатора. И это сработало! Исследователи сообщили всему миру о производстве избыточного тепла. И даже некоторых побочных продуктов синтеза! К сожалению, ни одна другая лаборатория не смогла воспроизвести этот эксперимент. И это погасило бушующее пламя сенсации — холодного синтеза с положительным выходом энергии. Никто так и не смог объяснить, почему один раз это сработало, а в другие — нет. Отбросьте глупые амбиции!
После стольких лет неудачных исследований холодный синтез начал приобретать плохую репутацию. Как для себя, так и для всех, кто им занимался. Это направление исследований стали рассматривать как лженауку. Как что-то, что никогда не может быть достигнуто.
Как оказалось, для этого можно использовать фотоаппарат или видеокамеру, например, ноутбука. Мы загрузили программу DECO на смартфоны и, согласно инструкции, заклеили изолентой их видеокамеры. Смартфоны прекрасно регистрировали мюоны, хотя, конечно, в час по чайной ложке ввиду малости объема видеоматрицы. Кроме того, использовался антикварный радиометр СРП-1 в соответствии с последней разработкой MIT во-первых, потому что этот датчик чувствительнее, быстрее и точнее, во-вторых, просто потому что было: Фиг. Выходной каскад звукового усилителя СРП-1 подключен к звуковому входу нетбука, работавшего в качестве «самописца» для записи количества мюонов. На поверхности земли результаты у всех экспериментаторов были идентичными: при сравнении с данными по фактическому магнитному полю Земли за июль — август 2018 г.
Кроме того, известен факт снижения интенсивности потока мюонов в зимнее время из-за взаимодействия их прародителей-пионов с более плотным воздухом. Однако измерения потоков мюонов в июле-августе и в декабре если и отличались, то незначительно, и на результаты экспериментов повлиять по нашему мнению не могли. Измерения в глубине земли показали, естественно, снижение интенсивности потока мюонов фиг 3 , тем не менее, до глубин 100 м мюоны нами фиксировались. Нам ведь чем больше мюонов — тем лучше, а сколько их — вторая проблема, решаемая, только если будет обнаружен ХЯС. Были опробованы следующие эксперименты: а описание авторского эксперимента Фиг. Изготовлены независимо четыре экспериментальных установки по однотипной схеме: Фиг. Ячейки были изготовлены максимально идентичными геометрически, но в измерительную ячейку заливался электролит на тяжелой воде: раствор 0,1 моля LiOH - в тяжёлой воде. В контрольную ячейку - в одном случае такой же щелочной раствор на обычной дистиллированной воде, а в другом — такой же раствор в дейтерированной воде, но в качестве катода использовалась такая же, как трубка из меш-металла по весу и форме, трубка из химически стойкой нержавеющей стали электрические параметры у всех ячеек совпадали. Ячейки во всех случаях были размещены в одном цилиндрическом корпусе с хорошей теплоизоляцией и снабжены включенными встречно термопарами, так что на регистрирующем приборе отображалась только разность температур между ячейками. Регистрация разности температур осуществлялась в стационарных условиях с помощью электронных самописцев Термодат разных моделей.
Также применялись мультиметры Fluke 189 и Fluke 187 в режиме протоколирования измерений с последующей передачей данных на комп с помощью дополнительного программного обеспечения FlukeView Forms. Результаты приведены в таблице 1. Есть только сумбурные и противоречащие друг другу устные описания от самого Росси и псевдо подробный патент US20140326711 A1. Однако, при всем при этом, его опыт неоднократно воспроизводился и вот самый простой и успешный аналог: Фиг. Сначала реактор нагревается с помощью внешнего источника энергии, но при достижении определенной температуры реакция ХЯС должна начать производить избыточное тепло. За 90 минут работы реактор произвел сверх потребленной электроэнергии около 3МДж или 0,83 кВт-часа энергии. Это сравнимо с энергией, выделяемой при сгорании 70 г бензина. При этом уровень ионизирующих излучений радиации во время работы реактора не превысил фоновые показатели. Основная польза этого эксперимента состоит в установлении факта, что нет опасной радиации. Можно смело экспериментировать и не заморачиваться счетчиками нейтронов.
Реактор представляет собой простейшее устройство: два керамических стаканчика с последовательно включенными нагревателями одинакового омического сопротивления. Стаканчики закупорены пробками из ультратонкого пустотелого кварцевого волокна и помещены между пластинами из этого же материала. Это обшивка шаттла Буран, выдерживает 1650 оС и не пропускает тепло. Для гарантии отсутствия теплопередачи от ячейки к ячейке между пластинами оставлен вентилируемый зазор, вся сборка обернута титановой фольгой. Сначала реактор нагревался с помощью внешнего источника энергии, но при достижении определенной температуры мы брали 1000оС, 1100оС, 1200оС и 1280оС , реакция ХЯС должна начать производить избыточное тепло. Термопары включались, как всегда, встречно. Исходный материал был получен посредством отжига аморфного сплава палладия с цирконием Zr65Pd 35. Контейнер перед началом опыта прогревается и откачивается обезгаживается.
Идея инерциального термоядерного синтеза была сформулирована в 1962 году академиком Николаем Геннадьевичем Басовым и тогда еще не академиком Олегом Николаевичем Крохиным. Басов выступал на сессии Академии наук СССР и определил лазерный термояд как одно из направлений управляемого термоядерного синтеза. Он даже оценил, какая мощность лазера должна быть, чтобы зажечь термоядерную реакцию в этих условиях. Как раз 13 декабря, за день до 100-летнего юбилея Николая Басова, на заседании Президиума Российской академии наук, посвященном этой дате, академик, заместитель директора Российского федерального ядерного центра «ВНИИЭФ» по лазерно-физическому направлению Сергей Гаранин подчеркнул: «Фактически достигнуто зажигание термоядерного горючего. Эти результаты достигнутые на NIF. Михаил Мишустин 18 мая 2021 года принял участие в церемонии физического пуска установки управляемого термоядерного синтеза токамак Т-15МД в Курчатовском институте. Впрочем, не надо переоценивать его немедленную практическую значимость. От этого результата до электростанций, работающих на реакциях термоядерного синтеза, — дистанция огромного размера». Вот и директор LLNL Ким Будил считает, что еще предстоит преодолеть «значительные препятствия» в отношении технологии термоядерного синтеза, прежде чем ее можно будет использовать в глобальных масштабах — или для начала в любом масштабе, если уж на то пошло. Такой процесс может занять годы или даже еще несколько десятилетий. Прежде всего NIF — это неимоверной сложности установка. Например, накопители конденсаторы для питания лазеров — это целое футбольное поле. Во-вторых, сейчас уже вполне отработана технология реакторов на быстрых нейтронах. Уран, который эти реакторы позволяют вовлечь в ядерно-топливный цикл, дешевый, его много. В общем, физика процесса — интересная: исследование свойств веществ при сверхвысоких давлениях и сверхвысоких температурах. Пусть занимаются. Повторяю, это очень интересная физика. Но коммерческое использование этого достижения — не раньше, чем через несколько десятилетий. Как шутят сами физики, занимающиеся термоядом, через 50 лет или, может быть, на два дня раньше». Действительно, заявления типа «Ученые США впервые в мире смогли получить от термоядерного синтеза больше энергии, чем на него потратили», «Научные прорывы в этой сфере позволят человечеству в будущем полностью отказаться от ископаемого топлива» существенно переоценивают значение эксперимента на установке NIF. Да, полученной «сверхнормативной» энергии хватит, чтобы вскипятить 10—15 чайников. Но журнал Nature напоминает: на работу всей установки потратили 322 МДж; лазеры выдали мощность на топливо, равную 2,05 МДж; конечная реакция произвела 3,15 МДж.
На картинке видно кинетическую схему нитенолового двигателя. А это двигатель Бэнкса, работающий на таком принципе. Естественными бесплатными источниками энергии для таких двигателей и для всех нас уже давно могли бы стать моря и океаны, если бы в дешевой энергии были бы заинтересованы те, кто находиться у власти. Генератор Хендершота Первое упоминание о магнитном генераторе свободной энергии в работах американского физика — изобретателя Лестора Хендершота появилось в 1927. Уже в следующем году Хенедершот построил прототип небольшого генератора и сумел запитать 2 стандартные лампы по 110 ватт. Авторитетные эксперты вынуждены были признать — генератор работал без видимого внешнего источника. После двух хвалебных упоминаний в Нью-Йорк Таймс в феврале 1928 года Лестора публично обвинили в шарлатанстве. Показать полностью.
Холодный синтез: самое известное физическое мошенничество
Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. За последние два года физики, работающие с NIF, смогли в несколько раз повысить энергетическую эффективность "быстрого" термоядерного синтеза. О том, что значит переход к термоядерному синтезу для всего человечества, и что еще Россия готова сделать для того, чтобы новый реактор заработал как можно скорее? Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез.
Холодный ядерный синтез. L E N R
Эти лучи сжимают топливо до тех пор, пока оно не взорвётся, создавая плазму с крайне высокими температурой и давлением. Визуализация облучения топлива лазерными лучами, которые преобразуются в рентгеновские для запуска синтеза В рамках многолетних исследований в LLNL была построена серия все более мощных лазерных систем, что привело к созданию NIF — крупнейшей и самой мощной лазерной системы в мире. NIF имеет размер спортивного стадиона и использует мощные лазерные лучи для создания температур и давлений, подобных тем, которые возникают в ядрах звезд и планет-гигантов. Конечно, до момента, когда термоядерная энергетика станет обыденностью, пройдёт ещё немало времени, и для этого потребуется провести ещё массу исследований. Тем не менее, значимость первого удачного эксперимента по термоядерному воспламенению огромна — возможно, в итоге он станет отправной точкой в революции в мировой энергетике.
Термоядерная энергия может стать альтернативой как обычным атомным электростанциям, работающим наоборот за счёт расщепления атомов, так и углеводородному топливу и избавить людей от вредных выбросов в атмосферу.
Для сжатия используют мощные лазеры. Этот принцип создания и поддержания управляемой термоядерной реакции поэтому и называется лазерный термояд; или — инерциальный. Термояд по капле «Это историческое достижение для исследователей и сотрудников NIF, которые посвятили свои карьеры тому, чтобы увидеть, как термоядерный синтез становится реальностью, и это достижение, несомненно, повлечет за собой новые открытия», — заявила министр энергетики США Дженнифер Грэнхолм. Рекордный эксперимент обошелся американскому налогоплательщику в 3,5 млрд долл. Почему так дорого? Сердце реактора NIF — 192 мощных лазера, которые одновременно направляются на миллиметровую сферическую мишень около 150 микрограммов термоядерного топлива — смесь дейтерия и трития; возможно, в дальнейшем радиоактивный тритий можно будет заменить легким изотопом гелия-3, которого так много на Луне. Температура мишени достигает в результате 100 млн градусов, при этом давление внутри шарика в 100 млрд раз превышает давление земной атмосферы. То есть условия в центре мишени сравнимы с условиями внутри Солнца.
Энергия самого лазерного луча при этом составляет около 1 МДж. Представьте теперь цепочку падающих в лазерное перекрестье шариков с компонентами термоядерного топлива фактически миниатюрных водородных микробомбочек. И, соответственно, непрерывную цепочку микровзрывов… Даже сложно вообразить, как физикам удалось достичь синхронности работы этих лазеров и идеально равномерного обжатия мишени! Совершенно справедливо администратор Нaциoнaльнoй администрации по ядерной безопасности NNSA Джилл Хруби назвала проведенный эксперимент «чудом инженерной мысли». Но вот придумали такую схему… в СССР. Идея инерциального термоядерного синтеза была сформулирована в 1962 году академиком Николаем Геннадьевичем Басовым и тогда еще не академиком Олегом Николаевичем Крохиным. Басов выступал на сессии Академии наук СССР и определил лазерный термояд как одно из направлений управляемого термоядерного синтеза. Он даже оценил, какая мощность лазера должна быть, чтобы зажечь термоядерную реакцию в этих условиях. Как раз 13 декабря, за день до 100-летнего юбилея Николая Басова, на заседании Президиума Российской академии наук, посвященном этой дате, академик, заместитель директора Российского федерального ядерного центра «ВНИИЭФ» по лазерно-физическому направлению Сергей Гаранин подчеркнул: «Фактически достигнуто зажигание термоядерного горючего.
Эти результаты достигнутые на NIF. Михаил Мишустин 18 мая 2021 года принял участие в церемонии физического пуска установки управляемого термоядерного синтеза токамак Т-15МД в Курчатовском институте. Впрочем, не надо переоценивать его немедленную практическую значимость. От этого результата до электростанций, работающих на реакциях термоядерного синтеза, — дистанция огромного размера». Вот и директор LLNL Ким Будил считает, что еще предстоит преодолеть «значительные препятствия» в отношении технологии термоядерного синтеза, прежде чем ее можно будет использовать в глобальных масштабах — или для начала в любом масштабе, если уж на то пошло.
В результате был преодолён порог «зажигания», как называют его учёные — когда энергия, произведённая синтезом, превысила энергию запустивших реакцию лазеров. О первых успехах учёные отчитались в 2014-м, однако производимая тогда реакцией энергия была крохотной — примерно столько потребляет 60-ваттная лампочка за пять минут. На коммерциализацию и широкое распространение данной технологии могут уйти десятилетия — так сказала Кимберли Будил, директор Ливерморской национальной лаборатории. Технология развивается, и при нужных усилиях и соответствующих инвестициях мы через несколько десятилетий исследований сможем построить электростанцию.
Он похвастался успешным завершением работ по холодному ядерному синтезу. После этого Киреленко практически не видно на экранах телевизора. Так что я спокоен и думаю, что технология уже отработана и находится под секретом. Скоро узнаем, может быть. Гексагональная кристаллическая решётка никеля поглощает атом водорода. Под действием температуры внутреннее пространство решётки уменьшается. Атом водорода поглощает энергию и превращается в нейтрон. Нейтрон сливается с атомом никеля. Образуется изотоп. Нейтрон не имеет кинетической энергии, поэтому он не может покинуть кристаллическую решётку. Радиоактивного излучения нет. Чукичев Дмитрий. Болотов свой холодный термоядер получал от сварочного аппарата, модель которого быстренько изъяли из продажи. Там присутствуют такие подробности, что я так и не понял — фантастика это или правда. Но принцип действия совершенно новый, по крайней мере, я о таком ранее нигде не слышал. Там через дейтерид титана пропускали очень короткие высоковольтные импульсы. Бутылек 3 литра вскипал за 50 секунд и свечение такое как на фотках было. Экспериментировать дома не советую — проводка может сгореть! Просто умалчивается кое — что. Для общения и познания тема хорошая. Установка рабочая для ограниченного количества воды. Потом остановка зарядка.
Украина. Генератор Росси. Термоядерный, холодный синтез. Теория, технология.
Термоядерный синтез заработал в плюс: американские учёные смогли запустить реакцию с положительным КПД. Холодный термоядерный синтез новости. Автор admin На чтение 6 мин Просмотров 4645 Опубликовано 27.04.2024. На проходящем в эти дни в Солт-Лейк-Сити съезде Американского химического общества будет представлено около тридцати работ, так или иначе связанных с. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез.
Что не так с «японским ученым» и его холодным термоядом
Что такое Холодный ядерный синтез? | За одну реакцию термоядерного синтеза длительностью 5 секунд было получено 69 МДж энергии. |
Что не так с «японским ученым» и его холодным термоядом | То есть провели реакцию холодного термоядерного синтеза. |
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER | Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. |
Украина. Генератор Росси. Термоядерный, холодный синтез. Теория, технология. | Главная» Новости» Холодный термоядерный синтез новости. |
Выбор сделан - токамак плюс
Российские физики рассказали о приручении термоядерного синтеза - МК | Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. |
Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы | объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32. |
Самая грандиозная научная стройка современности. Мы закуем Солнце в «бублик» | «Холодный термоядерный синтез» пользуется у физиков той же репутацией, что и вечный двигатель, машина времени и прочие экспериментально недоказанные или недоказуемые, гипотетические приспособления, которые идут вразрез с законами физики и химии. |
Частный термоядерный синтез: фантазии или реальность? | Цель ИТЭР — доказать возможность использования термоядерного синтеза в качестве экологически чистого, безопасного и практически неисчерпаемого источника энергии. |
Физики вносят ясность
- Частный термоядерный синтез: фантазии или реальность?
- Российские физики рассказали о приручении термоядерного синтеза - МК
- Популярное
- В Ливерморе совершили прорыв в получении термоядерной энергии
- Зачем это нужно
Холодный синтез: самое известное физическое мошенничество
Один из самых популярных и перспективных материалов — сплав никеля и титана — нитенол. При последовательной смене температур кристаллическая решетка сплава меняет конфигурацию, крайне важно, что эффект проявляет себя даже при незначительном нагревании и охлаждении, что значительно удешевляет технологию. На картинке видно кинетическую схему нитенолового двигателя. А это двигатель Бэнкса, работающий на таком принципе. Естественными бесплатными источниками энергии для таких двигателей и для всех нас уже давно могли бы стать моря и океаны, если бы в дешевой энергии были бы заинтересованы те, кто находиться у власти. Генератор Хендершота Первое упоминание о магнитном генераторе свободной энергии в работах американского физика — изобретателя Лестора Хендершота появилось в 1927. Уже в следующем году Хенедершот построил прототип небольшого генератора и сумел запитать 2 стандартные лампы по 110 ватт. Авторитетные эксперты вынуждены были признать — генератор работал без видимого внешнего источника. После двух хвалебных упоминаний в Нью-Йорк Таймс в феврале 1928 года Лестора публично обвинили в шарлатанстве.
И многие считают, что реальных результатов можно ожидать не раньше следующего столетия. Тем временем есть частные проекты, которые обещают получить подобный источник энергии уже до конца этого десятилетия. В чем причина такого разночтения? Причина выглядит анекдотичной — выяснилось , что 13 сварщиков компании-субподрядчика, работавших на стройке, предоставили фальшивые сертификаты о своей квалификации. Ранее новый гендиректор проекта Пьетро Барабаски заявил журналистам, что запланированный на 2025 года запуск термоядерного реактора, скорее всего, будет отложен на месяцы и даже годы. И такие проблемы у колоссального проекта, реализуемого во французском Кадараше департамент Буш-дю-Рон , возникают периодически. Причина этого в том, что те, кто им занят, часто всю жизнь совершенно не заинтересованы в его завершении, убежден бывший начальник инспекции по надзору за ядерной радиационной безопасностью госатомнадзора СССР, профессор Владимир Кузнецов: Владимир Кузнецов бывший начальник инспекции по надзору за ядерной радиационной безопасностью госатомнадзора СССР, профессор «Установка строится уже 20 с лишним лет. И каждые 3-4 года меняется сумма этого проекта. Вся сумма этого проекта оценивается в 32 миллиарда евро, а начиналось все с восьми. Каждый год более подробно становятся проблемы эти ясны.
Внешнее поле настолько симметрично и плотно экранировано структурами двух электронов, что этот атом проявляет чудеса инертности в химических электрических взаимодействиях — он полностью пассивен. Эти свойства электронов — создавать полный экран из полей электронов вокруг положительного поля ядра для компенсации его поля невидимость в третьем внешнем поле, как творение природы, специально приведены здесь для возможности анализа в последующих разделах рукотворного построения аналогичных структур компенсации заряда массы без разрушения её структуры и инертности движения кластеров антигравитационным зарядом для организации технического безынерционного и «невидимого» движения в третьем поле. Нейтроны и другие нейтральные ядра на определённых гравитационных поясах начинают распад, движение и последующую стабилизацию вблизи твёрдой поверхности Земли. В результате образуются достаточно стабильные положительные ядра и стабильные отрицательные электроны. Стабильность тех и других уже достаточна для охлаждения и рекомбинации друг с другом, с образованием долговременных структур атомно-молекулярного вещества. Другими словами, из двух свободных частиц с указанными размерами, движущихся навстречу друг к другу с разными, но определенными скоростями, образуется с помощью зоны холодной безмассовой плазмы связанная частица-атом, с размером сферы своего микропространства, совпадающей с соответствующими размерами замкнутых дебройлевских длин волн указанных частиц. Причем по устойчивости атомы слабее ядер более чем 107 раз. Структура этого нового микропространства, пожалуй, самая сложная из всех известных. Например, известно, что каждый электронный слой атома из K, L, M, N и т. Каждая последующая оболочка того или иного слоя имеет вполне определенное максимально возможное значение числа электронов, размещенных на ней. Такая структура атомного микропространства носит ярко выраженный ячеисто-сферический характер с центром в виде положительно заряженного ядра, окруженного волноводами электронов, зафиксированными в определенных слоях и специальным образом уложенных на поверхности оболочек. Такое размещение электронов обусловлено исключительно полуцелым спином электронов и гибким изменившимся его волноводом, как «спрутом» охватившим часть сферы диаметром с дебройлевской длиной волны этого связанного электрона. Структура атома представлена на фото 1б и фото 2. Фото 2. Схема внутренних электрических полей атома с образованием зоны холодной плазмы. У водорода на такой сфере размещён только один электрон. У гелия два электрона размещены на этой сфере таким образом, чтобы центральное поле электрического заряда ядра «видело» максимальную поверхность волноводов этих электронов не только ближайшей поверхности, но и последующих по мере возрастания радиуса. В данном случае это достигается диаметрально противоположным расположением. Когда ядро обладает более значительным зарядом электрического потенциала, то на оболочке большего диаметра появляется больше свободной поверхности для размещения большего количества электронов. Так, например, у алюминия на втором слое, во второй p-оболочке может на поверхности сферы разместится уже 6 электронов. Эти электроны равномерно перекрывают своими волноводами всю поверхность этой оболочки. Поэтому на поверхности оболочек большего диаметра их число резко возрастает. Такая структура атомов возможна лишь в достаточно свободном пространством, какое имеется на поверхности планет и звёзд, но такая структура реально невозможна в глубине нижней мантии Земли, где благодаря очень высокому давлению отсутствует достаточно свободное пространство для образования перехода нейтрона с объёмом соответствующим размеру 10—13 см в объём атома водорода с размером радиуса 10—8 см, но возможно образование мю-атомов водорода, энергия которых может лишь представляться не температурой вращательно-колебательных состояний, а только вращением. Рассмотренная структура размещения электронов в соответствующих оболочках полностью исключает всякое орбитальное движение электронов в пространстве вокруг ядра. Орбитальное движение электронов, как и движение электрона из возбуждённого состояния в основное состояние атома должно приводить к излучению дебройлевских волн, что наблюдается на практике высвечиванием оптических фотонов, но не наблюдается для атомов, находящихся в основном состоянии. Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням слоям и подуровням оболочкам , называется электронной конфигурацией этого атома. Так, например, выше рассмотренная конфигурация атома алюминия может быть представлена, как 1s 2 2s 2 2p 6 3s 2 3p. В основном невозбужденном состоянии атома все электроны удовлетворяют принципу минимума потенциальной энергии. Это значит, что сначала заполняются слои, для которых: — главное квантовое число «n» минимально, — внутри одного слоя сначала заполняется s — оболочка, затем p — и лишь затем d и т. Атомные микропространства проявляют весьма характерные свойства. Например, атом водорода способен поглощать или излучать вполне определенные серии фотонов. Это так называемые характеристические серии Бальмера, Пашена, Лаймана и т. При поглощении фотонов из этой серии, электрон переходит из 1S состояния в другие, более высоковозбужденные состояния — 2Р или 3S и т. У атома гелия возможностей еще больше — у него два электрона 1S 2. Если возбужден только один электрон — 1S2S или 1S3Р и т. Что это значит? Это значит, что при поглощении энергии электрон переходит в потенциальном поле ядра на более далёкое расстояние от него, которые называются ридберговскими состояниями атомов. Главный вопрос. Почему при рекомбинации протона с электроном, последние не падают друг на друга, как противоположные заряды, а остаются в противостоянии друг другу на расстоянии 10 —8 см, с образованием устойчивых атомов? Заметим, что после 1989 года было экспериментально Г. Демельтом установлен размер электрона равный около 10 -20 см. Как было уже показано на примере нейтрона, в процессе его распада, из него уносится энергия 1,29 Мэв в форме частиц электрона и антинейтрино и кинетической энергии движения, распределенной между ними. Эта унесенная энергия и является тем барьером противостояния, который электрон благодаря своему стабильному существованию в виде пульсаций сферы размером в 10 -20 см в полусферу волноводов радиусом 2,4х10—10 см размещён в атоме в сферическом слое при нормальных условиях радиусом 10—7—10—8 см, и поэтому не может упасть на поверхность протона. По той причине, что размер дискретного пространства волноводов электрона на три десятичных порядка превосходит внешний волновод любого атомного ядра. Отсюда, чем меньше «масса» микрочастицы, тем больше средний размер-диаметр его волноводов в полной аналогии со свойствами ЭМВ — чем выше энергия, тем короче длина волны и выше частота вихрона. Сфера магнитного монополя электрона может «жить» только на поверхности полусферы указанного радиуса. Можно образно сказать, что энергия в вихревых полях атома представлена формой материи холодной безмассовой плазмы в виде динамического слоя сферического пространства из противоположно электрически заряженных зёрен-потенциалов — барьер. Поэтому дебройлевская полусфера-волновод связанного атомного электрона не может физически «упасть» в центр — она способна лишь окружить его. Эта же причина является основой образования всех атомов таблицы Менделеева. И именно этот факт доказывает путь рождения всех атомных ядер, как и путь протона. К великому сожалению на коллайдерах и на других технических установках пока не научились получать плазму вихронов с энергией, позволяющей получать нейтральные ядра с большим атомным весом, чем масса нейтрона. Это позволило бы проанализировать тип и вид распада, а также возможность синтеза искусственного атома. С другой стороны, известно, что размер мюона соизмерим с внешними оболочками ядер, и поэтому присоединением мюона к ядру мезоатом осуществляется его приближение к ядру в 207 раз ближе, чем для электрона. Атом в целом электрически нейтрален. Механизм электронейтральности поясняется схемой, представленной на фото 2. Оболочки из электронов, образованные на расстоянии-радиусах от 0,5 — 15 х 10—8 см, постоянно обновляются магнитными монополями с рождением экранирующего облака-потока отрицательно заряженных зёрен-потенциалов. Внутри атома образуется динамическое равновесное микропространство-поле, заполненное двух знаковым электрическим эфиром — электрическая холодная плазма. Противоположно заряженные потоки зерен-электропотенциалов аннигилируют с образованием силовых линий электрического поля и уничтожением пространства, что приводит к притяжению источников их породивших и фиксации параметров атомного пространства путём рождения и обновления холодной плазмы из безмассовых электрических зёрен-потенциалов с противоположными знаками. Нескомпенсированный электрический эфир может выводится из межатомного пространства при сильной внешней поляризации вещества большими по значению электрическими потенциалами и способен к образованию облака-заряда электрическими зёрнами-потенциалами с последующим его захватом и преобразованием в электрический холодный ток технологиями Н. Отсюда следует жизнь и существование зарядов электрическим потенциалом в пятой форме, характеризующей наличие атомного пространства в активной аннигилирующей форме, приводящей к наличию в нём двухзнакового эфира зоны холодной безмассовой плазмы из противоположных зёрен-электропотенциалов обоих знаков. Аналогична по рождению и уничтожению магнитная холодная плазма, которая характеризуется притяжением полюсов стационарных магнитов. Однако гравитационная холодная безмассовая плазма, порождаемая в основном ядром атома, излучающим более дальнодействующие и однознаковые зёрна-гравпотенциалы, отличается по свойствам. Однополярный гравитационный эфир, излучаемый замкнутыми оболочками атомного ядра, вследствие его высокой плотности выходит не только наружу атома, но и кластера вещества в целом, формируя внешнее гравитационное поле такого атомно-молекулярного вещества. Это поле взаимодействует с центральным полем тяготения Земли и проявляет таким взаимодействием и у атома, и кластера из таких атомов, свойство массы и инертности. Поэтому снаружи атома внешнее электрическое поле ядра полностью скомпенсировано внешними полями электронов, размещённых на фиксированных оболочках. В связи с этим, у атомов появляется возможность объединяться в кластеры вещества, вплоть до жидкости и твёрдого тела. Однако у металлов внешние валентные электроны атомов почти свободны и образуют в больших массивных кластерах проводников облака свободного отрицательно заряженного электрического эфира, который по технологиям Н. Морея и многих других можно захватывать и преобразовывать специальными схемами в холодное электричество, образуя независимые и автономные источники питания. Атомы, их атомные ядра и электроны проявляют магнитные свойства, но разные и в разных формах, что позволяет широко применять метод Ядерно-магнитного резонанса — спин ядра в атомах углерода равен нулю, а в атомах водорода полуцелый и т. Несмотря на то, что магнитные монополи широкого частотного спектра являются строителями атомов и его элементов ядра и электроны , и при таком производстве «отходами» является его двух знаковый невидимый магнитный эфир, образующий магнитные моменты атомных ядер и электронов, его до сих пор не могут зарегистрировать и проявить. Однако, как и в случае с электрическим эфиром, если использовать известные методы намагничивания некоторых металлов и их сплавов, например, метод Лидскалнина, то удаётся выделить потоки магнитного эфира даже из обычного стержня железа, при этом намагниченный стержень становится постоянным магнитом на достаточно долгое время. А его магнитный эфир из зёрен-потенциалов проявляет себя в виде потоков из полюсов стационарных магнитов и занимает промежуточное свойство по дальнодействию и проникающей способности по сравнению с электрическим и гравитационным эфиром. Основной вывод — для объяснения механизма образования атомов нет необходимости привлечения механизма орбитального движения атомных электронов. Такие свойства объема, который занимает нейтрон, как спин, масса, инертность, плотность, магнитный момент, электрический дипольный момент, распределение плотности электрического заряда и магнитного момента, время жизни и другие — отрицают его как материальную бесструктурную частицу и определяют его как некое сложно-составное вихревое электромагнитное микропространство. Вилчек в своей книге 21 , развивая, дополняя и по новому интерпретируя первый, второй закон Эйнштейна и т. В данной книге по аналогии — основной компонент реальности оживлён магнитными монополями. Основной вопрос современности — где расположен и что является главным источником производства нейтронов? Ответ: основными источниками производства нейтронов являются ядра пульсаров-нейтронные звёзды и все ядра светящихся звёзд, а также геологически активных планет типа Земли. Другими источниками, которые порождают такие микропростраства, являются возбужденные тем или иным методом более крупные или тяжелые ядра атомов химических элементов. Возраст жизни нейтронов зависит от силы и формы полей в объемах, где они присутствуют. В обычных условиях на поверхности Земли нейтрон распадается фото 3 , превращаясь в протон. Фото 3. Распад нейтрона Кроме протона при распаде появляются электрон и антинейтрино. Кинетическим корпускулярным осколком этой ядерной реакции, уносящим часть энергии, является антинейтрино. В процессе термализации, то есть охлаждении этих частиц до состояния при, котором происходит их рекомбинация, образуется атом водорода. Период полураспада 10—20 минут зависит от некоторых внешних условий. Присутствие небольшой примеси протонов и электронов существенно увеличивает их возраст, так как электрические поля этих частиц блокируют процесс разрыхления вихронов внешних оболочек нейтронов, тем самым замедляют их распад. На поверхности ЧСТ, ядра нейтронной звезды, то есть в очень сильном центральном гравитационном поле нейтроны живут долго без распада, накапливаясь в таком количестве, что образуют достаточно толстую атмосферу. В конечном итоге, этот слой нейтронов, отдаляясь в область слабого гравитационного поля и распадаясь, формирует слой протонов и антипротонов, которые аннигилируют взрывом сверхновой, то есть происходит одновременный вынужденный взрыв-аннигиляция всей атмосферы. Нейтрон обладает структурой и внешними-внутренними свойствами. Внешние свойства обнаруживают с помощью различных технических средств и приёмов вычислений системы измерений СИ. К ним относятся внешние поля нейтронов, пространственный размер, спин, заряд массы, магнитный момент, отсутствие электрического заряда, период полураспада, а также взаимодействия нейтронов с атомными ядрами.
История исследований возможности ХЯС[ править править код ] Предположение о возможности холодного ядерного синтеза ХЯС до сих пор не нашло подтверждения и является предметом постоянных спекуляций, однако эта область до сих пор активно изучается. ХЯС в клетках живого организма[ править править код ] Луи Кервран [fr] , опубликовал c 1960 по 1975 г. За свои работы Кервран был удостоен Шнобелевской премии [9]. Высоцкий проф. Корнилова к. Сообщение химиков Мартина Флейшмана и Стенли Понса об электрохимически индуцированном ядерном синтезе — превращении дейтерия в тритий или гелий в условиях электролиза на палладиевом электроде [13] , появившееся в марте 1989 года, наделало много шума. Журналисты назвали их опыты «холодным термоядом» [4] [14] [15]. Эксперименты Флейшмана и Понса не смогли воспроизвести другие учёные, и научное сообщество считает, что их заявления неполны и неточны и представляют собой либо проявление некомпетентности, либо мошенничество [4] [16] [17] [18] [19] [20] [21]. Флейшман и Понс сделали вывод о ядерной реакции, обнаружив излучение нейтронов.
Холодный синтез. Миф или лженаука?
Все эксперты подчеркивают важность этого открытия, но отмечают, что впереди еще много технических и научных проблем, чтобы сделать термоядерный синтез жизнеспособным. Они говорят, что до коммерческого термоядерного синтеза, вероятно, еще несколько десятилетий, что ставит вопрос о том, как быстро эта технология сможет сыграть свою роль в декарбонизации электроэнергии. Недавно в нескольких журналах были опубликованы письма исследователей, предостерегающих от "святого Грааля" ядерного синтеза и даже подозревающих захват этой технологии индустрией ядерного оружия. Эколог и эксперт по возобновляемым источникам энергии Марк Дизендорф из Университета Нового Южного Уэльса в Австралии объясняет в письме, опубликованном The Guardian: "Переход от безубыточности, когда производство энергии превышает общее количество потребляемой энергии, к коммерческому ядерному термоядерному реактору может занять не менее 25 лет". Он добавил: "К тому времени весь мир сможет питаться безопасной, чистой возобновляемой энергией, в основном солнечной и ветровой". Энергетический успех, безусловно, является крупным шагом вперед для чистого изучения ядерного синтеза и демонстрацией опыта США. Однако задача заставить его работать в национальном, а затем и в глобальном масштабе, обеспечив при этом его доступность, далека от завершения, поскольку у нас все еще нет средств для этого, как отмечает Крис Крэгг в своем письме в Guardian: "Я готов поспорить, что вряд ли настоящая термоядерная электростанция будет запущена до того, как моим внукам исполнится 70 лет. В конце концов, на это ушло около 60 лет и огромные деньги".
Возможно, со временем размеры всего комплекса уменьшат до размеров офисного здания Владимир Спиридонов Особенность термоядерного синтеза заключается в том, что за сутки таких импульсов может быть десять, а при должном умении — сто и даже более тысячи. После перемножения импульсов на мегаватты выработанной энергии получится, что самая маленькая термоядерная электростанция в разы производительнее атомной. К тому же дейтерий и тритий, используемые в качестве топлива, существенно экологичнее изотопов урана и плутония, да и термоядерный реактор в теории почти не надо "перезаряжать". По сути, термоядерная электроэнергетика — "святой Грааль" человечества. Она способна решить все энергетические проблемы на ближайшие несколько столетий вперёд. Во-первых, после появления термоядерной энергии исчезнет проблема радиационной опасности объектов.
Проще говоря, никакого "второго Чернобыля" или "Фукусимы" и близко произойти не сможет. Во-вторых, развитие термоядерного синтеза позволит ликвидировать энергетический голод человечества. Стремительный рост населения спровоцировал и дефицит энергии. Сейчас, по прогнозам специалистов, потребность человечества в электроэнергии оценивается в 10 ТВт — почти в пять раз больше, чем наука и промышленность могут предложить. В-третьих, термоядерный синтез почти сразу станет причиной освоения... Дело в том, что, несмотря на достаточное количество дейтерия и трития, идеальным топливом для термоядерных реакторов будущего является гелий-3 — самый лёгкий изотоп гелия.
Его практически нет в чистом виде на Земле — для его наработки специальным образом обрабатывают тритий, а процесс этот стоит так дорого, что промышленное производство гелия-3 крайне невыгодно и потому лишено смысла. Идеальным местом добычи гелия-3 является именно Луна. В лунном грунте гелий-3 лежит в чистом виде, и его даже не нужно обрабатывать: достаточно просто собирать в капсулы специальным комбайном — и можно сразу отправлять на Землю ракетной экспресс-доставкой. Считается, что две тонны гелия-3, разогретые в токамаке или стеллараторе модернизированный термоядерный реактор , могут дать столько же энергии, сколько 30 млн тонн нефти, сжигаемой в печах ТЭС.
В связи с этим, у атомов появляется возможность объединяться в кластеры вещества, вплоть до жидкости и твёрдого тела. Однако у металлов внешние валентные электроны атомов почти свободны и образуют в больших массивных кластерах проводников облака свободного отрицательно заряженного электрического эфира, который по технологиям Н. Морея и многих других можно захватывать и преобразовывать специальными схемами в холодное электричество, образуя независимые и автономные источники питания. Атомы, их атомные ядра и электроны проявляют магнитные свойства, но разные и в разных формах, что позволяет широко применять метод Ядерно-магнитного резонанса — спин ядра в атомах углерода равен нулю, а в атомах водорода полуцелый и т.
Несмотря на то, что магнитные монополи широкого частотного спектра являются строителями атомов и его элементов ядра и электроны , и при таком производстве «отходами» является его двух знаковый невидимый магнитный эфир, образующий магнитные моменты атомных ядер и электронов, его до сих пор не могут зарегистрировать и проявить. Однако, как и в случае с электрическим эфиром, если использовать известные методы намагничивания некоторых металлов и их сплавов, например, метод Лидскалнина, то удаётся выделить потоки магнитного эфира даже из обычного стержня железа, при этом намагниченный стержень становится постоянным магнитом на достаточно долгое время. А его магнитный эфир из зёрен-потенциалов проявляет себя в виде потоков из полюсов стационарных магнитов и занимает промежуточное свойство по дальнодействию и проникающей способности по сравнению с электрическим и гравитационным эфиром. Основной вывод — для объяснения механизма образования атомов нет необходимости привлечения механизма орбитального движения атомных электронов. Такие свойства объема, который занимает нейтрон, как спин, масса, инертность, плотность, магнитный момент, электрический дипольный момент, распределение плотности электрического заряда и магнитного момента, время жизни и другие — отрицают его как материальную бесструктурную частицу и определяют его как некое сложно-составное вихревое электромагнитное микропространство. Вилчек в своей книге 21 , развивая, дополняя и по новому интерпретируя первый, второй закон Эйнштейна и т. В данной книге по аналогии — основной компонент реальности оживлён магнитными монополями. Основной вопрос современности — где расположен и что является главным источником производства нейтронов?
Ответ: основными источниками производства нейтронов являются ядра пульсаров-нейтронные звёзды и все ядра светящихся звёзд, а также геологически активных планет типа Земли. Другими источниками, которые порождают такие микропростраства, являются возбужденные тем или иным методом более крупные или тяжелые ядра атомов химических элементов. Возраст жизни нейтронов зависит от силы и формы полей в объемах, где они присутствуют. В обычных условиях на поверхности Земли нейтрон распадается фото 3 , превращаясь в протон. Фото 3. Распад нейтрона Кроме протона при распаде появляются электрон и антинейтрино. Кинетическим корпускулярным осколком этой ядерной реакции, уносящим часть энергии, является антинейтрино. В процессе термализации, то есть охлаждении этих частиц до состояния при, котором происходит их рекомбинация, образуется атом водорода.
Период полураспада 10—20 минут зависит от некоторых внешних условий. Присутствие небольшой примеси протонов и электронов существенно увеличивает их возраст, так как электрические поля этих частиц блокируют процесс разрыхления вихронов внешних оболочек нейтронов, тем самым замедляют их распад. На поверхности ЧСТ, ядра нейтронной звезды, то есть в очень сильном центральном гравитационном поле нейтроны живут долго без распада, накапливаясь в таком количестве, что образуют достаточно толстую атмосферу. В конечном итоге, этот слой нейтронов, отдаляясь в область слабого гравитационного поля и распадаясь, формирует слой протонов и антипротонов, которые аннигилируют взрывом сверхновой, то есть происходит одновременный вынужденный взрыв-аннигиляция всей атмосферы. Нейтрон обладает структурой и внешними-внутренними свойствами. Внешние свойства обнаруживают с помощью различных технических средств и приёмов вычислений системы измерений СИ. К ним относятся внешние поля нейтронов, пространственный размер, спин, заряд массы, магнитный момент, отсутствие электрического заряда, период полураспада, а также взаимодействия нейтронов с атомными ядрами. Внешние поля заряда массы гравитационные поля создаются также как и у мюонов, но в отличие от них сформированы суммарным излучением трёх контурных оболочек нейтрона, обладающего набором уже различных частот.
Внешнее электрическое поле нейтрона, как и в атоме, полностью уничтожено аннигиляцией противоположных по заряду излучаемых зёрен-электропотенциалов. Кроме того нейтрон и протон имеют очень большие аномальные магнитные моменты, которые в 1,91 и 2,79 раз соответственно больше по абсолютной величине ядерного магнетона, что свидетельствует о значительных токах магнитных монополей внутри их оболочек. В реальном рассмотрении в основу положена структура, основанная на электромагнитной модели а не кварковой нейтронов, разработанной в Стэнфордском университете научной группой во главе с Хофштадтером 22 — 1956 год. Экспериментально исследована внутренняя структура нейтрона была Р. Хофштадтером 23 путём изучения столкновений пучка электронов высоких энергий 2 ГэВ с нейтронами, входящими в состав дейтрона Нобелевская премия по физике 1961 г. Из этой работы следует заключение автора. Как мы видели, протон и нейтрон, которые считались элементарными частицами, представляются очень сложными образованиями. Почти с уверенностью можно сказать, что физики будут последовательно исследовать составные части протона и нейтрона — мезоны одного или другого сорта.
Что будет создано на основе этого? Начиная с 1958 года, подобная модель была развита и дополнена Р. Вильсоном с сотрудниками из Корнельского университета, Г. Шоппером 24 и С. Бергиа с сотрудниками по идеям 25 Фрэзера и Фулко, Намбо 26 и Чу. Причём их испускание происходит в состоянии с отличным от нуля моментом количества движения, то есть они должны вращаться вокруг уже названного ядра нуклонов. Из-за этого и образуются круговые токи, которые порождают аномальные магнитные моменты». Он был выведен на проектную энергию и достиг порога, после которого столкновения частиц электрон-позитрон в нем начинают рождать антибарионы — античастицы протонов и нейтронов, сообщает ученый секретарь института Алексей Васильев 28 : «Достигнута максимальная проектная энергия коллайдера — 1000 мегаэлектронвольт на пучок, что означает суммарную энергию столкновений 2000 мегаэлектронвольт.
Пройден порог энергии 1870 мегаэлектронвольт — порог рождения барион-антибарионных пар. Мы фиксируем до 2 тысяч рождений в секунду в каждой точке столкновений , они регистрируются». Их строение до сих пор очень плохо известно — как распределен заряд, как распределен момент внутри этих составных частиц. Известно, из чего они состоят, но как это там распределено, известно очень плохо. Этот коллайдер является самым удобным инструментом для изучения». Американский физик-теоретик Джулиан Швингер в основу магнитной модели 29 материи всех элементарных частиц заложил дуально заряженные частицы магнито-электрические дионы, которые являются, как он считает составной частью и нейтронов. И есть все основания считать, как он полагает, что основа всех элементарных частиц и в том числе нейтронов и протонов состоит из подобных дионов, а не из кварков. Антинейтрон был открыт в Национальной лаборатории им.
Лоуренса Беркли в 1956 году, через год после открытия антипротона. Практически уже давно освоена технология получения античастиц на мезонных фабриках и коллайдерах. Рождение пар античастиц производится не только с помощью встречных пучков адронов, но и при столкновениях пучков электронов и позитронов с энергией выше 1 Гэв. Рождение и аннигиляция антинейтрона. Антинейтрон был получен в процессе реакции перезарядки антипротона на протоне жидководородной пузырьковой камеры. Образовавшийся антинейтрон затем аннигилировал с протоном с образованием пяти заряженных пионов и нескольких других нейтральных мезонов. Знак заряда образовавшихся пионов и их энергия определяются по кривизне траектории пиона в магнитном поле. Оставшуюся энергию уносят нейтральные мезоны.
Поэтому в результате аннигиляции образуется один «лишний» положительно заряженный пион, который затем порождает цепочку последующих распадов. Образующийся в конце цепочки распадов позитрон аннигилирует с электроном среды образуя фотоны с энергией 0,511 Мэв. Отсюда и следует, что полоса энергии электромагнитных квантов дебройлевских или клубковых для образования нуклонов в сингулярных точках на коллайдерах или ЧСТ лежит в пределах 130—500 Мэв. Трёхконтурные оболочки нейтронов. Внутренние свойства нейтрона, которые обеспечивают эти внешние свойства — это шесть замкнутых, взаимно противоположных ядерных полярных вихронов и сильно взаимодействующих с определенной частотой, полярностью и поляризацией. По трём внутренним и внешним оболочкам нейтрона пульсируют замкнутые магнитные монополи ГЭММ, которые обновляют замкнутые контуры, формируя из них внешние поля. Между первой внутренней оболочкой и средней происходит сильное взаимодействие с аннигиляцией противоположных по знаку зерен-электропотенциалов, что приводит к почти полному уничтожению пространства между ними с помощью зоны холодной плазмы фото 4 третья справа. Равновесное состояние положения источников-сфер волноводов в указанной схеме обеспечивается равенством сил притяжения разных по знаку и величине зарядов энергии, но более близко размещённых, по сравнению с одинаковыми по величине зарядами энергии, но диаметрально противоположными сферами ГЭММ и более удалёнными друг от друга на полволны.
Отсюда следует ещё одна форма жизни и существования зарядов электрическим потенциалом в состоянии динамического равновесия полного взаимного уничтожения пространства контурами-оболочками рождения слоистой холодной безмассовой плазмы и пространства нейтрона. Фото 4. Схемы оболочек нейтрона, слева — направо, внутренняя оболочка, составленная из двух сфер-источников ГЭММ с двумя четверть волноводами типа нейтрального К-мезона с полуцелым спином типа мюона; эта же оболочка в реальном виде из зёрен-потенциалов гравитационных внутри и электрических снаружи; две, вложенные друг в друга оболочки первая и средняя; три, вложенные друг в друга оболочки, образующие нейтрон. Гравитационные зёрна-потенциалы этих оболочек имеют одинаковый знак и высокую проницательность, поэтому при обновлении излучаются и выходят за пределы этих контуров, а взаимодействуя с центральным полем Земли проявляют массу нейтрона. Третья, внешняя оболочка нейтрона пульсирует в обе стороны с рождением как положительных зёрен-электропотенциалов, так и отрицательных, проявляя электронейтральность нейтрона в целом и полуцелый спин, как у электрона. В слабом гравитационном поле на поверхности Земли эта свободная внешняя оболочка распадается с рождением стабильных частиц — протона, электрона и с выбросом промежуточного остатка нейтрино половины внешней оболочки из зёрен-электропотенциалов без магнитного монополя. Отсюда согласно приведенной структуре нейтрона и его электронейтральности, последний является и античастицей по отношению к себе. Итак нейтрон — это три вложенных друг в друга оболочки со структурой нейтральных мезонов — три ядерные оболочки Фото 4 , составленные из противоположных по знаку электрического заряда частиц со структурой типа мюонов — сложная центральная интеграция материи-контуров в состоянии покоя.
Это основное свойство гравиэлектромагнитных диполей высоких резонансных частот. Нейтрон не имеет электрического заряда, хотя обладает магнитным и электрическим дипольным моментами, имеет полуцелый спин и массу, которая примерно в 2000 раз больше, чем у электрона. Энергию для обеспечения этих состояний, нейтрон черпает от пульсирующих магнитных монополей в этих шести оболочках. Магнитный момент протона положителен и в полтора раза больше, чем у нейтрона, у которого он отрицателен. Разница в массах-энергиии нейтрона и протона составляет 1,293323 Мэв, которая при распаде нейтрона распределяется между его продуктами. Комптоновская длина волны нуклонов составляет величину 1,3 х 10—13 см, а с учётом разрыхленности внешней оболочки, задающей запирающий слой и полуцелый спин, размер её достигает значения 9,1 х 10 —13 см. Нейтрон легко проникает в ядра химических элементов при любой энергии, вызывает ядерные реакции и способен вызывать деление тяжёлых ядер. Медленные нейтроны, имеющие дебройлевскую длину волны соизмеримую с межатомными расстояниями, служат для использования их в исследовании свойств твёрдых тел.
Большое внимание привлекают на себя осцилляции друг в друга нейтрон-антинейтрон. Осцилляции элементарных частиц — это периодический процесс превращения частиц определённой совокупности друг в друга. Ведутся экспериментальные работы во многих странах по обнаружению увеличения числа антинейтронов в пучке нейтронов из реактора с ростом длины пролёта, а также в потоках космических лучей и в специальных ловушках ультрахолодных нейтронов — это так называемые нейтрон-антинейтронные осцилляции 30. Они вложены друг в друга таким образом, что половины замкнутых контуров из положительных зёрен-потенциалов внутренней закрываются отрицательными зёрнами-потенциалами следующей половины внешней. Центральная сфера показывает свободное пространство, которое будет заполняться центральными оболочками при образовании ядер химических элементов вплоть до ядер кальция. Такая структура нейтрона свойственна ему вначале его появления и долгой жизни в определённых условиях, до начала разрыхления его внешней зарядо-образующей оболочки. Взаимодействие между оболочками — электромагнитное с очень малым радиусом действия 10—16 см. Нейтрон, как электрически нейтральная частица является одновременно и античастицей по отношению к себе, как и фотон.
Учёным из США впервые удалось провести реакцию ядерного синтеза С получением большего количества энергии, чем было затрачено Учёные в США впервые в истории успешно провели реакцию ядерного синтеза. Как сообщают различные источники, учёные из Ливерморской национальной лаборатории Лоуренса в Калифорнии провели реакцию синтеза, получив больше энергии, чем было затрачено. До этого все подобные эксперименты всегда характеризовались затратами, превышающими полученную энергию. Официального объявления ещё не было.
Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии
Холодный ядерный синтез: почему у Google ничего не получилось? | Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. |
Выбор сделан - токамак плюс | Термоядерный синтез заработал в плюс: американские учёные смогли запустить реакцию с положительным КПД. |
Академик Александров о холодном термоядерном синтезе | Холо́дный я́дерный си́нтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных). |
В Ливерморе совершили прорыв в получении термоядерной энергии | На протяжении десятков лет холодный синтез проявлял поразительную капризность и упорно продолжал мучить своих исследователей неповторяемостью экспериментов. |
Холодный синтез: миф и реальность
Эколог и эксперт по возобновляемым источникам энергии Марк Дизендорф из Университета Нового Южного Уэльса в Австралии объясняет в письме, опубликованном The Guardian: "Переход от безубыточности, когда производство энергии превышает общее количество потребляемой энергии, к коммерческому ядерному термоядерному реактору может занять не менее 25 лет". Он добавил: "К тому времени весь мир сможет питаться безопасной, чистой возобновляемой энергией, в основном солнечной и ветровой". Энергетический успех, безусловно, является крупным шагом вперед для чистого изучения ядерного синтеза и демонстрацией опыта США. Однако задача заставить его работать в национальном, а затем и в глобальном масштабе, обеспечив при этом его доступность, далека от завершения, поскольку у нас все еще нет средств для этого, как отмечает Крис Крэгг в своем письме в Guardian: "Я готов поспорить, что вряд ли настоящая термоядерная электростанция будет запущена до того, как моим внукам исполнится 70 лет. В конце концов, на это ушло около 60 лет и огромные деньги".
В действительности, временные масштабы, связанные с развитием термоядерного синтеза как источника энергии, слишком велики для решения самых насущных проблем климата, которые предполагают немедленное сокращение выбросов углерода. Аника Хан, исследователь ядерного синтеза из Манчестерского университета, говорит Forbes: "Ядерный синтез слишком поздно придет к решению климатического кризиса. Мы уже сталкиваемся с разрушительными последствиями изменения климата в глобальном масштабе, достаточно посмотреть на наводнения в Пакистане, засухи в Китае и Европе этим летом".
Как правило, это совпадает с какими-то кризисными явлениями. Сейчас понятно, что с ростом цен на энергоносители. Здесь нужно внимательно подходить, вокруг очень много пиара. Частники, в общем-то, понимают, что есть деньги, то можно попробовать их заложить туда. А вдруг это сработает? Большая часть из них понимает, что, скорее всего, это вложение на далекое будущее.
Кто-то ориентируется на внуков, а кто-то верит рекламе». Тем временем корпорация Microsoft подписала в начале мая коммерческий контракт на поставку электроэнергии, произведенной с помощью термоядерного синтеза, с компанией Helion Energy, занимающейся разработкой систем уникальной конфигурации, именуемых Fusion Engine, которые сочетают в себе элементы магнитного удержания и инерционного сжатия. Helion Energy планирует подключить реактор мощностью минимум 50 МВт — это немного, но речь здесь идет, скорее, о самом факте первого в истории коммерческого контракта на получение энергии посредством термоядерного синтеза. Причем речь идет не о соглашении о намерениях, а о настоящем инвестиционном контракте, сумма которого, впрочем, не разглашается, и который предусматривает штрафные санкции в случае его неисполнения к сроку.
Академик РАН Эдуард Кругляков пояснил, что в экспериментах с пропусканием тока через палладиевый электрод возникает «искрение» на микротрещинах электрода, при этом ионы разгоняются до энергии порядка 1 кЭв, и этого может быть достаточно для получения небольшого количества нейтронов [22]. Такие исследования плохо воспроизводятся [23]. США, 2002 год[ править править код ] 8 марта 2002 года в солидном международном научном журнале «Сайенс» появилось сообщение о наблюдении «явлений, не противоречащих возможности» ХЯС. Русско-американская группа исследователей под руководством Руси Талеярхана в эксперименте с ультразвуковой кавитацией ацетона, в котором простой водород замещён дейтерием, наблюдала замену дейтерия тритием и излучение нейтронов во время сонолюминесценции.
При этом установка не выделяла дополнительную энергию [24]. Сразу же после публикации физик Нэт Фиш англ. Nat Fisch, занимается Физикой Плазмы в Принстонском университете высказался: «То, что я видел, производит впечатление безграмотного и неряшливого отчёта» [25]. Два других сотрудника Окриджской лаборатории повторили эксперимент на той же аппаратуре с другим детектором и не обнаружили поток нейтронов, который наблюдал Талеярхан [24] [25]. Критики также указывают, что температура и энергия в центре схлопывающихся пузырьков газа на три порядка ниже, чем нужно для слияния ядер дейтерия [24] [26] [27].
При энергии такого излучения от 0,4 до 0,9 эв с частотой 1—2 х 10 13 Гц и длине волны 1,4 — 3 микрона, сфера заряда энергии имплозией способна проникать даже в атомное ядро имея размер около 10—14 см.
Этот процесс идёт наиболее интенсивно, как показывают результаты «выстрелов» С. Адаменко, при определённых условиях и в твёрдом теле. Фото 9. Деление внешней оболочки и распад После этого следует движение к поверхности и долгая стабилизация-распад с образованием уже известных ядер химических элементов. Подтверждением такой схемы жизни нейтральных ядер свидетельствуют проблемы, возникающие при полной обдирке от атомных электронов тяжёлых ядер при подготовке пучков тяжёлых многозарядных ионов. В этом случае, после неоднократного разделения пучка в магнитном поле на положительный, отрицательный и нейтральный, последний необходимый пучок опять содержит все эти компоненты.
Реакции, которые приводятся в работах А. Кладова на основе капельной модели ядра, а также в работах А. Вачаева, могут идти только как ядерно-ионные, то есть ядра при распаде могут быть как положительные, так и отрицательные. К настоящему времени на поверхности Земли не осталось ни одного типа нейтральных ядер атомов химических элементов кроме нейтрона, что свидетельствует об их весьма коротком периоде полураспада на этом гравитационном поясе. Однако имеется от 3000 до 7000 радиоактивных изотопов, до сих пор находящихся в стадии стабилизации, то есть на пути превращения в стабильные изотопы, путём радиоактивного распада. Распад тяжёлых нейтральных ядер идёт с образованием как положительных, так и отрицательных ядер.
Распад лёгких нейтральных ядер идёт по схеме деления внешней оболочки на два замкнутых вихрона с образованием двух оболочек одной внутренней и одной внешней, фото 6 волноводов преимущественно положительных потенциалов, образующих его спин и внешнее электрическое поле ядра, запирающее его дальнейший спонтанный распад. Заряд электрическим потенциалом ядра, определяющий число электронов в нейтральном атоме формируется только внешней оболочкой, которая по мере увеличения тяжести ядра меняется на более тяжёлые мезоны. Внутренние оболочки попарно нейтрализованы противоположно заряженными — фото 4 и своей структурой обновления гравитационных контуров определяют лишь суммарную массу частицы, которая, является продуктом взаимодействия противоположных полей атомного ядра и гравитационного поля Земли. Во внешнем пространстве атома два магнитных монополя сферы двух внешних оболочек формирует положительное электрическое поле, рождённое с частотой накачки на три десятичных порядка больше, чем это делают электроны на атомных оболочках, что и определяет количество присоединённых электронов в нейтральном атоме, чтобы полностью скомпенсировать на ноль своё собственное внешнее поле. В целом, таким образом сформированная внешняя ядерная оболочка, имеет форму сферы с положительным зарядом электрического потенциала, соответствующим атомному номеру стабильного химического элемента. Этот процесс очень сложный и заключается в том, чтобы каждое положительное зерно-потенциала было уничтожено отрицательным зерном потенциалом волновода электрона.
А так как на двух внешних оболочках ядра вблизи узлов нахождения магнитных монополей размещены более мощные по значению величины и дальнодействию потенциалы, превосходящие подобные противоположные зёрна электронов, то и месторасположение точки их нейтрализации находится вблизи волновода электронов, удалённого на расстояние размера атома. Появившиеся в результате распадов нейтральных ядер замкнутые вихроны, ранее входившие в состав внешних нейтральных оболочек, во внешнем пространстве, в результате каскадных распадов и взаимодействий с другими частицами на пути к поверхности, образует, в конечном итоге, стабильные электроны. Так образуются атомные ядра и свободные электроны. В результате несовместимости энергетического сосуществования нейтральных оболочечных микрочастиц и слабых гравитационных полей, первые распадаются на два основных фрагмента — положительно заряженное, несущее основную массу, ядро и отрицательно заряженная часть его внешней оболочки, формируемая второй замкнутой частицей. Перед распадом идет интенсивный процесс разрыхления внешних оболочек ядер в уже свободное пространство, соответствующее слабым окружающим полям. Эта внешняя оболочка со структурой, показанной на фото 6, с замкнутым контуром в структуре атомного ядра и является той поверхностью, на которой пара магнитных монополей ГЭММ квантует на волноводе соответствующие зёрна-потенциалов и определяет его заряд электрическим потенциалом.
При обновлении этот двойной контур излучается в пространство над ядром, формируя внешнее поле этого заряда электрического потенциала ядра — это и есть электрический эфир с положительным знаком заряда. Таким уже объёмным образом порождается, умножается и аккумулируется строительный материал из электрических зёрен-потенциалов, который в отличие от аккумуляции его в линейном треке фотона, порождает бесконечный объём, а количество этой субстанции пропорционально заряду массы ядра. Такой газоподобный электрический эфир удалось Н. Тесла захватить, преобразовать и отделить в кластере меди от электронов в своём резонансном трансформаторе и частично исследовать. Так рождается положительный заряд электрическим потенциалом атомного ядра атома химического элемента, бесконечный по объёму электрический эфир в пространстве вокруг атомного ядра, мерилом которого является количество электронов на оболочках атома, противоположные по знаку внешние поля которых его полностью уничтожают. В поле собственного заряда дальнейший распад остатка ядра замедляется и идет уже по другим схемам распада, как и в случае радиоактивных семейств урана, которые приводят его, наконец, на поверхности планеты к тому или иному стабильному изотопу — процесс ядерной стабилизации, химической релаксации и минерализации, приводящий к образованию 82 стабильных химических элементов в коре, воде и атмосфере на поверхности планеты.
Этот процесс конкретно характеризует широко известная таблица распределения радиоактивных изотопов относительно стабильных атомных ядер, то есть процесс распада по бета-плюс каналу предваряет разрыхление с отрывом частицы с положительной полусферой волноводов, а по каналу бета — минус — отрыв частицы с отрицательной полусферой. Образовавшиеся стабильные ядра имеют заряд электрического потенциала и спин, формируемые вихронами полусфер двух внешних оболочек — внешней и внутренней. Электрический заряд ядра создаётся волноводами магнитных монополей этих внешних вихронов, с частотой на три десятичных порядка больше, чем у электронных оболочек атомов. Эти оболочки в отличие от внутренних квантуют волноводы не в ограниченной сфере оболочек ядра, а в свободном пространстве, и в таком количестве по поверхности, которое соответствует его внутренним параметрам, создавая заряд ядра, который определяется количеством электронов в нейтральном атоме. Атомные ядра входят в состав атомов химических элементов, из которых построено всё видимое Мироздание. Всего стабильных и долгоживущих атомных ядер на Земле около 300, а находящихся на пути стабилизации и пополняющих запасы стабильных путём распада по разным оценкам от 3000 до 7000.
Почему столько много радиоактивных нестабильных тяжёлых изотопов? Потому что ядра этих изотопов образовались в результате синтеза тяжёлых противоположно заряженных ядер, то есть положительно заряженное ядро соединилось с отрицательно заряженным ядром. Образовавшаяся двух ядерная система в результате внутренней перестройки ядерных вихронов медленно переходит в равновесное одно ядерное состояние, с излучением лишних не резонансных вихронов, образующих различные элементарные частицы при вылете из внешних оболочек этого ядра. У тяжёлых трансурановых элементов этот процесс может занять очень длительное время, называемое периодом полураспада. Источники основного производства атомных ядер находятся вблизи поверхности ядер звёзд и планет — это квантованные кластеры плотной чёрной ядерно-мезонной плазмы, то есть смеси заряженных атомных ядер, мезонов, мюонов, и распадающихся нейтральных ядер. Стабильные ядра поверхности Земли имеют внешнее электрическое поле, спин, магнитный момент, определённые заряд массы, заряд электрическим потенциалом, размер, форму и оболочечную структуру.
Ядра, имеющие порядковый номер 2, 8, 20, 28, 50, 82 и некоторые другие, обладают сферической формой. Все другие являются сплюснутыми или вытянутыми эллипсоидами. Вытянутых ядер больше сплюснутых. Большинство ядер имеют по несколько изотопов. Обращает на себя внимание то, что все эти нуклиды имеют нечетные массовые числа в системе СИ и полуцелые спины. Откуда можно сделать вывод о том, что ядра с полуцелым спином более стабильны, что и подтверждается экспериментально.
В основу структуры фото 9а атомного ядра положены экспериментальные результаты исследований по строение протона, гиперонов, резонансов, мезонов, экзотических частиц, мезоатомов и эта-ядер. Время жизни резонансов порядка 10—22 сек. Первый нуклонный резонанс был открыт Э. Экзотическая частица Z 4430 — необычный мезон, не вписывающийся в стандартные рамки. Его существование было известно и раньше, но только сейчас стало окончательно доказано, что это реальная экзотическая частица. Тот факт, что он распадается очень быстро, означает, что распад идет за счет сильного взаимодействия.
Состояния этой частицы с энергиями были названы Zb 10610 и Zb 10650 в соответствии с их массами. В 1977 году были открыты нейтральные Y-мезоны ипсилон-мезоны с массами в диапазоне 9. Y-мезоны являются связанными состояниями из двух частиц с половиной массы Y 9460 , то есть 4700 МэВ. Z-бозон или Z0 электрически нейтрален и является античастицей сам для себя. Эти бозоны — тяжеловесы среди элементарных частиц — с массой в 80,4 и 91,2 ГэВ, соответственно. Масса этих бозонов очень важна для понимания слабого взаимодействия, поскольку ограничивает радиус действия слабого взаимодействия.
Электромагнитные силы, напротив, имеют бесконечный радиус действия, потому что их бозон-переносчик фотон не имеет массы. Все три типа бозонов имеют спин 1. Z0-бозон не может менять ни электрический заряд, ни любой другой заряд — только спин и импульс. Тот факт, что W — и Z-бозоны имеют массу, в то время как фотон массы не имеет, был главным препятствием для развития теории электрослабого взаимодействия. Согласно реальному представлению все указанные взаимодействия частиц в ядре или около ядра, в том числе, и электроны атомных оболочек вокруг ядра обусловлены стягивающей зоной холодной безмассовой электрической плазмы. В ядре такие взаимодействия определяют ещё и его размер, а в атоме — размер атома.
В мезоатомах такое взаимодействие определяет не только относительно стабильную связь системы, но и месторасположение точки источника ГЭММ частицы с опорой её на четверть-волновод из зёрен-потенциалов относительно атомного ядра. Эти состояния ядер обеспечиваются энергией соответствующих магнитных монополей, входящих в состав мезонов. Размер диаметра сферической оболочки соответствующего мезона определяется полволной фото 9а произведения постоянных Планка и скорости света, делённого на энергию магнитного ионополя. Фото 9а. Структура оболочек атомного ядра слева , размер оболочки ГЭМД в полволны посередине , но пара ГЭММ в пульсациях могут сближаться до минимального предела в четверть длины волны справа. В этом смысле структура ядер, отдалённо напоминает структуру электронных атомных оболочек.
Этот немаловажный фактор свидетельствует о смене механизма производства атомных ядер. Последующее увеличение массы и электрического заряда ядра обусловлено уже, как за счёт заполнения внутренней свободной сферы оболочками с размерами менее 10—14 — 10—15 см, так и за счёт перераспределения частот вихронов, формирующих верхние этажи оболочек, в сторону уменьшения их диаметра — увеличения значения частот, например, смена внешних пи-мезонов на k-мезоны и т. Таким образом размер ядра с увеличением массы только уменьшается в размерах, в отличие от протон-нейтронной модели, согласно которой размер увеличивается пропорционально корню кубическому из числа массы ядра — размер ядра свинца примерно в шесть раз больше протона. Энергия масса в системе СИ атомного ядра будет равна суммарной энергии оболочек всех мезонов, входящих в это ядро. Спин ядра чередуется сменой чётной массы в соответствии с представлениями САП на нечётную к последующему изотопу этого ядра элемента с целочисленного значения на полуцелое. Пульсирующая внешняя оболочка ядер, состоящая из половины внутренней и половины внешней, заполняет электрическим эфиром внешнего поля дискретное пространство в атоме и определяет суммарный заряд поверхности ядра электрическим потенциалом и спин.
Именно форма волновода вносит основной вклад в спин ядра и может иметь структуру мюона, как и у протона, для формирования полуцелого спина, так и структуру сферы законченного внешнего слоя электронов для гелия с чётной массой при определении значения целочисленного спина. По сравнению с размерами структуры ядерных магнитных монополей вихронов, пространство волноводов атомного ядра такое же «пустое, как вакуум Вселенной», как и пространство электронных оболочек в атоме. Минимальный размер и максимальная частота монополя вихрона ограничены лишь планковскими пределами. Это подтверждают и эксперименты на Брукхейвенском коллайдере с встречными пучками ядер золота и дейтонов и многими другими. Таким образом, пропадает необходимость применения модели атомного ядра из протонов и нейтронов, не способной объяснить многие ядерные превращения. Нет необходимости привлечения и весьма неубедительного механизма сильных взаимодействий нуклонов в ядре.
Они попросту пропадают, а их место занимают очень короткодействующие электромагнитные взаимодействия с помощью безмассовой холодной плазмой между противоположно-чередующимися биполярными оболочками. Механизм сильных взаимодействий в атомных ядрах определяется свойствами холодной безмассовой плазмы, благодаря которой смежные и противоположные по знаку оболочки по радиусу ядра притягиваются друг к другу с наивысшей силой, возникающей при полном уничтожении предыдущего состояния межоболочечного пространства — аннигиляция противоположных по знаку заряда зёрен-электропотенциалов по аналогии механизма формирования пространства атома между ядром и оболочками из электронов. Механизм слабых взаимодействий, отвечающий за различные формы распада ядер, становится более конкретным и определяется, как и в случае атомных внешних оболочек, составом внешних ядерных оболочек. Вывод: наибольшее практическое значение в будущем в производстве ядерной энергии может играть новый вид вынужденного и управляемого распада ядер — LENR, каскадный распад ядер, обусловленный механизмом «тяжелой» фотоионизации частиц положительных или отрицательных , составляющих ядерные оболочки, путём дезинтеграции атомных ядер имплозией в них кластера зёрен-потенциалов волноводов из пульсирующего вихревыми полями двуполостного гиперболоида гравиэлектромагнитного диполя с образованием зон холодной безмассовой плазмы в атомных ядрах распад вплоть до частиц, составляющих ядерные оболочки, а затем следует быстрый процесс рекомбинации-осаждения синтез уже в зонах ядерно-мезонной плазмы с рождением новых элементов. Внутренняя структура атомных ядер аналогична структуре нейтральных ядер. Вот только внешнее электрическое поле и спин определяется положительными или отрицательными потенциалами внешнего волновода, а также движением по нему соответствующего вихрона, с частотой на три десятичных порядка выше частоты оболочек электронов в атоме.
Пассивную массу в СИ индуктируют все ядерные вихроны, пульсирующие по гравитационным замкнутым волноводам оболочек различного радиуса.
Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип
Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. Авторам во всех случаях не удалось найти каких-либо свидетельств протекания холодной термоядерной реакции, но они осторожны в формулировках и не утверждают, что полностью исключили их возможность. Холодный ядерный синтез. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции.
Холодный ядерный синтез. L E N R
Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. Холодный ядерный синтез – это научная теория предполагающая возможность осуществления термоядерной реакции без значительных первоначальных энергозатрат и мощного нагрева ядер топлива для запуска процесса их слияния. Во время термоядерного синтеза атомные ядра вынуждают сливаться вместе и образовывать более тяжелые атомы. Однако, при всей невероятности и даже сомнительности холодного термоядерного синтеза, нельзя прятать голову в песок. в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа.