Взрыв еще одной сверхновой был зафиксирован астрономами, он произошел в галактике М101 в 21 млн световых лет от Солнечной системы. Ученые предполагают, что «Тасманийский дьявол» произошел из-за «неудавшихся» сверхновых — то есть звезд, которые превратились в черную дыру или нейтронную звезду, прежде чем взорваться.
Нет, это не сверхновая
- Рекомендуем
- Маленькая чёрная дыра уничтожила звезду и устроила сверхмощный взрыв
- Коллапс звезды
- Впервые обнаружены следы взрыва уникальной сверхновой — 30.09.2022 — В мире на РЕН ТВ
- Прорыв в понимании
- Как зажигаются звезды
Звезда Эта Киля, взрыв сверхновой
Мертвая звезда осветила мощной вспышкой соседнюю галактику | О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. |
Опасность из космоса: к чему приводит взрыв звезд | Ученым удалось зафиксировать самый крупный за всю историю наблюдений взрыв в космосе, сообщает New Scientist. |
Зарегистрирован самый мощный за всю историю космический гамма-всплеск
звезда бетельгейзе взорвалась, взрыв бетельгейзе, бетельгейзе взорвалась Бетельгейзе – звезда в созвездии Ориона, одна из ярчайших на ночном небосклоне. В этом смысле его взрыв похож на взрыв коллапсирующей звезды с начальной массой 130–250 солнечных масс, хотя физические механизмы совершенно различны. Однако взрыв оказался беспрецедентно плоским, что является очень необычным явлением, поскольку звезды обычно взрываются в сферической форме из-за своей формы. В 2024 году произойдет взрыв звезды, которая находится на расстоянии 3 тыс. световых лет от Земли, сообщил Fox News Digital руководитель Управления окружающей среды NASA Билл Кук.
Звезда T Coronae Borealis вот-вот взорвется: вот почему и как ее наблюдать
Взорвётся ли Бетельгейзе и чем это нам грозит? | Космос | Мир фантастики и фэнтези | Порой такие мёртвые звезды вспыхивают и перерождаются в сверхгорячем взрыве. |
Зарегистрирован самый мощный за всю историю космический гамма-всплеск | Телескоп ART-XC им. М. Н. Павлинского, который установлен на борту космической обсерватории "Спектр-РГ", заснял взрыв сверхновой звезды. |
В космосе произошёл мощнейший взрыв повторной новой звезды | О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. |
Астрономы зафиксировали мощнейший взрыв в истории Вселенной
Для этого, по сообщению представителей NASA, "Хаббл" изменил свой график наблюдений, чтобы заснять последствия этого взрывного события, хотя сама сверхновая уже исчезла из поля зрения. Ранее ГЛАС писал, что стремление наказать Россию через санкции привело к началу процесса дедолларизации мира.
Как будет выглядеть взрыв сверхновой Бетельгейзе. Поэтому астрономы пристально всматриваются в Бетельгейзе, ловят каждое её дыхание и при любом заметном изменении замирают в ожидании.
Один из таких волнительных моментов был в 2019—2020 годах. Событие прозвали "великим затемнением". По основной версии, самые верхние слои звезды охладились, и на них как бы сконденсировалось облако выброшенной звёздной пыли. То есть в целом это одно из проявлений пульсации.
Снова дух захватило: а вдруг сейчас взорвётся? В основном думают, что всё-таки нет, это просто очередная стадия пульсации звезды, то есть в её состоянии нормальное поведение. Но с другой стороны, есть любопытное наблюдение: за последние десятилетия эти колебания как-то уж очень участились. Раньше они длились лет по шесть, а потом стали происходить каждые 400 дней.
По самым свежим данным, Бетельгейзе и вовсе принялась дышать с периодичностью меньше года.
Состоит она из белого карлика и красного гиганта. Вспышка происходит из-за силы тяготения карлика, перетягивающего к себе газ из внешней оболочки красного гиганта. По сути, происходит термоядерный взрыв колоссальных масштабов. Периодичность взрывов объясняется тем, что накопление вещества красным карликом занимает годы. Критическая масса накапливается примерно за 80 лет, достигает предела и происходит взрыв.
Эти процессы имеют прямое отношение ко вспышкам новых звезд различных типов. Однако в бинарных системах взрываются звезды и с весьма скромной начальной массой, с которых мы и начнем. Звезды с массами до половины солнечной красные карлики синтезируют в своих ядрах гелий из водорода и на этом успокаиваются. Светила потяжелее ведут себя гораздо интересней. Когда в центре такой звезды образуется гелиевое ядро, где горение уже не идет, оно начинает сжиматься под действием тяготения. При сжатии температура ядра возрастает, и прилегающий слой водорода нагревается до порога, за которым начинаются термоядерные реакции. Поскольку тепло перетекает из этого слоя к поверхности звезды, ее атмосфера раздувается настолько, что звезда разбухает в десятки и сотни раз.
В процессе расширения звездная оболочка постепенно остывает, максимум ее оптического спектра смещается в сторону длинных волн, и звезда превращается в красный гигант. Такая судьба ожидает и наше Солнце. Судьба звездного ядра также зависит от начальной массы звезды. Если она ненамного больше половины солнечной, ядро остается гелиевым. До поры до времени оно продолжает сжиматься, но не нагревается до температур порядка 100 млн градусов, когда начинаются новые термоядерные превращения. Ядра более массивных звезд нагреваются так, что становятся способны производить углерод и кислород. Если же начальная масса звезды в несколько но не более, чем в восемь раз превосходит солнечную, то в ее ядре синтезируются неон и магний.
А вот элементы с большими атомными номерами там не возникают, поскольку такая звезда не способна спрессовать ядро для достижения температур, нужных для их синтеза. Пока в ядре и вокруг него продолжается генерация термоядерной энергии, оболочка звезды еще больше расширяется, и красный гигант становится сверхгигантом. Однако эти космические исполины не отличаются устойчивостью. Но одиночный карлик обречен на постепенное остывание. Он будет желтеть, краснеть, а потом и вовсе потухнет в оптическом диапазоне. Дело это небыстрое, счет идет на многие миллиарды лет. Пока что самые тусклые белые карлики, внесенные в астрономические каталоги, немногим холоднее Солнца.
Радиус типичного белого карлика сравним с земным, а масса составляет 0,6—1,2 массы Солнца. Белые карлики с массами свыше 1,44 солнечной массы не существуют и не могут существовать, но об этом позже. Материя белого карлика сжата до давлений, при которых разрушаются атомные электронные оболочки. Возникает особого рода плазма, состоящая из атомных ядер и вырожденного газа обобществленных электронов, движением которых управляют законы квантовой механики. Давление такого газа так называемое давление Ферми не зависит от температуры и определяется исключительно плотностью, поэтому остывание белого карлика не сказывается на его внутренней структуре. В отличие от звезды-родительницы, это чрезвычайно устойчивая физическая система: если белый карлик не будет проглочен черной дырой, он просуществует до тех пор, пока протоны не начнут распадаться, как им предписывают современные теории физики элементарных частиц. Период же их полураспада заведомо превышает 1032 лет.
Коллапсирующие ядра Звезды с начальной массой свыше восьми солнечных заканчивают жизнь взрывами фантастической мощности, вызванными очень быстрым сжатием коллапсом их ядер. Одна сотая этого остатка т. И хотя световые вспышки гибнущих массивных звезд представляют из себя феерическое зрелище, на их долю приходится лишь одна сотая доля процента высвобожденной энергии. Именно эти космические катаклизмы и называют сверхновыми звездами, или просто сверхновыми. Их подразделяют на группы в соответствии с оптическими спектрами. Эту классификацию 80 лет назад предложили Бааде и его коллега по обсерватории Маунт-Вильсон Рудольф Минковский, племянник знаменитого математика, эмигрировавший из Германии. Излучение сверхновых I типа не содержит линий испускания водорода, которые есть у сверхновых II типа, зато они включают семейство, спектры которого демонстрируют наличие ионизированного кремния.
Представители группы Ia взрываются на основе иного механизма, нежели гравитационный коллапс их ядер, поэтому о них поговорим позднее. Открытые в 1985 г. В среднем в каждой крупной галактике типа Млечного Пути ежегодно загораются две-три сверхновые, причем на каждую вспышку из группы Ia приходится три-пять сверхновых прочих разновидностей. Хотя в наши дни процессы коллапса массивных звезд обсчитывают с использованием хорошо проработанных физических моделей и мощных компьютерных ресурсов, многие детали этого процесса еще далеки от ясности. Для иллюстрации рассмотрим в общих чертах типичную судьбу голубого сверхгиганта с начальной массой порядка 20—25 солнечных масс. Водородное топливо он сжигает за 7 млн лет, еще полмиллиона лет займет формирование углеродно-кислородного ядра, нагретого до 200 млн К. С его возникновением термоядерный синтез останавливается, но ненадолго.
В отсутствие тепловой подпитки ядро сжимается под действием тяготения звездного вещества и соответственно нагревается. По достижении температуры 600—800 млн К углерод начинает гореть с образованием неона и магния, а спустя еще 600 лет при температуре 2,3 млрд К начинается горение кислорода. Оно запусткает цепочки ядерных превращений, которые приводят к синтезу различных изотопов кремния, серы, фосфора, аргона, калия, кальция и скандия. Американский астрофизик индийского происхождения С. Чандрасекар, будущий нобелевский лауреат, в 1930-х гг. Масса, которая получила название «предел Чандрасекара», составляет около 1,4 массы Солнца За сутки до кончины звезды ее ядро нагревается до 3,3 млрд К. Последние поглощаются другими ядрами, образуя все более тяжелые элементы.
Поскольку далее термоядерный синтез не идет, железное ядро сжимается и нагревается. В результате возрастает кинетическая энергия атомов железа, и они претерпевают хаотические превращения. Некоторые из них распадаются, а некоторые, напротив, вступают в реакции слияния и порождают более тяжелые элементы, такие как платина и золото. Поскольку эти реакции идут за счет накопленной тепловой энергии, температура звездного ядра уменьшается, давление его вещества падает, и ядро вновь начинает сжиматься. Этот процесс ускоряется, если в окрестностях ядра продолжаются процессы термоядерного синтеза, которые порождают новые и новые ядра железа. Затем наступает финальный катаклизм. Электроны прижимаются к ядрам и сливаются с протонами, превращаясь в нейтроны и нейтрино.
Ученые впервые увидели взрыв умирающей звезды. Он приблизит человечество к раскрытию тайн космоса
Когда на поверхность белого карлика сбрасывается достаточное количество вещества, температура становится настолько высокой, что на поверхности белого карлика начинается термоядерный взрыв, объясняют ученые. Руководитель отдела метеороидной среды НАСА Билл Кук говорит, что это очень яркое событие — земляне смогут увидеть, как на небе начинает появляться новая звезда. Раньше для того, чтобы увидеть T Северной Короны, мог понадобиться телескоп, но она вспыхнет так ярко, что ее можно будет увидеть и невооруженным глазом. По словам Кука, звезда делает это примерно каждые 79 лет. Последний раз «Полыхающая звезда» взрывалась в 1946 году.
Красный гигант Звезды, размер которых сравним с нашим Солнцем или чуть меньше, могут превращаться в красные гиганты. Когда у звезд главной последовательности в ядре заканчиваются запасы водорода, они начинают разрушаться, поскольку энергии, вырабатываемой при термоядерном синтезе, уже недостаточно для преодоления гравитации. Тем не менее, ядро продолжает сжиматься и становится плотнее; его температура и давление повышаются настолько, что гелий превращается в углерод. В результате высвобождается еще больше энергии. Когда водородный синтез переходит во внешние слои звезды, они увеличиваются в размерах и становятся ярче. Девятнадцать кораблей и 57 истребителей армии Китая пересекли срединную линию в Тайваньском проливе В итоге формируется красный гигант, который со временем продолжая разрастаться становится все более нестабильным. В конце концов, внешние слои звезды схлопываются, образуя разрастающееся облако пыли и газа. Экспансия внешней части продолжается постепенно, до тех пор, пока она не рассеется в пространстве. На этом этапе звезда превращается в планетарную туманность. Наше Солнце перейдет в стадию красного гиганта примерно через 5 миллиардов лет. Планетарные туманности и белые карлики В данном контексте представим себе внешнюю часть красной гигантской звезды, которая уже распространилась в пространстве, но движется вокруг ядра белого карлика. Таким образом, наружный слой в виде газа и пыли окутывает тяжелое, плотное ядро, известное как белый карлик. Ядро белого карлика испускает определенное количество радиации, ионизирующей газ и пылевую оболочку. Белые карлики способны излучать видимый свет в диапазоне от сине-белого до красного. Тем не менее БК не вырабатывает собственного тепла так как лишены источников термоядерной энергии и постепенно остывают в течение миллиардов лет. Сверхновая Эволюция звезд с массой, превышающей массу нашего Солнца примерно в восемь раз, протекает по другому пути. После того как в ядре такой звезды закончится водородное топливо, она начнет сжиматься. Это приведет к очередному коллапсу, который вновь запустит термоядерную реакцию, но уже с участием гелия. Что произойдет дальше, зависит от размера звезды. Звезда главной последовательности, с массой чуть больше солнечной, начинает превращать гелий в углерод, также как и звезды с более низкой массой. Но когда в ядре заканчивается гелий, оно сжимается, нагревается и начинает превращать углерод сначала в неон, затем в кислород, кремний и затем железо. При этом каждый новый "вид топлива" высвобождает энергию необходимую для удержания ядра от разрушения. Однако с каждым новым "топливным элементом" реакция протекает быстрее, чем с предыдущим. Звезды, размер которых сравним с нашим Солнцем или чуть меньше, могут превращаться в красные гиганты. К тому времени, когда кремний превратится в железо, топливо в звезде почти закончится. Далее произойдет разрушение ядра, которое быстро увеличится до первоначального размера и создаст ударную волну, результатом которой станет вспышка сверхновой. Остатки ядра образуют сверхплотную нейтронную звезду. Звезды, масса которых больше солнечной более чем в три раза, коллапсируют в черные дыры. Влияние сверхновых на Вселенную Также как и все звезды, сверхновые в конце концов угасают, однако они оказывают заметное влияние на эволюцию нашей Вселенной. Изучение сверхновых помогло астрофизикам и астрономам лучше понять, почему наша Вселенная постоянно расширяется.
Paice, johnapaice. Ученым удалось зафиксировать самый крупный за всю историю наблюдений взрыв в космосе, сообщает New Scientist. Гигантское облако газа было поглощено сверхмассивной черной дырой, в результате чего возник колоссальный выброс энергии. Размер огненного шара, образовавшегося от поглощения, в 100 раз больше, чем у Солнечной системы. Космический объект, получивший название AT20211wx, был впервые замечен в 2020 году сотрудниками Центра переходных процессов Цвикки при Паломарской обсерватории в Калифорнии. Эта установка изучает ночное небо на предмет внезапного увеличения яркости, что может сигнализировать о таких космических событиях, как сверхновые и пролетающие астероиды и кометы.
Во время максимума этого цикла на звезде резко возрастает количество пятен. Большинство из них имеют диаметр в несколько тысяч километров, а некоторые достигают размеров, превышающих размер Земли, иногда в несколько раз больше. Когда эти локальные магнитные поля прорываются через поверхность Солнца, они увлекают за собой его вещество, создавая невероятно высокие светящиеся шпили, называемые протуберанцами. Эти фонтаны плазмы — относительно безобидное явление. Но магнитные поля, которые их формируют, могут вызвать вполне реальную опасность. Дело в том, что силовые линии солнечных пятен содержат огромное количество энергии, и она может высвобождаться. Иногда это относительно незначительное событие, но бывает, что мощность такого взрыва эквивалентна нескольким сотням миллионов термоядерных бомб. Такие вспышки являются одной из главных причин, по которой инженеры космических аппаратов защищают бортовые компьютеры от радиации, чтобы предотвратить короткое замыкание». Они не излучают много видимого света, но выбрасывают в космос более миллиарда тонн водорода, иногда со скоростью несколько тысяч километров в секунду. Если такой выброс нацелен на Землю, он вступит во взаимодействие с геомагнитным полем нашей планеты, вызывая всевозможные разрушения.
Астрономы из Крыма первыми сняли взрыв звезды в соседней галактике
Карта распределения вероятности возникновения сверхновых с нанесенными известными остатками звездных взрывов. Хорошо видно, что многие исторические сверхновые 1054 года и Тихо Браге 1572 года находятся на краю карты вероятности или вообще за ее пределами. Большая часть интереса к этой исторической астрономии заключается в установлении точной даты взрыва сверхновых. По словам Филдса, многие места древних детонаций до сих пор существуют как расширяющиеся облака из пыли и газа, и точное определение года или даже дня взрыва может помочь астрономам восстановить их историю. Исследователи также размышляют о прошлом, чтобы подготовиться к будущему. Когда взорвется следующая сверхновая в Млечном Пути, будь это через год или столетие — астрономы определенно не пропустят ее. Например, детекторы нейтрино заметили сверхновую аж в соседней галактике в 1987 году, и если бы нечто подобное произошло на нашем «космическом заднем дворе», говорит Филдс, «они [детекторы] просто зашкалили бы». Причем на текущий момент детекторы нейтрино — далеко не единственный способ засечь звездный взрыв. Произойди сейчас взрыв сверхновой, различные астрономы быстро бы скооперировались, делясь данными с телескопов и детекторов гравитационных волн, чтобы превратить даже тусклую и невидимую глазом сверхновую в самую изученную звезду в истории человечества. Однако есть хороший шанс, что мы все же сможем увидеть следующую сверхновую невооруженным глазом.
Конечно, яркая и видимая днем сверхновая бывает раз в несколько столетий, но у нас будут астрономы и интернет, которые раскрасят и увеличат даже тусклую точку. Возможно, половина всех сверхновых будет едва видна, оценивает Филдс в новой работе, но теперь мы по крайней мере знаем, где лучше всего их искать.
Но создать достаточно плотные и горячие условия для более тяжелых металлов, платины или теллура, у них не получается, считают ученые. Когда звезда больше не может поддерживать реакцию ядерного синтеза, она коллапсирует под своей же гравитацией и становится нейтронными звездами. Это создает чрезвычайно плотную материю.
А столкновение таких звезд и последующий космический взрыв распыляет эту материю, которая богата свободными нейтронами.
Об этом пишет naked-science. И только сейчас, через столько лет, "Хаббл" запечатлел остатки этого космического взрыва. Для этого, по сообщению представителей NASA, "Хаббл" изменил свой график наблюдений, чтобы заснять последствия этого взрывного события, хотя сама сверхновая уже исчезла из поля зрения.
Об этом ТАСС сообщил директор по комплексной безопасности группы компаний… Устроивших массовую драку в Туапсе граждан Узбекистана выдворят из России Пятнадцать граждан Республики Узбекистан, устроивших в среду массовую драку в Туапсе, будут оштрафованы и выдворены из России, сообщили в прокуратуре Краснодарского края. Кадры массовой драки появились в сети ещё в… МИД Польши: Дуда не уполномочен обсуждать размещение ядерного оружия Президент Польши Анджей Дуда не уполномочен обсуждать возможность размещения ядерного оружия в стране. Хотя некоторым удается ограничиться незначительным увеличением, для большинства это становится серьезной проблемой.
Ученые впервые увидели взрыв умирающей звезды. Он приблизит человечество к раскрытию тайн космоса
В космосе произошёл мощнейший взрыв повторной новой звезды | Телескоп Хаббл смог запечатлеть процесс взрыва сверхновой, а мы публикуем видео этого процесса, который происходил в течение 5 лет. |
«Воскресшая» звезда: яркий взрыв в миллиарде световых лет поставил астрономов в тупик | Новость о грядущем взрыве Бетельгейзе взбудоражила общественные массы. |
Ученые раскрыли секрет гигантских взрывов на звездах | Звезда стала новостью последних дней, поскольку явила необычный по глубине минимум яркости. |
«Воскресшая» звезда: яркий взрыв в миллиарде световых лет поставил астрономов в тупик
Речь идет о взрыве звезды T Северной Короны, (T Coronae Borealis), ее еще называют «Полыхающей звездой». В 2024 году в трех тысячах световых лет от Земли произойдет взрыв уникальной звезды. Хаббл наблюдает, как сверхгигант Бетельгейзе медленно восстанавливается после взрыва на поверхности звезды. Карлик то и дело вытягивает энергию из своего соседа, что в конечном итоге приводит к термоядерному взрыву, свет от которого напоминает рождение новой звезды.
Телескоп Джеймса Уэбба зафиксировал очень редкий взрыв в космосе
Звезда в космосе. После взрыва она превратилась в гипермассивную нейтронную звезду с чрезвычайно мощным магнитным полем, но уже через несколько миллисекунд коллапсировала в черную дыру. Британские исследователи космоса сообщили об обнаружении крупнейшего за всю историю наблюдения космического взрыва. Новость о грядущем взрыве Бетельгейзе взбудоражила общественные массы. Интересно, что этот взрыв не самое яркое явление, когда-либо наблюдавшееся. После взрыва она превратилась в гипермассивную нейтронную звезду с чрезвычайно мощным магнитным полем, но уже через несколько миллисекунд коллапсировала в черную дыру.
В созвездии Кассиопея только что взорвалась звезда
Он вызвал толчки и пульсации, которые оторвали кусок фотосферы, оставив звезду с большой площадью холодной поверхности под облаком пыли, образовавшимся в результате охлаждения части фотосферы. Бетельгейзе сейчас изо всех сил пытается оправиться от этой травмы. Весящий примерно в несколько раз больше нашей Луны, расколотый кусок фотосферы улетел в космос и остыл, образовав пылевое облако, которое блокировало свет звезды, видимый земными наблюдателями. Затемнение, которое началось в конце 2019 года и продолжалось несколько месяцев, было легко заметно даже наблюдателям на заднем дворе в Анапе, наблюдавшим за изменением яркости звезды. Одна из самых ярких звезд на небе, Бетельгейзе, легко находится в правом плече созвездия Ориона. Еще более фантастично, что 400-дневная пульсация сверхгиганта теперь исчезла, возможно, по крайней мере, временно. В течение почти 200 лет астрономы измеряли этот ритм, проявляющийся в изменениях яркости Бетельгейзе и движении поверхности. Его разрушение свидетельствует о жестокости выброса. Внутренние конвекционные ячейки звезды, которые вызывают регулярную пульсацию, могут плескаться, как несбалансированный бак стиральной машины, предполагает Дюпре.
Такой процесс иногда заканчивается образованием не нейтронной звезды, а черной дыры. Что конкретно образовалось в далеком космосе после зафиксированного взрыва, ученым пока неизвестно. Нейтронная звезда Масса взорвавшейся звезды, по словам астрономов, составляла примерно 30 масс Солнца. На настоящий момент ученые ищут образовавшуюся сверхновую. Сразу после взрыва звезда становится слишком яркой, чтобы ее могли заметить телескопы.
Взрыв, по размерам сопоставимый с Солнечной системой, первоначально был идентифицирован неправильно. Однако взрыв оказался беспрецедентно плоским, что является очень необычным явлением, поскольку звезды обычно взрываются в сферической форме из-за своей формы. Открытие было сделано случайно, когда ученые зафиксировали вспышку поляризованного света, а затем использовали Ливерпульский телескоп для измерения степени поляризации.
Под действием очень высокого гравитационного поля белого карлика огромное количество газа постоянно забирается у звезды-компаньона. Постепенно газ накапливается в аккреционном диске и медленно опускается к поверхности звезды. Периодически, примерно раз в 80 лет, при достижении критической массы происходит термоядерный синтез водорода, что приводит к появлению новой звезды. Что такое новая звезда? В астрономии новая звезда — это огромный ядерный взрыв, вызванный накоплением водорода на поверхности белого карлика. В результате этого взрыва звезда становится намного ярче, чем обычно, после чего возвращается к своей первоначальной яркости. Это явление возникает в бинарной системе, состоящей из белого карлика и красного гиганта. Если звезды находятся достаточно близко друг к другу, может случиться так, что часть внешней атмосферы красного гиганта будет медленно отбираться белым карликом. По мере этого вокруг белого карлика формируется аккреционный диск, состоящий в основном из гелия и водорода. Из-за огромного повышения давления у поверхности звезды достигаются температуры в миллионы градусов Кельвина.