Новости реактор на быстрых нейтронах в россии

"Росатом" начал строительство уникального энергоблока с реакторной установкой на быстрых нейтронах БРЕСТ-300 по стратегическому проекту "Прорыв". Блок № 4 Белоярской АЭС оснащен реактором на быстрых нейтронах БН-800 установленной электрической мощностью более 800 МВт. Но картина решительно меняется при рассмотрении широкомасштабного внедрения ядерных реакторов на быстрых нейтронах и замыкании топливного цикла. Сегодня в России успешно работает исследовательский реактор на быстрых нейтронах с натриевым теплоносителем БОР 60, однако его возраст уже перевалил за 45 лет. Выполнены запланированные исследования в обоснование безопасности многоцелевого исследовательского реактора на быстрых нейтронах МБИР и продления сроков эксплуатации БОР-60.

Росатом делает значительный шаг вперед в трансмутации отходов уранового топлива

Новый ядерный реактор на быстрых нейтронах со свинцовым теплоносителем должен стать демонстратором уникальной технологии – полностью замкнутого ядерного топливного цикла. Многоцелевой быстрый реактор будущего В России в рамках комплексной программы развития атомной науки, техники и технологий активно строят МБИР — Многоцелевой научно-исследовательский реактор четвертого поколения на быстрых нейтронах. И реактор на быстрых нейтронах немного уменьшает их количество.

«Росатом» начал строить первый в мире атомный энергоблок с безотходным циклом

Мы считаем, что для этого нужно работать по четырем направлениям: — Развитие персонала: мы делаем всё, чтобы привлечь талантливых разработчиков и помочь им себя проявить. Наши специалисты посещают крупнейшие мировые выставки в отрасли силовой электроники, проходят дополнительное обучение и размещают свои научные статьи в промышленных журналах; — Оптимизация организационной структуры: эффективное управление и планирование производства и отлаженное внутреннее взаимодействие позволяют нам быстро принимать и выполнять заказы; — Использование только высококачественных сырья и материалов: мы сотрудничаем с ведущими мировыми поставщиками компонентов полупроводниковых приборов; — Современное производственное и испытательное оборудование: автоматизированное производство и контроль качества — это отдельная гордость нашей компании. Все оборудование сертифицировано! Возможна быстрая доставка товара по России.

Следовательно, атомной энергетике, построенной на основе только этих реакторов, присущ тот же принципиальный недостаток, что и традиционной энергетике на органическом топливе — исчерпаемость топливных ресурсов. Коротко Однако существует ядерный процесс, который позволяет использовать для производства энергии подавляющую составную часть природного урана — уран-238: при захвате нейтрона уран-238 превращается в плутоний-239, который является таким же делящимся материалом, как и уран-235. При облучении плутоний-239 не только делится, но и захватывает нейтроны, в связи с чем накапливаются его другие изотопы: плутоний-240, -241, -242, такое превращение наиболее эффективно происходит в реакторе на быстрых нейтронах. Принципиально важно, что при этом возможна наработка плутония в количестве, превышающем потребности самого реактора поэтому реакторы такого типа называют размножителями. За счет этого происходит не только наработка топлива для обеспечения работающих быстрых реакторов, но и постепенное его накопление. В связи с этим становится очевидным, что внедрение реакторов-размножителей на быстрых нейтронах является необходимым условием для развития крупномасштабной ядерной энергетики.

В процессе эксплуатации реакторов на быстрых нейтронах должна быть решена важнейшая задача — создание замкнутого ядерного топливного цикла, который характеризуется повторяющимися циклами переработки отработавшего ядерного топлива и изготовления на основе выделенного плутония нового топлива. Этапы освоения быстрых натриевых реакторов Работы по быстрым реакторам были начаты в Физико-энергетическом институте с создания исследовательской базы — экспериментального реактора мощностью 5 МВт БР-5, 1958 г. В нем впервые были использованы и испытаны в работе научно-технические идеи и решения, на основе которых позднее стали развиваться быстрые реакторы большей мощности. К числу таких решений относились: натриевый теплоноситель для отвода тепла от ядерного реактора, керамическое топливо в виде смеси диоксидов урана и плутония, нержавеющие стали в качестве основного материала конструкций, контактирующих с натрием. Реактор БОР-60 разработчик проекта РУ — ОКБ «Гидропресс» представлял собой следующую ступень в освоении технологии быстрых натриевых реакторов и разрабатывался с более широкими возможностями для проведения различных исследований.

Ученые сумели превратить опасные соединения в топливо, которого хватит на тысячи лет. Ядерная реакция происходит в тепловыделяющей сборке, которая находится в активной зоне реактора. При попадании нейтрона, ядро урана делится на две части, которые разлетаются с большой скоростью. При этом выделяется большое количество тепловой энергии и образуются новые нейтроны. И это та технология, где мы пока недостижимы для всего остального мира", — заявил Иван Филин, первый заместитель главного инженера БАЭС. Инновационное горючее для атомных станций будущего создают на секретном предприятии, надежно укрытом в глубине сибирских скал. Там оксиды урана и плутония обрабатывают и надежно спаивают в тепловыделяющие сборки. Затем контейнеры с готовыми изделиями доставляют на Урал и уже на атомной станции, словно батарейки, загружают в реактор.

Идея ЗЯТЦ заключается в том, чтобы извлекать энергию из радиоактивных материалов, которые до сих пор считались отходами и подлежали захоронению. Что само по себе крайне дорого и опасно. При выстраивании двухкомпонентной атомной энергетики с замыканием ядерного топливного цикла то, что не знали куда деть, становится ценнейшим сырьем — реакторы на быстрых нейтронах «питаются» тем, что остается после работы обычных реакторов.

Россия на пороге создания нового реактора на быстрых нейтронах

отметил директор Белоярской АЭС Иван Сидоров. Рассказываем, как устроены реакторы на быстрых нейтронах и почему они могут в корне изменить наше представление об энергетике. БН-1200М, как следует из названия — это модернизированный реактор на быстрых нейтронах электрической мощностью 1200 МВт.

В России появился «вечный» ядерный реактор

Скорая реакция источников, близких к "Росатому," в формате: "правительство России согласилось с предложенным "Росатомом" календарным планом настоящей атомной технической революции, которая позволит ей окончательно закрепить за собой роль лидера высоких технологий" говорит о том, что это событие - отнюдь не рядовое. Ведь что бы ни говорили представители атомного лобби о мнимой дешевизне атомного киловатта, капитальные затраты на реализацию этой программы существенны - к примеру, стоимость строительства одной только Курской АЭС-2 это четыре двухблочных АЭС с водо-водяным энергетическим реактором ВВЭР-1300, см. Что дадут "быстрые нейтроны" в ближайшей перспективе? Привычный нам мир держится на углеводородной энергетике — львиная доля электричества, которую мы потребляем, получена путем сжигания нефти и газа. Однако запасы углеводородов на планете ограничены, их, по разным оценкам, хватит еще на 40—60 лет, а спад в добыче нефти и газа по некоторым оценкам может начаться уже с 2020 года. Так что вопрос о том, как жить дальше, с каждым годом становится все острее, а работы по поиску энергетической альтернативы — все масштабней. Если не считать возможности использования энергии ветра и Солнца, до последнего времени науке было известно всего две такие возможности: извлечение энергии за счет деления ядер тяжелых элементов, или при слиянии ядер самых легкого — водорода — с образованием ядра атома гелия. К сожалению, обе эти возможности весьма опасны — ведь в первой, по существу, приходится приручать атомный взрыв, во второй — термоядерную реакцию, которая питает звезды и пугает нас водородной бомбой.

В мире существует два класса ядерных реакторов: на медленных нейтронах водо-водяные, сокращенно ВВЭР, большой мощности канальные, или РБМК, на тяжелой воде и с шаровой засыпкой и газовым контуром и на быстрых нейтронах. Реакторы на быстрых нейтронах кардинально отличаются от всех остальных: плотность тепловыделения в них в несколько раз больше, поэтому в качестве теплоносителя там приходится использовать жидкий натрий или свинец вместо воды. При работе такого реактора происходит очень интенсивное выделение нейтронов, которые поглощаются слоем урана-238, расположенного вокруг активной зоны. Этот уран превращается в плутоний-239, который затем тоже может использоваться в реакторе как делящийся элемент.

Неужели мы продолжаем поставки из-за банальной жажды наживы? Действительно, цены на уран последнее время растут. Но если посчитать, то зарабатываем мы на поставках не так уж много — в районе 1 млрд долларов в год. И поставки можно было бы относительно безболезненно прекратить под напором «взволнованной патриотической» общественности. Но очевидно, что, раз мы этого не делаем, значит, на то есть стратегические интересы, и, собственно говоря, они не являются секретными, поэтому объясним максимально доступно. Начнём с того, что в США тоже есть «взволнованные патриоты», и они тоже настойчиво требуют прекратить закупку ядерного топлива в России.

По их мнению, русские заманили американцев в коварную ловушку и за счёт поставок своего недорогого топлива для АЭС за десятилетия полностью уничтожили американскую индустрию по его производству и подсадили штаты на настоящую «российскую урановую иглу». Таким образом, Россия своими поставками долгое время, фактически, сдерживала развитие передового технологического сектора в США, да ещё и зарабатывала на этом. В конце прошлого года известный «сливной бочок» агентство «Блумберг», которое некоторые почему-то по-прежнему называют авторитетным деловым изданием, подняло панику о российских поставках, и на этой волне Палата представителей конгресса США единогласно одобрила законопроект, запрещающий поставки урана, обогащённого в России, для американских атомных электростанций. Правда, документу ещё нужно пройти через сенат и быть подписанным президентом страны Джо Байденом. Кроме того, в США есть и другие силы, которые яростно такому проекту противятся. Это, как ни удивительно, американские атомщики. Цены вверх Не то чтобы американские атомщики не были «патриотами», просто они понимают, что русские стабильно поставляют им качественное топливо, которое в США делать давно разучились. Любой политический запрет может привести к коллапсу, необходимости поиска альтернативных поставщиков и удорожанию, ведь на то, чтобы наладить выпуск собственного топлива, потребуются годы или десятилетия. В Европе, кстати, ситуация такая же — российский уран выведен из-под санкций, ведь некоторые АЭС, например, в Венгрии, Болгарии, Чехии, Словакии, Финляндии, из-за своей конструкции могут работать только на нашем топливе. Поэтому та же Венгрия регулярно блокирует любые попытки прикрепить уран к очередному санкционному пакету.

Да и тема обеспечения человечества практически вечной энергетической базой американцам не близка. Не вышло у американцев и с военным использованием натриевых быстрых реакторов. Натрий бурно реагирует с водой и горит на воздухе, что усложняет любую аварию с утечкой теплоносителя. Поэтому после трехлетней эксплуатации единственной американской подлодки с натриевым теплоносителем USS Seawolf были сделаны отрицательные выводы о применимости такого типа реакторов в подводном флоте, на самой подлодке реактор был заменен на обычный водо-водяной, и эксперименты с использованием быстрых реакторов Пентагон прекратил.

Однако из-за нескольких аварий его неоднократно останавливали, запускали снова, потом снова останавливали и окончательно заглушили в феврале 2010 года, так и не выведя на проектную мощность. В Японии быстрым реакторам не повезло: в 1995 году на реакторе «Мондзю» через четыре месяца после пуска произошла крупная утечка натрия. Потом 15 лет на АЭС шел ремонт, но при перезапуске снова произошла авария. С тех пор реактор не работает.

Индия имеет исследовательский быстрый реактор FTBR, но с пуском демонстрационного реактора PFBR-500 у индийцев не ладится уже много лет по причине отсутствия опыта и специалистов. Многочисленные отказы экспериментального оборудования ставят под вопрос реализацию этого проекта. Единственными серьезными конкурентами России в этой области сейчас являются китайцы, которые, однако, используют российское топливо с обогащенным ураном: они запустили экспериментальный реактор на быстрых нейтронах CEFR в 2011 году, а сейчас строят демонстрационный блок, который должен заработать в ближайшие годы. Первый китайский опытный реактор CEFR мощностью 65 мегаватт проектировался в 90-х годах в России, но строился китайцами самостоятельно.

Пущенная в 2010 году эта установка стала для Китая своего рода полигоном, где нарабатывается понимание, каким образом строить и эксплуатировать быстрые натриевые реакторы.

Облученное ядерное топливо с прочих атомных электростанций теперь можно повторно использовать после специальной переработки. Эксперты подчеркивают, что это событие можно считать ярким примером воплощения идеи мирного атома, работающего на благо всего человечества.

Успешное испытание подобного реактора подтверждает возможность практически безотходного производства в ядерной энергетике с доступом к урану-238 — элементу, которого должно хватить на миллионы лет.

Быстрые нейтроны на земле, под водой и в реакторах Поднебесной: кто этому прокладывал дорогу?

Так, «в США в 2005 г. Цена же киловатт-часа на ТЭЦ на мазуте составляла 3,18 цента, на угле - 2,07 цента, на природном газе - 3, 53 цента. А российская энергия по себестоимости - 1,4 цента за 1 кВт-ч» [1 ]. При анализе развития ядерной энергетики нужно учитывать, что за рубежом начали строиться новые более мощные реакторы, чем это было ранее. В Южной Корее к 2014 г. Важно также помнить, что «стоимость добычи углеводородов на арктическом шельфе будет только возрастать» [1]. И высказывание комиссара Еврокомиссии по науке и исследованиям Янеша Поточника подтверждает эти прогнозы: «Эра дешевой электроэнергии близится к концу, поэтому нам нужна сильная воля, чтобы сохранить конкурентоспособность и противостоять изменениям климата». Таким образом, из вышеизложенного можно сделать следующий вывод: как в Европе и США, так и в Азии, ядерная энергетика серьезно развивается.

И в нашей стране в течение двух последних лет приняты соответствующие решения на высшем политическом и государственном уровне. Россия не только должна развивать свою ядерную энергетику. Это диктуется как относительной дешевизной атомной электроэнергии, так и стремлением не отстать от других стран в развитии ядерной энергетики Индия и Китай, например, планируют до 2020 г. Наконец, именно ядерная энергетика позволит высвободить значительную часть газа, ныне сжигаемого в топках ТЭС, и направить его на экспорт. Понятно, что средства, вырученные от реализации в Европе нефти и газа, необходимо использовать с максимальной отдачей для промышленного развития России и повышения жизненного уровня ее населения. С учетом этих и других причин с 2007 г. Росатом приступил к строительству новых атомных станций, начав таким образом реализацию принятой накануне Федеральной целевой программой «Развитие атомного энергопромышленного комплекса России на 2007-2010 годы и на перспективу до 2015 года».

Россия уже почти три года, сразу же после смены руководства Росатома, взяла курс на значительное наращивание мощностей ядерной энергетики. Задача, поставленная руководством страны в июне 2006 г. А в марте 2007 г. Он сообщил о планах развития АЭС в стране: «В условиях ухода от газовой зависимости ядерная энергетика должна стать каркасом, на котором будет держаться вся российская экономика». Ученые и специалисты, планируя развитие новых ядерных генерирующих мощностей, ставку делают на водо-водяные реакторы типа ВВЭР-1000. В различных странах было построено более 50 энергоблоков этого типа, 14 из них - в России. Уже в ближайшем будущем на смену реакторам ВВЭР-1000 придут новые серийные реакторы ВВЭР-1200, что позволит сделать энергетику страны менее зависимой от газа.

Именно поэтому уже с 2009 г. Заявленные темпы строительства новых ядерных энергоблоков превосходят самые смелые прогнозы. Руководство Росатома во главе с Сергеем Кириенко начиная с 2007 г. Руководитель отрасли полагает, что до 2030 г. Такие планы можно только приветствовать, ибо севшей на «газовую иглу» России нельзя отставать от Китая, Индии, других стран в области мирного атома. Но для нормальной работы АЭС также необходимо топливо, только ядерное. Поэтому с самого начала своей деятельности в Росатоме С.

Кириенко активно работает еще в одном направлении - в обеспечении ядерной энергетики природным ураном. Прошедшие годы свидетельствуют, что и здесь имеются значительные результаты. Во-первых, серьезно увеличены масштабы будущего пополнения ураном страны из-за рубежа. Это и масштабные совместные работы с Казахстаном, с которым имеется договоренность на 135 тыс. Это разведка и добыча урана в Армении, где объем залежей оценивается до 40 тыс. Имеются планы и договоренности о совместных работах по добыче урана в Африке и Канаде. Это, наконец, поставки урана из Австралии, занимающей первое место в мире по объему запасов урана - 990 тыс.

Последняя договоренность вызвала недовольство в некоторых кругах США. Объясняется все просто: это свидетельствует о разработке планов по значительному увеличению добычи урана в нашей стране. Не останавливаясь подробно на этом вопросе, отметим некоторые моменты. Во-первых, это произошедшее за последние годы многократное повышение цен на природный уран - с 6,4 долл. Как результат - пересмотрены оценочные запасы урана в России в сторону увеличения, по меньшей мере, до 600800 тыс. А согласно информации руководителя Федерального агентства по недропользованию Анатолия Ледовских, ресурсы урана «по категории Р-1 должны быть увеличены до 2020 г. И, во-вторых, увеличены планы добычи урана в республиках Бурятия и Саха Якутия , Забайкальском крае и в Курганской области.

Это значительная по объемам и очень серьезная работа всей отрасли - строителей, геологов, других специалистов.

Советский Союз постоянно работал над созданием замкнутого топливного цикла в своей стране. И создание реакторов на быстрых нейтронах было одним из основных и постоянных направлений программы развития ядерной энергии. Опытный аппарат БН-60 в г. Димитровграде, ныне остановленный опытно-промышленный реактор БН-350 в Казахстане, а также успешно работающий один из лучших реакторов России БН-600 на Белоярской АЭС - все это серьезный опытный полигон будущего быстрой ядерной энергетики. В декабре 2006 г. Кириенко сказал: «Блок на быстрых нейтронах БН-600, расположенный на Белоярской атомной станции, уникален. Это зона наших конкурентных преимуществ. Здесь Россия безусловный лидер. Следующий шаг - это строительство БН-800.

Своевременный ввод БН-800 является ключевой позицией и принципиальным вопросом с точки зрения значимости для будущего развития ядерной энергетики» [10]. Ввод в эксплуатацию БН-800 Федеральной целевой программой «Развитие атомного энергопромышленного комплекса России на 2007-2010 годы и на перспективу до 2015 года» запланирован на 2012 г. Дальше это будет положено в основу разработки уже коммерческого реактора в полном смысле этого слова. Мы настроены оптимистично: он может появиться к 2020 г. Хочется сослаться еще на одну статью, связанную с проблемой быстрых реакторов. Он отметил, что в июне 2006 г. В 2012 г. Однако на этом развитие станции не должно остановиться, для чего уже в 2010 г. Остановимся также на состоявшейся в конце ноября 2007 г. Второй Международной научно-технической конференции «Развитие атомной энергетики на основе замкнутого топливного цикла с реакторами на быстрых нейтронах».

Россия будет иметь конкурентоспособный, отработанный и испытанный реактор на быстрых нейтронах. Строящийся реактор БН-800 и планирующийся БН-1 800 будут работать на смешанном уран-плутониевом топливе. Реализация этих идей даст Уралу после 2020 г. Более того, перевод БН-800 и БН-1 800 на замкнутый топливный цикл и постепенное сжигание в них трансурановых изотопов позволит России сохранить первенство в реализации программы быстрых реакторов. Немаловажным является и тот факт, что мощность российского серийного блока на быстрых нейтронах будет выше, чем у западных аналогов, что также принципиально важно. Вопрос о возможности производства смешанного оксидного топлива для загрузки быстрых реакторов подробно обсуждался в конце прошлого года с руководством управлений Росатома, отвечающих за обращение с ОЯТ и РАО. В ходе дискуссии выяснилось, что к 2012 г. Этого будет достаточно для загрузки нового реактора. Следовательно, за период с 2012 по 2020 г. Реактор БН-800, согласно данным работы Л.

Рябева и др. Состоявшиеся переговоры главы российской атомной отрасли С. Кириенко с американским министром энергетики С. Бодмэном относительно судьбы оружейного плутония [14] показали, что для подгрузки в реакторы БН-600 и БН-800 ежегодно нужно 1,5 т оружейного плутония. Расчеты показывают, что до 2021 г. Таким образом, в нарабатываемом продукте останется три тонны плутония, что позволит обеспечить начальную загрузку реактора БН-1800. Если в последующие после 2020 г. Очевидно, за время работы сибирских оборонных реакторов до пуска котельных будет наработано продукта еще лет на пять. Отсюда следует, что пуск завода РТ-2, который будет нарабатывать даже при переработке всего 800 т ОЯТ в год, то есть около 6,5 т энергетического плутония, должен произойти не ранее 2027-2030 гг. Вместе с тем эти расчеты не учитывают возможности переработки ОЯТ, выгруженного из реакторов БН после его выдержки хотя бы в течение 3-4 лет, то есть через 5 лет после загрузки.

С учетом такой возможности можно будет либо построить еще один реактор БН-1 800 после 2025-2026 г. Только в этом случае до 2030 г. С другой стороны, до 2050 г. Исходя из этого нельзя запаздывать с пуском завода РТ-2 более чем до 2040-2045 гг. Поэтому лучше ориентироваться на его пуск не позднее 2030 г.

Для атомщиков-радиохимиков особенно важны изотопы нептуния, америция и кюрия, поскольку именно они имеют наибольшее значение при переработке отработавшего ядерного топлива ОЯТ и обращении с радиоактивными отходами. Эти элементы обладают высокой радиоактивностью и токсичностью, выделяют много тепла, имеют большой период полураспада и являются наиболее опасными компонентами ядерных отходов. Российским решением проблемы минорных актинидов должны стать инновационные реакторы на быстрых нейтронах.

В качестве топлива эти установки могут использовать не только обогащенный природный уран, но и вторичные продукты ядерного топливного цикла — обедненный уран и плутоний. Кроме того, расчеты показали, что минорные актиниды из ОЯТ под действием быстрых нейтронов в реакторе будут делиться на осколки, представляющие собой достаточно широкий спектр радиоактивных и стабильных изотопов, но в целом их потенциальная опасность будет гораздо ниже, чем у исходных минорных актинидов. Процесс трансмутации минорных актинидов также называют «дожиганием» в реакторе. Внедрение МОКС-топлива позволяет многократно расширить сырьевую базу атомной энергетики за счет обедненного урана и плутония и перерабатывать облученное топливо вместо хранения.

БН-1200М — это "быстрый" реактор нового поколения, который должен стать типовым проектом для энергоблока мощностью 1200 МВт с реактором на быстрых нейтронах и жидким натрием в качестве теплоносителя. С помощью этой установки в России должна быть реализована концепция двухкомпонентной атомной энергетики с реакторами большой мощности как на тепловых, так и на быстрых нейтронах, и замкнутым ядерным топливным циклом, когда в производстве свежего топлива планируется использовать вторичные продукты — обедненный уран, плутоний и регенерированный уран, выделенный из облученного топлива. Это, в частности, позволит решить ресурсную проблему атомной энергетики, связанную с ограниченностью запасов природного урана. Поскольку реакторы на быстрых нейтронах способны работать на плутонии и, таким образом, позволяют замкнуть ядерный топливный цикл, оптимальным топливом для таких установок будет уран-плутониевая смесь.

Россия создала нейтронный «Прорыв»

The purpose of the MBIR construction is to have a high-flux fast test reactor with unique capabilities to implement the following tasks: in-pile tests and post-irradiation examination, production of heat and electricity, testing of new technologies for the radioisotopes and modified materials production.

Таким образом, Россия продемонстрировала ещё один пример работы атома на благо людей, пишет newsnn. Действительно, успешное испытание реактора данного типа означает начало практически безотходной ядерной энергетики с доступом к урану-238. Его хватит человечеству на миллионы лет. Сообщается, что отечественные реакторы на быстрых нейтронах ранее загружались обычным урановым топливом, т.

Срок службы блока с БН-1200М составляет минимум 60 лет. Как отмечает Сергей Шепелев, есть потенциал для роста до 80 лет, увеличения КИУМ — с 0,9 до 0,91, назначенного срока службы парогенераторов — с 30 до 60 лет, а также для удлинения топливной кампании. В 2023 году должны быть утверждены финансовые параметры проекта и пройдены общественные слушания.

Следующий шаг — одобрение Главгосэкспертизы и получение в Ростехнадзоре лицензии на размещение энергоблока. Затем — разработка проектной документации и прочих документов и еще одна Главгосэкспертиза. Задача на 2026 год — получить лицензию на сооружение. На 2027 год запланирована заливка первого бетона, к 2030 году должно быть завершено сооружение строительных конструкций, изготовление и поставка оборудования длительного цикла изготовления. План на 2031 год — получить лицензию на эксплуатацию, физический и энергетический пуски. Полагаю, мы готовы к коммерциализации быстрой натриевой технологии и сохранению лидирующих позиций России в этой области», — подытожил Сергей Шепелев.

С помощью этой установки в России должна быть реализована концепция двухкомпонентной атомной энергетики с реакторами большой мощности как на тепловых, так и на быстрых нейтронах, и замкнутым ядерным топливным циклом, когда в производстве свежего топлива планируется использовать вторичные продукты — обедненный уран, плутоний и регенерированный уран, выделенный из облученного топлива. Это, в частности, позволит решить ресурсную проблему атомной энергетики, связанную с ограниченностью запасов природного урана. Поскольку реакторы на быстрых нейтронах способны работать на плутонии и, таким образом, позволяют замкнуть ядерный топливный цикл, оптимальным топливом для таких установок будет уран-плутониевая смесь. В частности, реактор БН-800 в 2022 году был переведен на промышленное смешанное оксидное уран-плутониевое МОКС-топливо.

В Волгодонске отгрузили реактор на быстрых нейтронах

Реактор БН-800 проработал год на топливе из отработавшего ядерного топлива "Росатом" завершил передачу 25 тонн высокообогащенного урана для первого китайского реактора на быстрых нейтронах.
Россия создала нейтронный «Прорыв» По сути, реактор на быстрых нейтронах превратится в “перпетуум мобиле”.
Мировой прорыв: уникальный реактор скоро заработает в Сибири Так реактор на быстрых нейтронах, использующий отработанное топливо, уже вовсю работает на Белоярской АЭС.

В России до сих пор работают 10 ядерных реакторов «чернобыльского типа». Безопасны ли они?

Многоцелевой быстрый реактор будущего В России в рамках комплексной программы развития атомной науки, техники и технологий активно строят МБИР — Многоцелевой научно-исследовательский реактор четвертого поколения на быстрых нейтронах. То есть в отработавшем топливе реактора на быстрых нейтронах можно добиться выхода делящегося вещества равного или большего, чем было загружено в него изначально. Несмотря на это, сегодня 10 реакторов типа РБМК-1000 все еще работают в России. Сегодня в России успешно работает исследовательский реактор на быстрых нейтронах с натриевым теплоносителем БОР 60, однако его возраст уже перевалил за 45 лет. БН-1200М, как следует из названия — это модернизированный реактор на быстрых нейтронах электрической мощностью 1200 МВт.

В шаге от безотходной ядерной энергетики

Реакторы на быстрых нейтронах способны нарабатывать плутоний, которого хватит, чтобы обеспечить собственную работу и при необходимости другие реакторы новым топливом. При выстраивании двухкомпонентной атомной энергетики с замыканием ядерного топливного цикла то, что не знали куда деть, становится ценнейшим сырьем – реакторы на быстрых нейтронах «питаются» тем, что остается после работы обычных реакторов. Новый ядерный реактор на быстрых нейтронах со свинцовым теплоносителем должен стать демонстратором уникальной технологии – полностью замкнутого ядерного топливного цикла. "Росатом" начал строительство уникального энергоблока с реакторной установкой на быстрых нейтронах БРЕСТ-300 по стратегическому проекту "Прорыв".

Российские учёные вывели реактор Белоярской АЭС на номинальную мощность

Ожидается, что реактор заработает во второй половине 2020-х годов. По принципу естественной безопасности Перед началом официального старта мероприятия руководитель проектного направления «Прорыв», специальный представитель по международным и научно-техническим проектам госкорпорации «Росатом» Вячеслав Першуков рассказал журналистам, что конструкция реактора БРЕСТ-ОД-300 со свинцовым теплоносителем основана на принципах так называемой естественной безопасности. По его словам, интегральная конструкция и физика реакторной установки позволяют исключить аварии, требующие эвакуации населения. Он уверен, что в будущем подобные установки должны сделать атомную энергетику «не только более безопасной, но и более экономически конкурентной по сравнению с наиболее эффективной тепловой электрогенерацией». Она также подчеркнула, что «сама идея проекта "Прорыв" — это не только новое поколение реакторов, но и новое поколение технологий ядерного топливного цикла». Все они искренне радовались этому стартовавшему в России инновационному и очень важному для всей атомной энергетики проекту.

Открывший торжественную церемонию генеральный директор госкорпорации «Росатом» Алексей Лихачев сообщил, что благодаря переработке ядерного топлива, по сути, бесконечное количество раз ресурсная база атомной энергетики станет практически неисчерпаемой.

Одной из важных задач этого года является выбор топлива для реактора БН-1200М». Быстрая тематика — главный приоритет Физико-энергетического института им. Лейпунского, который выполняет функции научного руководителя всех проектов российских натриевых реакторов. Такие эксперименты обеспечивают технологическое лидерство России в мире и создают задел на создание новых реакторов и атомных электростанций, обеспеченных современными технологиями и высококвалифицированным персоналом.

Для справки: Акционерное общество «Государственный научный центр Российской Федерации — Физико-энергетический институт имени А.

На конференции был представлен широкий спектр докладов, касающихся перспектив развития технологий быстрых натриевых реакторов в России и за рубежом, нейтронной физики, теплоносителя, перспективных конструкционных материалов и оборудования. ЦАИР частного учреждения «Наука и инновации» был представлен доклад «История и перспективы развития зарубежных проектов реакторов с быстрым спектром нейтронов и натриевым теплоносителем», включающий анализ ретроспективы развития быстрых натриевых реакторов за рубежом, описание текущих зарубежных проектов реакторов типа БН и национальных программ поддержки их развития, а также результаты многокритериального сравнения данной технологии с другими инновационными реакторными системами.

Его примерная стоимость — 100 миллиардов рублей, но затраты на производство энергии будут значительно ниже, чем на обычных АЭС. Что касается безопасности, то «Прорыв» решает проблему с захоронением отходов. Теперь их просто не нужно накапливать, ведь отработанное топливо будут использовать снова. Кроме того, заменили теплоноситель в реакторе. В нем нет натрия, только свинец, у которого высокая температура кипения.

Похожие новости:

Оцените статью
Добавить комментарий