это компактные, быстро вращающиеся объекты, которые испускают концентрированные потоки излучения в космос.
Астрономы сообщили об открытии сотен мёртвых звёзд, пульсирующих гамма-излучением
Голубым цветом показаны линии одинаковой светимости пульсаров сплошные , одинакового возраста пунктирные и одинаковой индукции поверхностного магнитного поля штрих-пунктирные. Аббревиатуры: SGR — источники мягких повторяющихся гамма-всплесков англ. График из статьи: Kramer M. Перевод и обозначения: БРЭ. Наблюдаемое распределение пульсаров по периодам излучения выявляет существование двух групп. В одной из них сосредоточены объекты с миллисекундными периодами, в другой — с периодами от 0,1 с до нескольких секунд.
При этом короткопериодические пульсары никогда не попадут во вторую группу. Действительно, характерная для источников этой группы производная периода по времени порядка 10—19 требует для увеличения периода от 10 мс до 1 с времени более 300 млрд лет, что существенно превышает возраст Вселенной. Иногда монотонное увеличение периода излучения пульсара прерывается его внезапным скачком в сторону уменьшения с последующим медленным возвращением к первоначальному значению. Этот скачок периода называется «глитчем» от англ. Однозначного объяснения этого явления пока не существует.
Наибольшей популярностью пользуется модель, приписывающая скачки периода моменту отрыва сверхтекучих нитей, находящихся внутри нейтронной звезды, от её твёрдой коры Alteration of the magnetosphere... Предлагалась также модель «звездотрясения» — появления разломов в твёрдой коре нейтронной звезды в результате накопления в ней упругих напряжений и её скачкообразной деформации см. Наконец, рассматривалась возможность искажения наблюдаемого периода в результате нерегулярного ускорения движения самого пульсара Compatibility of the observed rotation parameters... Когда нейтронная звезда находится в двойной звёздной системе , а её компаньон испускает мощный звёздный ветер , включается механизм аккреции на нейтронную звезду. При этом её поверхность разогревается до температуры в миллионы градусов и начинает излучать в рентгеновском диапазоне.
Вследствие вращения нейтронной звезды это излучение носит импульсный характер — наблюдается рентгеновский пульсар. Кроме энергии, аккрецирующее вещество приносит и угловой момент , что приводит к увеличению скорости вращения нейтронной звезды и, соответственно, уменьшению периода её вращения со временем. Первый такой пульсар, Cen X-3, был открыт в 1971 г. У него наблюдались импульсы с периодом около 4,8 с, причём период был подвержен регулярной модуляции. Такая модуляция связана с орбитальным движением нейтронной звезды вокруг компаньона и вызвана эффектом Доплера.
Статья об этом опубликована в Astrophysical Journal Letters. Это примерно на два порядка выше, чем максимальная энергия частиц на мощнейшем в мире ускорителе, Большом адронном коллайдере, расположенном недалеко от Женевы. Считается, что некоторые высокоэнергичные гамма-кванты возникают в той же среде, что и заряженные частицы космических лучей.
Это первый миллисекундный пульсар, обнаруженный в центре нашей галактики. Результаты были подробно описаны в статье, опубликованной 13 апреля на сервере предварительной печати arXiv. Пульсары - это сильно намагниченные вращающиеся нейтронные звезды, испускающие пучок электромагнитного излучения. Наиболее быстро вращающиеся пульсары с периодом обращения менее 30 миллисекунд известны как миллисекундные пульсары MSP. Астрономы предполагают, что они образуются в двойных системах, когда изначально более массивный компонент превращается в нейтронную звезду, которая затем раскручивается за счет аккреции вещества из вторичной звезды.
Короче говоря, пульсары — это вращающиеся нейтронные звезды. Если пульсар не вращается, то это не пульсар, а обычная нейтронная звезда. Со временем пульсар замедлится и станет просто нейтронной звездой. Время, необходимое для остановки вращения, может составлять миллионы или миллиарды лет. По сравнению с планетой или астероидом пульсар невероятно мал. Он не может быть больше, чем большой город, такой как Лондон или Нью-Йорк. Хотя они могут быть размером с город, их масса может во много миллионов раз превышать массу Земли. Причина разницы в чрезвычайной силе гравитации , которая притягивает сама себя. Представление художника о новом виде Пульсара. Шарик в центре пульсара — нейтронная звезда. Розовый — это гамма-лучи, испускаемые пульсаром. Синие линии — это линии магнитного поля. Учитывая его название, неудивительно, что Pulsar будет вращаться, так что гамма-лучи не всегда будут стрелять в одном и том же направлении. Мы можем обнаружить пульсар только тогда, когда его лучи устремляются к нам. Были замечены пульсары, движущиеся со скоростью 500 километров в секунду. С такой скоростью они смогут избежать гравитационного притяжения галактики , а затем свободно парить в космосе. Будут не только звезды-изгои и планеты, но и пульсары-изгои. Пульсары со временем замедляются, например, Крабовый пульсар замедляется на 38 наносекунд в день. Однако они могут замедляться, а деградация в вращении незначительна. Любое искажение вращения может предвещать что-то поблизости, например, планету. Для сравнения, несмотря на то, что наша Земля крошечная по сравнению с Солнцем, Земля влияет на Солнце, изменяя его вращение. Разница между характерным и истинным возрастом пульсара Возраст пульсара нельзя рассчитать по формуле, использующей период вращения нейтронной звезды и скорость ее замедления, поскольку это не даст вам истинного возраста пульсара. Формула даст вам то, что называется «характерным возрастом». НРАО Истинный возраст пульсара другой. Это настоящий возраст Пульсара. Крабовый пульсар — часто приводимый пример пульсара разного возраста. Его характерный возраст составляет 1240 лет, но истинный возраст Пульсара составляет около 960 лет. Вспышка сверхновой, породившая пульсар, произошла в 1054 году нашей эры в Суинберне. Почему пульсары вращаются? Пульсары вращаются, потому что звезды-предшественники нейтронных звезд тоже вращаются.
Нестандартный пульсар
Пульсары Пульсары — это вращающиеся нейтронные звезды, которые под воздействием гравитации сжались до компактных размеров — всего 10-20 километров. При этом их масса сравнима с массой Солнца — для сравнения его диаметр составляет без малого 1 400 000 километров. То есть речь идет о невероятно плотных объектах. Пульсары — это разновидность нейтронных звезд, вращающихся вокруг своей оси и испускающих электромагнитное излучение в оптическом, радио- или иных диапазонах с участка поверхности.
Но прочесть «письма космоса» так и не удалось, зато вскоре нашлось еще три источника подобного мерцания. Им и дали наименование пульсаров. Энтони Хьюиш, возглавлявший группу британских первооткрывателей, за этот прорыв в науке был отмечен Нобелевской премией по физике. Что представляют собой пульсары?
Природа пульсаров была понята не сразу. Из-за особенностей излучения сначала было решено, что они имеют примерно ту же структуру, что и атомные ядра, обладая и такой же плотностью. Но позже стало ясно: это небесное тело схоже с планетами-гигантами. В ходе дальнейших исследований ученые пришли к выводу: пульсар — это нейтронная звезда, образовавшаяся в результате вспышки сверхновой и испускающая радиоволны. Постоянство пульсации объясняется стабильностью вращения таких нейтронных звезд. Для обозначения пульсаров в астрономии принято использовать четырехзначное число. Цифры эти обозначают часы две первых и минуты две последних прямого восхождения импульса.
Возникают они тогда, когда происходят вспышки сверхновых звёзд. История открытия Впервые открыли пульсар в 1967 году. Забавно, но обнаружение нового объекта космоса было неожиданным. Во время наблюдения пространства через радиотелескоп, группа учёных заметила поступающие импульсы. Сначала они даже не поняли, что это. Магнитное поле нейтронной звезды По одной из версий, послания из космоса были отголосками другой цивилизации, то есть инопланетной. Так, загадочные сигналы получили интересное название — маленькие зелёные человечки. Впоследствии, конечно, было установлено, что никакие пришельцы не посылают эти сигналы.
Ho peгуляpнocть пульcaции мoжeт нapушaтьcя гpaвитaциoнными вoлнaми. Этo зaмeтили в фeвpaлe 2016 гoдa. Kлaдбищa пульcapoв Пocтeпeннo вce пульcapы зaмeдляютcя. Излучeниe питaeтcя oт мaгнитнoгo пoля, coздaвaeмoгo вpaщeниeм. B итoгe, oн тaкжe тepяeт cвoю мoщнocть и пpeкpaщaeт пocылaть лучи. Учeныe вывeли cпeциaльную чepту, гдe eщe мoжнo oбнapужить гaммa-лучи пepeд paдиoвoлнaми. Kaк тoлькo пульcap oпуcкaeтcя нижe, eгo cпиcывaют в клaдбищe пульcapoв. Ecли пульcap cфopмиpoвaлcя из ocтaткoв cвepxнoвoй, тo oблaдaeт oгpoмным энepгeтичecким зaпacoм и быcтpoй cкopocтью вpaщeния. B тaкoй фaзe oн мoжeт пpoбыть нecкoлькo coтeн тыcяч лeт, пocлe чeгo нaчнeт тepять cкopocть. Пульcapы cpeднeгo вoзpacтa cocтaвляют бoльшую чacть нaceлeния и пpoизвoдят тoлькo paдиoвoлны. Oднaкo, пульcap мoжeт пpoдлить ceбe жизнь, ecли pядoм ecть cпутник. Toгдa oн будeт вытягивaть eгo мaтepиaл и увeличивaть cкopocть вpaщeния. Taкиe измeнeния мoгут пpoизoйти в любoe вpeмя, пoэтoму пульcap cпocoбeн вoзpoждaтьcя. Пoдoбный кoнтaкт нaзывaют мaлoмaccивнoй peнтгeнoвcкoй двoйнoй cиcтeмoй. Haибoлee cтapыe пульcapы — миллиceкундныe. Heкoтopыe дocтигaют вoзpacтa в миллиapды лeт. Heйтpoнныe звeзды Heйтpoнныe звeзды — дoвoльнo зaгaдoчныe oбъeкты, пpeвышaющиe coлнeчную мaccу в 1. Oни poждaютcя пocлe взpывa бoлee кpупныx звeзд. Дaвaйтe узнaeм эти фopмиpoвaния пoближe. Koгдa взpывaeтcя звeздa, мaccивнee Coлнцa в 4-8 paз, ocтaeтcя ядpo c бoльшoй плoтнocтью, пpoдoлжaющee paзpушaтьcя. Гpaвитaция тaк cильнo дaвит нa мaтepиaл, чтo зacтaвляeт пpoтoны и элeктpoны cливaтьcя, чтoбы пpeдcтaть в видe нeйтpoнoв. Taк и poждaeтcя нeйтpoннaя звeздa выcoкoй плoтнocти. Эти мaccивныe oбъeкты cпocoбны дocтигaть в диaмeтpe вceгo 20 км. Чтoбы вы ocoзнaли плoтнocть, вceгo oднa лoжeчкa мaтepиaлa нeйтpoннoй звeзды будeт вecить миллиapд тoнн. Гpaвитaция нa тaкoм oбъeктe в 2 миллиapдa paз cильнee зeмнoй, a мoщнocти xвaтaeт для гpaвитaциoннoгo линзиpoвaния, пoзвoляющeгo учeным paccмoтpeть зaднюю чacть звeзды. Toлчoк oт взpывa ocтaвляeт импульc, кoтopый зacтaвляeт нeйтpoнную звeзду вpaщaтьcя, дocтигaя нecкoлькиx oбopoтoв в ceкунду. Xoтя oни мoгут paзгoнятьcя дo 4З000 paз в минуту. Koгдa нeйтpoннaя звeздa выcтупaeт чacтью двoйнoй cиcтeмы, гдe взopвaлacь cвepxнoвaя, кapтинa выглядит eщe бoлee впeчaтляющeй. Ecли втopaя звeздa уcтупaлa пo мaccивнocти Coлнцу, тo тянeт мaccу кoмпaньoнa в «лeпecтoк Poшa». Этo шapooбpaзнoe oблaкo мaтepилa, coвepшaющee oбopoты вoкpуг нeйтpoннoй звeзды. Ecли жe cпутник был бoльшe coлнeчнoй мaccы в 10 paз, тo пepeдaчa мaccы тaкжe нacтpaивaeтcя, нo нe тaкaя уcтoйчивaя. Maтepиaл тeчeт вдoль мaгнитныx пoлюcoв, нaгpeвaeтcя и coздaютcя peнтгeнoвcкиe пульcaции. K 2010 гoду былo нaйдeнo 1800 пульcapoв пpи пoмoщи paдиooбнapужeния и 70 чepeз гaммa-лучи. У нeкoтopыx экзeмпляpoв дaжe зaмeчaли плaнeты. Tипы нeйтpoнныx звeзд У нeкoтopыx пpeдcтaвитeлeй нeйтpoнныx звeзд cтpуи мaтepиaлa тeкут пpaктичecки co cкopocтью cвeтa. Koгдa oни пpoлeтaют мимo нac, тo вcпыxивaют кaк cвeт мaякa.
Пульсары и магнетары - тоже звезды?
Единственный другой пульсар, у которого когда-либо было замечено излучение на уровне ТэВ — Крабовидный пульсар, находящийся на расстоянии более 6 000 световых лет от Земли, но даже он был ограничен на пике примерно 1 ТэВ. Пульсары представляют собой разновидность нейтронных звёзд, которые испускают импульсы в одном или в нескольких диапазонах сразу. Пульсары — это небесные тела, которые были обнаружены только в прошлом веке, что вызвало любопытство в научном сообществе у поклонников предмета.
«Чандра» показала 22 года жизни пульсара в Крабовидной туманности
Что такое пульсары. Пульсары – это нейтронные звезды, которые излучают интенсивные импульсы радиоволн, рентгеновского и гамма-излучения. Пульсары рождаются при сжатии огромной звезды (этот процесс известен как взрыв сверхновой), до диаметра в несколько десятков километров. Однако вскоре астрофизики пришли к общему мнению, что пульсар, точнее радиопульсар, представляет собой нейтронную звезду. излучений, приходящих на Землю в виде периодически повторяющихся всплесков (импульсов).
Пульсары и нейтронные звёзды / Звуки пульсаров / Как открыли и что это такое
Вещество скапливается в диске, окружающем пульсар, и со временем медленно падает на него. Во время этого процесса аккреции пучок излучения исчезал, и пульсар чередовал свое излучение между: "высоким" режимом, характеризующимся излучением рентгеновских лучей, ультрафиолетового и видимого света. Такое поведение всегда восхищало исследователей, и вот теперь причина этих удивительных переходов раскрыта. Франческо Коти Зелати, соавтор исследования и научный сотрудник Института космических наук в Барселоне, пояснил: "Мы обнаружили, что смена режимов происходит в результате сложного взаимодействия между пульсарным ветром — потоком высокоэнергетических частиц, выбрасываемых из самого пульсара, и движущейся к нему материей". Секрет, раскрытый в новом исследовании С помощью моделирования спектральных распределений энергии исследователи показали, что эти вариации мод вызваны изменениями во внутренней области аккреционного диска. В частности, в "низком" режиме вещество, текущее к пульсару, выбрасывается через струю, перпендикулярную диску.
По мере приближения к пульсару это вещество попадает под ветер, выходящий из звезды, и нагревается.
Hubble 5 112 подписчиков Подписаться Смерть громадной звезды: что может быть более эпичным и впечатляющим? Но умирает ли она полностью? Не остается ли на месте титанического светила что-то еще более удивительное и непонятное?
Почему пульсары называют маяками во Вселенной? Как ученые объясняют наличие сильнейшего магнитного поля у магнетаров? Можно ли их считать звездами? Отвечает астрофизик Александр Лутовинов. Александр Анатольевич Лутовинов — заместитель директора по научной работе Института космических исследований Российской академии наук, профессор РАН.
Предполагается, что они образуются в двойных системах, когда изначально более массивный компонент превращается в нейтронную звезду, которая затем раскручивается за счет аккреции вещества вторичной звезды. Некоторые пульсары состоят из двух нейтронных звезд так называемые системы двойных нейтронных звезд — double neutron star, DNS. Они являются одним из наиболее важных классов объектов, используемых для проверки и понимания многочисленных явлений астрофизической и фундаментальной физики, включая общую теорию относительности. Источник был обнаружен в ходе повторной обработки результатов обзора пульсаров Вселенной с высоким временным разрешением на южных низких широтах HTRU-S LowLat. Нейтронная звезда — космическое тело, являющееся одним из возможных результатов эволюции звезд, состоящее, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой около 1 км корой вещества в виде тяжёлых атомных ядер и электронов.
Нестандартный пульсар
Представьте, что в лесу что-то взорвали, и долго-долго между деревьями, туда-сюда, мечется ослабевающий звук. С тех пор мы расшифровали структуру этого эха, и знаем, что происходило во время самого Большого взрыва. Это открытие показало: надо уметь слушать шум. Просто шипение. В нем больше сведений, чем в красивых картинках космических телескопов вроде Хаббла. Я сижу, потому что меня притягивает Земля. Я не могу улететь в космос — так сильна гравитация! На самом деле, гравитация — самая слабая из сил. Я легко отрываю от пола ноги: в этот момент мои мускулы преодолевают притяжение всей Земли.
Зато дальность гравитации бесконечна. Меня прямо сейчас притягивают далекие галактики. Хотя и слабо. У гравитации есть другие загадочные свойства. Свет переносится фотонами, а электричество электронами, и вообще, для всех взаимодействий есть переносчик, но никто никогда не видел частицу, которая переносит гравитацию гравитон. А такая частица обязана быть. Гравитация распространяется не мгновенно, а со скоростью света. Допустим, я слепил из камней некий обелиск, и хочу им притянуть туманность Андромеды.
Придется подождать, пока воздействие гравитации моего обелиска дойдет до туманности 2,5 миллиона лет. Это как раз и означает: от моего обелиска к туманности отправились гравитоны. И они, как и фотоны света, летят неким цугом, волной. Вы можете прямо сейчас породить гравитационную волну. Возьмите что-то тяжелое — и вращайте. В вашей стиральной машине вращается барабан, и он создает заметные гравитационные волны! Вот только что значит «заметные». Гравитационные волны очень слабы.
И их не поймать приемником, даже с помощью голубей. А как поймать? Эйнштейн доказал, что гравитация — потому такая странная и неуловимая сила, что это по сути и не сила. Это искажение пространства-времени. Земля создает как бы воронку в пространстве-времени, в которой мы барахтаемся и улететь от Земли так просто не можем.
Помимо радиопульсаров, излучающих импульсы в радиочастотном диапазоне, существуют также рентгеновские пульсары, излучающие в диапазоне рентгеновских лучей.
Рентгеновские пульсары имеют мощные магнитные поля. Обычно рентгеновские пульсары представляют собой системы, состоящие из двух звёзд обычной и нейтронной , вращающихся вокруг общего центра. Первый из рентгеновских пульсаров был обнаружен в 1972 году.
Экстремальность — это ещё одна причина, по которой учёные изучают пространство вокруг пульсаров, чтобы проверить некоторые основные физические концепции. В основном, астрофизики хотят увидеть, сохраняется ли теория общей относительности вокруг пульсаров, потому что эти объекты являются одними из самых сильно гравитационно-интенсивных объектов во Вселенной, а общая теория относительности — это объяснение гравитации самой по себе. Джаннати-Атай говорит, что эти результаты предоставляют жёсткие ограничения на понимание источника излучения пульсаров. В настоящее время учёными принято считать, что этот источник представляет собой быстро движущиеся электроны, испускаемые и ускоряемые в магнитосфере пульсара, которые затем направляются к периферии объекта. Однако эту модель не объясняют наблюдения команды: чтобы получить излучение с энергиями, такими высокими, как 20 ТэВ, требуется какой-то ещё «множитель». И хотя у исследователей есть некоторые идеи, они намерены полностью разрешить эту головоломку в результате будущих наблюдений. Пока что последние результаты наблюдений открыли новый путь исследований для учёных, работающих среди звёзд. Эти открытия не только расширяют понимание о пульсарах, но также демонстрируют важность изучения этих космических объектов в качестве «космических лабораторий» для проверки фундаментальных физических концепций.
Однако имеются два П. Эти П. Существование у них оболочек, характерных для сверхновых звёзд, свидетельствует в пользу того, что П. Отсутствие же таких оболочек у других, более старых П. Интересная особенность молодых П. Практически все П. Исключение составляет только П. Исследования радиоизлучения П. Было также обнаружено, что один и тот же импульс на разных длинах волн регистрируется при наблюдениях не одновременно: сначала Земли достигает излучение с более короткой длиной волны, а затем — с более длинной. Это разделение всплеска радиоизлучения объясняется тем, что при распространении радиоволн в плазме, заполняющей межзвёздное пространство, скорость коротковолнового излучения близка к скорости света в вакууме, а для длинноволнового — заметно меньше. Поскольку концентрация электронов на луче зрения известна, то, измерив поток радиоизлучения на Земле и установив время запаздывания, можно определить расстояние до П.
ЧЕТЫРЕХМЕРНЫЙ ПУЛЬСАР И ОБЕРТОНЫЙ ПУЛЬСАР
- Открытие и классификация
- Значение слова «пульсар»
- Новый миллисекундный пульсар нашли в Млечном Пути
- Пульсары: что такое, история открытия
- Открытие и классификация
ПУЛЬСАР ЧТО ЭТО?
Международная группа ученых, работающих с южноафриканским радиотелескопом MeerKAT, обнаружила новую разновидность небесных тел — чрезвычайно медленно вращающийся «зомби-пульсар» PSR J0901-4046, совершающий один оборот за 76 с. Иллюстрация пульсара J1023, высасывающего вещество из звезды-компаньона. 13 июля 2022 Александр Садов ответил: Радиопульсары — одно из наблюдательных проявлений нейтронных звезд — источники пульсирующего радиоизлучения с периодами от нескольких миллисекунд до секунд.
Что такое пульсар? Ученый объясняет на пальцах.
Астрономы из Австралийской национальной обсерватории телескопов (ATNF) открыли новый миллисекундный пульсар. Астрономы из Австралийской национальной обсерватории телескопов (ATNF) открыли новый миллисекундный пульсар. это быстро вращающиеся нейтронные звезды, которые испускают импульсы излучения с регулярными интервалами от секунд до миллисекунд.