Новости фукусима япония

АЭС Фукусима-1 сегодня — На АЭС «Фукусима-1» приостановили сброс очищенной воды из-за землетрясения. В ночь с 23 на 24 августа в Японии приступили к сбросу в океан воды с АЭС «Фукусима-1». В марте 2011 года из-за землетрясения и цунами в Японии произошла авария на атомной электростанции «Фукусима-1», которая привела к радиоактивному загрязнению. Оператор АЭС «Фукусима-1» компания TEPCO начала второй этап сброса радиоактивной воды с аварийной АЭС «Фукусима-1».

Япония решила слить в Тихий океан воду с аварийной АЭС «Фукусима»

Но некоторые эксперты и рыбаки в самой Японии опасаются, что тритий может накопиться в морской среде, а затем попасть в пищу к людям через морепродукты. Китай уже приостановил ввоз морепродуктов из Японии. Да и вообще все соседи этой страны оценивают ситуацию негативно, но, видимо, у Токио нет другого выхода, считает специалист по ядерной энергетике Сергей Кондратьев. По его словам, точно спрогнозировать влияние сброса воды пока сложно, однако, скорее всего, серьезных последствий для окружающей среды не будет. Постепенно тритиевая вода начнёт растворяться в океане. Скорее всего, нет.

Дойдет ли до России? Тоже очень маловероятно. Рассеивание по большой акватории в толще воды у дна, на поверхности приведет к тому, что общее воздействие этих изотопов существенно снизится», — пояснил эксперт. Авария на «Фукусиме-1» 11 марта 2011 году в Японии произошла крупнейшая радиационная авария XXI века. Ничего подобного со времён катастрофы на Чернобыльской АЭС мир не видел.

Началось всё с мощнейшего в истории Японии землетрясением и последовавшим за ним цунами.

В процессе, как и раньше, будет сброшено приблизительно 7,8 тыс. Предположительно, это завершится до 16. Власти и спецслужбы заверили, что вода, которая оказалась в океане во время прошлых сбросов, отвечает стандартам.

Это упростит техническое обслуживание контейнеров и позволит расчистить территорию станции. После этого можно будет приступить к разбору оставшихся реакторов, захоронению радиоактивных веществ и полной ликвидации АЭС. Насколько опасен тритий? Еще один важный момент, на котором следует остановиться. Что такое этот тритий вообще и насколько он опасен для человека и экологии? Итак, тритий — это радиоактивный изотоп водорода.

Грубо говоря, тот же атом H, но еще с двумя лишними нейтронами в ядре. Он радиоактивен, но куда менее опасен, чем, к примеру, частицы цезия-137. Для сравнения, согласно рекомендациям Всемирной организации здоровья, допустимое содержание трития в литре питьевой воды — 10 000 Бк, а цезия-137 всего 10 Бк. Еще одна хорошая новость — этот элемент не накапливается в организме, а становится участником обмена веществ. Из-за этого тритий выводится из тела человека приблизительно за 10 дней. Период его полураспада составляет 12 лет и 4 месяца. Также тритий является природным радионуклидом. Каждый год благодаря космическим и солнечным лучам, попадающим на Землю, на нашей планете появляется 70 000 ТБк этого элемента. На Фукусиме-1 за 12 с лишним лет его скопилось менее 900 ТБк. Все зависит от дозы.

В той концентрации, в которой он содержится в воде на японской АЭС, элемент может навредить человеку. Однако после разбавления морской водой фукусимский тритий вряд ли нанесет серьезный вред окружающей среде и людям в частности. Главная проблема заключается в том, что тритий — очень маленькая частица, которая тяжелее воды. Именно поэтому очистить от нее жидкость гораздо сложнее, чем от других радионуклидов. Интересный факт. Атомные станции разных стран при работе в штатном режиме постоянно сливают тритиевую воду с систем охлаждения реакторов в реки, моря и океаны. Примерно столько же суммарно сбрасывают и станции Южной Кореи. Для сравнения, японцы планируют отправлять в Тихий океан не более 22 ТБк трития ежегодно. Экономический фактор и влияние на атомную энергетику Также нужно остановиться на финансовом вопросе. Авария на Фукусиме-1, ликвидация последствий катастрофы и недавние мероприятия по утилизации тритиевой воды уже обошлись Японии почти 90 миллиардов долларов.

Японские власти приняли решение с 24 августа 2023 года начать сброс воды, которая использовалась для аварийного охлаждения реакторов «Фукусима-1». Вода очищена и разбавлена морской водой, однако в своем составе все же содержит радиоактивные изотопы реклама После того, как в 2011 году на нее обрушилось катастрофическое 15-метровое цунами, выведшее из строя три реактора атомной электростанции "Фукусима Дайити", японское правительство ведет тяжелую борьбу, пытаясь предотвратить распространение радиоактивности в соседних регионах. Для полного вывода станции из эксплуатации стало принято постоянно сливать 13 тысяч тонн воды, которые были собраны на объекте. ООН решила, что японская станция очистки воды может "безопасно" сбрасывать воду в Тихий океан, планы были приведены в действие.

«Мало не покажется»: чем грозит России и миру сброс отходов с «Фукусимы-1»

Учитывая последовательно скорость двух течений от шести километров в час до двух, радиоактивная вода может оказаться где-нибудь у Сиэтла уже через четыре месяца! И еще цифры — от физиков. Радиоактивность трития снизится хотя бы вдвое только через 12,5 лет. Так что с отсутствием угрозы согласны не все.

Так, 14 марта при эвакуации психиатрической клиники Футабы потребовалось перевезти людей на расстояние около 230 километров. Три человека погибло в пути, и ещё 11 умерли на следующий день от недостатка медицинской помощи.

Из-за плохой организации эвакуации четыре пациента скончались в самой клинике, а один пропал без вести. Всего в апреле 2011 года был зарегистрирован 51 смертельный случай, связанный с эвакуацией из больниц [125]. В ходе продолжающегося радиационного мониторинга были выявлены загрязнённые территории за пределами 20-километровой зоны отчуждения. Эти территории протянулись в северо-западном направлении вдоль следа выброса, образовавшегося 15 марта в результате осаждения дождями радиоактивных веществ на поверхность земли. Сама эвакуация была проведена ещё через месяц [126] [127].

Всего статус эвакуированных получили более 164 тысяч человек [128] [129] , и по состоянию на 2020 год 39 тысяч из них всё ещё не могли вернуться в свои дома [130]. По оценкам правительства префектуры Фукусима и Японского агентства реконструкции, ответственного за восстановление пострадавших от стихийного и техногенного бедствий территорий, за годы после аварии физический и психологический стрессы, недостаток медицинской помощи привели к преждевременной смерти 2304 человек [131] , в основном людей пожилого возраста [132]. Основное влияние на загрязнение сухопутной территории Японии оказали радиоактивные вещества из контейнмента второго энергоблока после его разгерметизации 15 марта [133]. Следуя за переменой ветра направление выброса сменилось с южного на северо-западное , а вечером 15 марта начавшийся дождь привёл к осаждению радиоактивных веществ на поверхность [134]. После 23 марта атмосферные выбросы значительно снизились и уже мало сказывались на загрязнении территории Японии [134].

Выход в окружающую среду более тугоплавких компонентов ядерного топлива, таких как стронций и плутоний , был крайне ограничен. Основной сброс радиоактивной воды в океан произошёл в течение первого месяца с начала аварии. Всего было сброшено до 20 ПБк йода-131 и до 6 ПБк цезия-137, доля иных изотопов оказалась значительно ниже. Загрязнению подверглись прежде всего прибрежные воды: концентрация радиоактивных веществ в воде на расстоянии 30 км от АЭС оказалась в 1000 раз меньше, чем вблизи неё [139] [140]. В результате аварии население Японии подверглось дополнительному облучению.

Средняя эффективная доза эвакуированного населения в зависимости от времени нахождения в зоне отчуждения составила 6…10 мЗв за первый год после аварии. Жители префектуры Фукусима получили дозы в среднем ниже 4 мЗв, а облучение большей части населения Японии оказалось сопоставимо с облучением от природного фона или гораздо ниже его [142]. Переоблучение этих шести сотрудников в основном было обусловлено вдыханием радиоактивного йода-131 [146]. При этом четыре сотрудника носили пылезащитные респираторы вместо респираторов с активированным углём из-за нехватки последних в первые дни аварии [147]. За время аварии не было зарегистрировано ни одного случая острой лучевой болезни.

В дальнейшем, по оценкам МАГАТЭ и ВОЗ , прирост онкологических заболеваний, обусловленный аварией, будет чрезвычайно мал, а число радиационно-индуцированных заболеваний составит малую долю от числа спонтанных раков [148]. Министерство здравоохранения, труда и благосостояния Японии совместно с TEPCO реализовало программу медицинской поддержки аварийных работников. Все сотрудники, в том числе и те, кто сменил работу, проходят регулярные медицинские осмотры с целью выявления профессиональных заболеваний. Министерство сформировало набор критериев, по которым возникшая болезнь может быть расценена как последствие аварийного облучения хотя невозможно достоверно отличить радиационно-индуцированный рак от спонтанного. В этом случае пострадавшие имеют право на получение страховых выплат.

К началу 2023 года таким образом официально было подтверждено четыре случая лейкемии , два случая рака щитовидной железы , два случая рака глотки и один случай рака лёгких , приведший к смерти человека в 2018 году. Эта смерть является первой, отнесённой на счёт аварии [149]. По мнению комиссии, нельзя полностью исключить изменения биомаркеров в отдельных биотах , особенно в сильнозагрязнённых районах в первые два месяца аварии, однако нарушения в масштабах популяций маловероятны [150]. В 2011 году группа японских исследователей обнаружила физиологические и генетические аномалии у нескольких бабочек вида Zizeeria maha, принадлежащего к семейству голубянок , которое наиболее распространено в Японии. Некоторым особям, проживающим на территории префектуры Фукусима, нанесён вред в виде уменьшения площади крыльев и деформации глаз [151].

Расследование и его выводы[ править править код ] С целью раскрытия обстоятельств и причин катастрофы было опубликовано множество работ. В самой Японии независимо друг от друга было проведено четыре масштабных расследования [153] , результаты которых были представлены в 2012 году. Это отчёты владельца АЭС Токийской электроэнергетической компании TEPCO , комиссии кабинета министров, парламентской комиссии и так называемой независимой комиссии [154]. Последняя была создана по инициативе главного редактора газеты « Асахи симбун » Фунабаси Ёити; возглавил комиссию Коити Китадзава, бывший глава Японского агентства по науке и технологиям [155]. Доклад был подготовлен с привлечением международных экспертов [156].

Хотя непосредственной причиной аварии были названы разрушительное землетрясение и цунами, однако, по мнению правительственной комиссии, недостатки в противоаварийных мероприятиях привели к полной неготовности станции к удару стихии и определили масштабы катастрофы [157]. Первоначально TEPCO утверждала, что возможность цунами такого масштаба лежала за границей области разумных предположений [158]. Однако в окончательном отчёте было признано, что «оценка цунами в итоге оказалась неудовлетворительной, и коренной причиной аварии является недостаточная подготовка к воздействию цунами» [159]. Парламентская комиссия прямо назвала катастрофу «рукотворной» в том смысле, что, хотя недостатки в безопасности АЭС, особенно в отношении стихийных бедствий, были выявлены ещё до 2011 года, ни TEPCO, ни регулирующие органы, ни профильное министерство не сделали ничего, чтобы устранить их [160]. Независимая комиссия обратила внимание на «миф о безопасности», господствовавший во всей атомной отрасли Японии.

В самой индустрии, в регулирующем ведомстве и в сознании местных властей не допускалась мысль о том, что АЭС могут представлять серьёзную опасность. Это привело к тому, что тяжёлые аварии на станциях не рассматривались как вероятные и никакая подготовка к ним не велась [162]. Стойкость АЭС к стихийным бедствиям[ править править код ] Фукусима-дайити стала одной из первых АЭС, сооружённых в Японии, в период, когда сейсмология ещё находилась на раннем этапе своего развития [163]. Оценка вероятности крупных стихийных бедствий , выдерживать натиск которых была обязана станция, проводилась на основе исторических свидетельств об имевших место землетрясениях и цунами за период порядка четырёхсот лет [164]. Согласно собранным данным префектура Фукусима являлась одним из наименее сейсмически активных регионов Японии [165].

Определение возможных нагрузок на конструкции и оборудование АЭС основывалось на землетрясениях с магнитудой около семи [166] , а максимальная высота возможного цунами принималась равной 3,1 метра [167]. Первоначальная высота побережья, выбранного для строительства АЭС, составляла 30—35 метров над уровнем моря. Исходя из стремления снизить сейсмические нагрузки на оборудование, уровень промышленной площадки станции был понижен до отметки в 10 метров, при этом часть прибрежного насосного оборудования оказалась лишь на 4 метра выше уровня воды [167]. Это также позволяло сэкономить на эксплуатации систем охлаждения АЭС, забиравших морскую воду, даже несмотря на то, что потребовалась значительная выборка грунта при строительстве [168]. Описываемый подход к оценке рисков был характерен для периода 60-х и 70-х годов XX века.

Хотя при этом также было принято создавать запас безопасности, увеличивая магнитуду землетрясения либо располагая его предполагаемый эпицентр ближе к площадке станции, в проекте АЭС Фукусима-дайити этого сделано не было, и оценка сейсмических воздействий и связанных с ними цунами базировалась исключительно на исторических данных [169] [170]. Случаи серьёзных землетрясений магнитудой 9 в регионах со сходным тектоническим строением Чилийское и Аляскинское землетрясения также не были приняты во внимание [171] [172]. Начиная с 1990-х годов в международной практике при оценке вероятности землетрясений стали учитываться и геотектонические характеристики региона, показывающие потенциальную возможность сейсмической активности. Тогда же было установлено, что крупные землетрясения могут происходить в среднем раз в 10 000 лет, и исторических свидетельств за меньшие периоды не всегда оказывается достаточно для оценки риска [169] [173]. В атомном законодательстве Японии отсутствовали требования, обязывавшие владельцев АЭС проводить периодическую переоценку безопасности и соответствующую модернизацию станций с учётом результатов новых исследований, и до начала 2000-х переоценка рисков, связанных с землетрясениями и цунами, не проводилась [5].

После Великого землетрясения Хансин-Авадзи 1995 года озабоченность в обществе в отношении готовности инженерных сооружений к землетрясениям значительно возросла [174]. В числе прочего это заставило надзорное ведомство Японии, пусть и со значительной задержкой, обновить свои руководящие документы, касающиеся оценки сейсмостойкости АЭС. После выхода в 2006 году обновлённых норм Агентство по ядерной и промышленной безопасности потребовало у эксплуатирующих организаций подтвердить соответствие АЭС новым требованиям [175]. При переоценке рисков были использованы как новейшие данные по имевшим место землетрясениям, так и данные о потенциально сейсмогенных тектонических структурах [176]. Расчётные нагрузки от землетрясений на оборудование станции были существенно увеличены, но и они в ряде случаев оказались ниже тех, что испытала АЭС в 2011 году [177].

Со времени строительства станции и до 2002 года никаких переоценок, связанных с опасностью цунами для АЭС Фукусима-дайити, сделано не было. Регулирующее ведомство Японии никогда не выдвигало законодательных требований, касающихся пересмотра опасности от цунами [178] , хоть и признавалось, что вероятность затопления не может быть полностью исключена [179]. Деятельность TEPCO в этом направлении была большей частью спровоцирована появлением стандартов в области численных методов расчёта высоты волн цунами, предложенных Японским обществом инженеров-строителей [180]. Основной недостаток методики заключался в ограниченном выборе эпицентров землетрясений — источников цунами, перечень которых был основан на исторических данных, в результате чего источники магнитудой выше восьми в зоне Японского жёлоба напротив побережья Фукусимы не рассматривались [182]. В 2000-х годах в TEPCO поступала информация, заставлявшая усомниться в правильности принятых оценок высоты цунами.

Так, в июле 2002 года Центральным органом по содействию в сейсмологических исследованиях HERP было высказано предположение о возможности крупного землетрясения в любом месте на протяжении Японского жёлоба [183]. Позже, в 2009 году, новое исследование землетрясения Дзёган-Санрику , произошедшего в 869 году, показало, что вызванное им цунами могло затронуть зону расположения АЭС Фукусима-дайити [184]. TEPCO использовала эти источники в пробных расчётах, которые показали возможность возникновения волн цунами высотой 8 метров [185] от источника, аналогичного землетрясению Дзёган-Санрику, и более 15 метров от источника, предложенного HERP [186] В компании с большим скептицизмом отнеслись к полученным результатам, так как они были получены не по общепринятой методологии [187] , поэтому опасность катастрофических стихийных бедствий, значительно превышающих проектные предположения, не рассматривалась руководством TEPCO всерьёз [188]. В последующем вице-президент TEPCO Сакаэ Муто объяснил позицию компании так: «Я посчитал, что реализация мероприятий по защите от стихийных бедствий не требует спешки, так как такие катастрофы происходят реже, чем раз в сто лет. Эксплуатация реактора длится меньше» [184].

В результате TEPCO обратилась к Японскому обществу инженеров-строителей для дальнейшего анализа, и в 2011 году эта работа всё ещё велась. Никаких промежуточных мер по защите АЭС от подобных экстремальных воздействий не было принято [189]. Великое восточно-японское землетрясение превзошло даже максимальные оценки. Протяжённость вызвавшего землетрясение разлома была настолько велика, что спровоцировала сразу несколько волн цунами, которые, достигнув АЭС, усилили друг друга. Подобная ситуация никогда не анализировалась до событий 2011 года [190].

Согласно карте, в зоне АЭС высота волн цунами могла составить 5,72 метра при высоте защитных сооружений АЭС 4,91 метра. Руководство JAPC не стало ставить под сомнение данные, предоставленные префектурой, вместо этого перед станцией была возведена новая защитная дамба высотой 6,11 метра. Во время землетрясения 2011 года фактическая высота волн составила 5,4 метра [191]. Готовность АЭС к обесточиванию[ править править код ] Вероятность потери внешнего электроснабжения была учтена в проекте станции, которая на этот случай имела 13 дизельных электрогенераторов с запасом топлива на двое суток работы [192] и комплекты батарей постоянного тока. Данные системы были успешно включены в работу после землетрясения, которое, по-видимому, не оказало значительного влияния на их функции.

Однако расположение большей части оборудования в подвальных помещениях привело к тому, что после затопления площадки волной цунами резервное электроснабжение станции было практически полностью потеряно. Из-за разрушений от землетрясения и цунами внешнее электроснабжение было восстановлено лишь через 9 суток после начала аварии [109]. Законодательство в области ядерной безопасности Японии в принципе не требовало от эксплуатирующей организации рассматривать случаи длительного, многочасового обесточивания станции. В 1991—1993 годах, вслед за выходом в США «Отчёта по оценке аварий с потерей электроснабжения на атомных станциях» [194] , Комиссия по ядерной безопасности Японии инициировала рассмотрение аналогичного вопроса в отношении подведомственных АЭС. Обсуждение проводилось в закрытом режиме и с привлечением операторов АЭС в качестве консультантов.

В результате был сделан вывод о том, что несмотря на весьма серьёзные последствия многочасового обесточивания, сама вероятность такого обесточивания, длящегося дольше 30 минут [192] , чрезвычайно низка благодаря высокой надёжности электрических сетей Японии и резервного оборудования АЭС. Никаких изменений в руководящие документы внесено не было. Впоследствии глава Комиссии по ядерной безопасности Харуки Мадарамэ на заседании Парламентской комиссии по расследованию аварии принёс свои извинения по поводу подобной организации работы ядерного регулятора [195]. В самой TEPCO осознавали уязвимость системы внешнего электроснабжения от воздействия землетрясений, но не спешили с принятием соответствующих мер. К 2020 году в компании планировали модернизировать подстанцию Син-Фукусима и линии электропередач от неё к АЭС Фукусима-1 в соответствии с требованиями сейсмостойкости, а также увеличить запас топлива дизель-генераторов для обеспечения их автономной работы в течение более чем семи дней.

К моменту аварии эти мероприятия реализованы не были [196]. Таким образом, полное обесточивание станции включая отказ резервных источников , существенно повлиявшее на развитие событий при аварии, никак не было учтено при оценке её безопасности, что, однако, по заявлению МАГАТЭ, характерно для большинства эксплуатируемых в настоящее время АЭС [197].

Необходимо сделать гораздо больше, должны быть дополнительные инвестиции, есть огромная неопределенность с точки зрения возможных долгосрочных последствий», - говорит Тимоти Муссо, биолог из Университета Южной Каролины. Слив воды с АЭС Фукусима, как считают эксперты, может привести к повышению рисков онкологических заболеваний.

В том числе, для жителей России и Китая. Ведь в воде окажутся радионуклиды, об этом Звезде сообщил Андрей Фролов, сопредседатель Союза экологических организаций Москвы. Это простой вопрос. Поэтому мы выступаем против таких действий», - объясняет свою позицию Ясунари Фудзимото, представитель гражданской общины.

Тем не менее, менять свои планы по сбросу воды атомная электростанция не намерена. Более того, воздействие на население и окружающую среду от операции там называют незначительным. Несмотря на, казалось бы, неопровержимые доказательства.

Наибольшее недовольство планом выражают японские рыболовные сообщества, которые опасаются репутационного ущерба своему бизнесу из-за негативных новостей. В связи с этим власти Японии приняли решение учредить фонд поддержки развития местных рыбаков. С призывом отменить это решение к Японии обратился и Китай. В этот же день Главное таможенное управление КНР объявило , что полностью приостанавливает импорт морепродуктов из Японии, чтобы «предотвратить риск радиоактивного загрязнения пищевых продуктов» и защитить здоровье китайских потребителей. В Южной Корее, в свою очередь, признали, что если сброс воды пройдёт строго по плану, то он будет соответствовать нормам и в «чрезмерном беспокойстве» нет необходимости. Премьер-министр страны Хан Дак Су сообщил, что две страны договорились о создании «горячей линии» между регулирующими органами для быстрого обмена информацией, а также призвал Японию «прозрачно и ответственно» раскрывать данные о сбросе воды, пишет Yonhap. Ситуация на АЭС Утилизация очищенной воды началась спустя 12 лет после аварии на атомной станции.

Жители Сахалина обвинили «Фукусиму» в массовой гибели рыбы на севере Японии

Премьер-министр Японии Фумио Кисида публично, на камеру, съел рыбу и морепродукты из Фукусимы. АЭС Фукусима-1 сегодня — На АЭС «Фукусима-1» приостановили сброс очищенной воды из-за землетрясения. Япония планирует начать сброс зараженной радиацией воды с атомной электростанции "Фукусима-1" в воды Тихого океана.

«Мало не покажется»: чем грозит России и миру сброс отходов с «Фукусимы-1»

О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. В этом году Япония планирует сбросить более миллиона тонн сточных вод с АЭС «Фукусима», разрушенной в результате землетрясения 2011 года. Официальный Пекин негативно высказался об инициированном японской стороной начале процесса сброса очищенной радиоактивной воды с АЭС «Фукусима-1». Авария на АЭС "Фукусима-1" произошла в марте 2011 года после сильнейшего в истории страны землетрясения, за которым последовало цунами.

«Фукусима» может заразить 65 процентов российского улова

Правительство Японии объявило о намерении с 24 августа начать сбрасывать в океан воду с аварийной АЭС «Фукусима-1». Япония приступила к сбросу в Тихий океан более миллиона тонн воды, которая использовалась для охлаждения реакторов аварийной АЭС "Фукусима-1", передает со ссылкой. Япония намерена продолжить сброс воды с АЭС "Фукусима" в Тихий океан. Япония начала сбрасывать в океан воду, которой охлаждали поврежденные реакторы атомной станции "Фукусима". Путешествие в Японию за машинами после Фукусимы — 4, или евро по 57.

Япония начала сброс воды в океан с "Фукусимы"

Инженеры в спешном порядке завершают строительство систем очистки. Но многие японские экологи считают, что никакой речи о безопасном уровне очистки воды, которая использовалась для охлаждения реакторов после ядерной аварии в 2011 году, речи не идет. Компанию Tepco уже не раз ловили на занижении уровней излучения в тысяче резервуаров, где хранится смертельно опасная вода.

Для спасательных операций местные власти задействовали полицию и военных. Напомним, по последним данным, в результате наводнений, с середины марта погибли более 30 человек, около 100 тысяч пострадали. Кенийский Красный Крест предупреждает о возможном сходе оползней.

Метеорологи прогнозируют продолжение ливней до конца мая. Задачу усложняет плохое состояние дорог. Эксперты связывают буйство стихии с длительной засухой в регионе, вызванной явлением Эль-Ниньо. Причину возгорания всё ещё расследуют.

Власти итальянской Венеции ввели туристический сбор, чтобы сократить наплыв путешественников в город, передаёт корреспондент « 24KZ ». В японском городе Онагава префектуры Мияги планируют перезапустить первый ядерный реактор после аварии на АЭС «Фукусима». Администрация станции заявляет, что перезапуск позволит обеспечить более половины потребности региона в электричестве.

С другой стороны, активисты выступают против данной инициативы. Они обеспокоены вероятностью очередной аварии, которая уменьшит экспорт рыбной отрасли, итак пострадавший от сбросов воды с «Фукусимы». Также волнение у них вызывают недостаточные меры предосторожности на случай ЧП. Жители подали в суд на властей префектуры, чтобы остановить перезапуск.

Вышли из строя береговые насосы морской воды, которая являлась конечным поглотителем тепла как для самих реакторов, так и для резервных дизельных генераторов. Вода затопила подвальные помещения турбинных зданий, в которых располагались дизель-генераторные установки, распределительные устройства переменного и постоянного тока , а также аккумуляторные батареи. Два резервных генератора с воздушным охлаждением, расположенные на первом этаже общестанционного хранилища отработанного топлива, не были затоплены, однако вода повредила их распределительное электрооборудование [11] [12] [13].

В подобной ситуации быстрое восстановление электроснабжения было невозможно [13]. По мнению парламентской комиссии, TEPCO была абсолютно не готова к аварии такого масштаба и судьба станции была уже предрешена [15]. На блочных щитах управления погасло освещение, и пропала индикация приборов. Информация о состоянии станции также перестала отображаться на мониторах защищённого пункта управления, в котором располагался кризисный центр во главе с управляющим станции Масао Ёсидой. Основное средство связи на АЭС — мобильная PHS-телефония — не работала [16] , и единственным способом коммуникации осталась проводная телефонная связь. Персоналу на энергоблоках пришлось в свете карманных фонарей перечитывать аварийные инструкции, однако в них не оказалось никаких указаний, относящихся к полному обесточиванию. Более того, документация была составлена исходя из того, что будут доступны все критически важные показания приборов.

К персоналу станции и управляющему Ёсиде пришло осознание того, что сложившаяся ситуация превосходит все ранее предполагавшиеся сценарии тяжёлых аварий [17]. При отсутствии относящихся к делу процедур персонал был вынужден действовать большей частью исходя из собственного понимания ситуации [18]. До прихода цунами отвод теплоты остаточного энерговыделения от реактора осуществлялся при помощи двух независимых конденсаторов режима изоляции Isolation Condencer — IC [19]. Система IC способна охлаждать реактор в течение примерно 10 часов за счёт естественной циркуляции теплоносителя. При работе системы пар от реактора проходит по теплообменным трубкам, расположенным под водой в баке конденсатора, где, охлаждаясь, конденсируется , и конденсат сливается обратно в реактор. Чистая вода из бака постепенно выкипает, и пар сбрасывается в атмосферу. При работе система не потребляет электроэнергию, однако для запуска циркуляции необходимо открыть электроприводную арматуру [20].

Так как инструкциями ограничивается скорость охлаждения реактора, операторы практически сразу отключили один конденсатор и до прихода цунами несколько раз запускали и останавливали второй [21]. После потери электропитания и, соответственно, индикации на панели управления персонал не смог однозначно определить состояние системы [18]. Как показало расследование, система IC не функционировала уже с момента полного обесточивания станции. Согласно анализу TEPCO, подтверждённому правительственной комиссией и МАГАТЭ , из-за особенностей логики системы управления при перебоях питания вся арматура в контуре IC автоматически закрылась, включая и ту, которая должна быть постоянно открыта [22] [23] [24]. Никто из персонала на момент аварии не знал о такой возможности [25]. Не зная точного состояния системы IC, операторы тем не менее полагали, что она всё ещё отводит тепло от реактора [26]. Однако в 18:18, при самопроизвольном восстановлении питания некоторых приборов, на панели управления загорелись индикаторы закрытого положения арматуры.

После поворота соответствующих ключей управления над реакторным зданием на некоторое время показался и затем исчез след пара из бака конденсатора IC [27]. По всей видимости, активировать систему было уже поздно, так как циркуляция в ней была заблокирована образовавшимся при пароциркониевой реакции водородом [28] [29]. Эта ключевая информация не была адекватно передана руководству кризисного центра, где по-прежнему полагали, что реактор охлаждается [30]. Для большинства противоаварийных мероприятий требовалось электропитание, а возможность использования стационарного дизельного насоса системы пожаротушения вызывала сомнения, так как баки, из которых он забирал воду, располагались на улице и, скорее всего, были повреждены стихийным бедствием. Предложенный Ёсидой способ состоял в использовании обычных пожарных машин , рукава которых можно было подключить к выводам системы пожаротушения, расположенным снаружи турбинных зданий [33]. Возможность подачи воды в реактор от стационарной системы пожаротушения не была предусмотрена в оригинальной конструкции станции и была реализована в 2002 году, путём установки перемычек между соответствующими трубопроводами. Дополнительные выводы системы пожаротушения на наружных стенах турбинных зданий были смонтированы в 2010 году, всего за 9 месяцев до аварии.

Выводы предназначались только для пополнения запасов воды, и применение пожарных машин для подпитки реактора не рассматривалось инструкциями, так как считалось, что пожарный насос с дизельным приводом не зависит от источников питания и доступен при любом развитии событий [34]. Таким образом, решение Ёсиды было импровизацией, заранее не был установлен порядок действий и не распределены обязанности персонала, что в конечном счёте привело к значительной задержке подачи воды в реактор [35]. Одна машина была доступна изначально, для перемещения второй потребовалось расчищать завалы на дороге, а третий автомобиль был сильно повреждён в результате цунами [36]. Организационно задачи пожаротушения на АЭС были разделены: персонал TEPCO отвечал за пожарную безопасность внутри помещений станции, а Nanmei за аналогичные работы на прилегающей территории [37]. Никто из персонала АЭС не был обучен управлению пожарной машиной, а персонал Nanmei не имел права работать в условиях воздействия ионизирующего излучения. С двух до четырёх часов ночи продолжались поиски вводов системы пожаротушения в турбинное здание. Лишь при помощи работника, ранее участвовавшего в их установке, вводы обнаружились под завалами обломков, нанесённых цунами [38].

Пожарные машины не могли подавать воду в реактор, пока в последнем сохранялось высокое давление [39]. Однако в 02:45 12 марта давление в реакторе внезапно снизилось с 6,9 МПа до 0,8 МПа без каких-либо действий персонала, что свидетельствовало о серьёзном повреждении корпуса реактора [40]. Только в 05:46, более чем через 14 часов после отказа систем охлаждения, удалось наладить сколь-либо стабильную подачу воды в реактор первого энергоблока [41]. Согласно выполненному после аварии анализу, вполне вероятно, что только малая часть подаваемой воды достигла реактора [42]. Незадолго до полуночи с 11 на 12 марта персоналу станции удалось восстановить индикацию некоторых приборов при помощи найденного у подрядной организации небольшого мобильного генератора. Давление в гермооболочке первого энергоблока составило 0,6 МПа абс. В 00:55 Ёсида, как и требовалось процедурой, доложил в кризисный центр TEPCO в Токио о чрезвычайной ситуации и необходимости сброса давления.

До этого дня в TEPCO не сталкивались с операцией аварийного выброса радиоактивных веществ в атмосферу, и руководство решило также заручиться поддержкой правительства Японии. Премьер-министр Наото Кан и министр экономики, торговли и промышленности Банри Кайэда дали своё согласие, осознавая опасность разрушения контейнмента. Сброс было решено провести после официального объявления об операции местному населению, которое планировалось на 03:00 этой же ночи [44]. В 02:30 очередные замеры давления в гермооболочке показали значение в 0,840 МПа абс. В три часа ночи правительством Японии на пресс-конференции было объявлено о скором сбросе давления из гермооболочек АЭС [45]. Тем временем радиационная обстановка ухудшалась, и для прохода в реакторное здание потребовалось подготовить спецодежду с замкнутой системой дыхания. Кроме того, необходимо было спланировать работы, учитывая отсутствие освещения и питания для электро- и пневмоприводов арматуры [46].

Необходимую для планирования бумажную документацию приходилось на свой страх и риск искать в административном здании, проход в которое при землетрясениях был запрещён [47]. Однако в правительстве Японии не смогли объективно оценить все сложности работы на аварийной АЭС, руководство страны было раздражено «медленной» реализацией запланированного мероприятия [48] , и Наото Кан решил лично посетить станцию, чтобы узнать причину задержек [49]. Утром 12 марта Масао Ёсида внезапно узнал о скором прибытии премьер-министра и решил встретить его лично [48]. На совещании, занявшем около часа, Наото Кан потребовал как можно быстрее реализовать сброс давления, а Масао Ёсида доложил о трудностях, с которыми пришлось столкнуться на станции. Успокоить премьер-министра удалось только после заявления Ёсиды о том, что задача будет выполнена, даже если для этого придётся сформировать «отряд смертников» [50]. Операцию было обещано выполнить в 9:00 [51]. После того как в девять утра TEPCO получила отчёт об эвакуации населения из ближайших населённых пунктов, первая группа сотрудников АЭС, освещая свой путь фонарями, поднялась на второй этаж реакторного здания и к 09:15 вручную открыла один из клапанов системы вентиляции.

Вторая группа попыталась добраться до другого клапана, расположенного в подвальном помещении, однако из-за высокого уровня радиации им пришлось развернуться обратно на полпути из опасения превысить максимальную дозу в 100 мЗв [52]. Не оставалось ничего иного, как найти способ подать сжатый воздух к пневматическому приводу оставшегося клапана через штатную систему. Только к 12:30 удалось найти необходимый компрессор у одной из подрядных организаций на площадке АЭС. В 14:00 компрессор был подключён к системе сжатого воздуха, а с помощью мобильного генератора был запитан управляющий соленоид на пневмоприводе клапана вентиляции. Быстрое снижение давления в гермооболочке подтвердило успех операции [53]. В противовес нештатному использованию пожарных машин для охлаждения реактора противоаварийными инструкциями предлагалось использовать систему аварийной подачи борированной воды [54]. К зданию второго энергоблока доставили высоковольтный генератор, и 40 человек было задействовано, чтобы вручную протянуть несколько сотен метров тяжёлого силового кабеля по коридорам станции [56].

Практически сразу после того, как высоковольтный генератор был подключён и запущен, в 15:36 на первом энергоблоке раздался взрыв [57]. Причина взрыва — водород , образованный в результате пароциркониевой реакции [58]. Повсюду вокруг энергоблока были разбросаны обломки конструкций, повредившие временные кабели и пожарные рукава, а радиационная обстановка значительно ухудшилась [60]. Масао Ёсида был обескуражен произошедшим, поскольку теперь ему требовалось заново организовывать работу, которая, казалось, была уже завершена [61]. До взрыва никто из сотрудников станции или персонала кризисных центров не подозревал о возможности взрыва водорода за пределами защитной оболочки [62]. Мероприятия по водородной взрывобезопасности были реализованы лишь внутри контейнмента, который был заполнен азотом для создания инертной атмосферы [62]. Теперь же перед персоналом стояла задача предотвратить возможные взрывы на втором и третьем блоках.

Изначально предполагалось просверлить вентиляционные отверстия в строительных конструкциях, однако ввиду высокого риска детонации из-за случайной искры от этой идеи быстро отказались. В стенах реакторных зданий были предусмотрены вышибные панели, призванные защитить здание от избыточного давления изнутри. Панели на АЭС Фукусима были дополнительно укреплены, чтобы избежать случайного открытия при землетрясениях, и для их снятия требовался инструмент. TEPCO были заказаны установки гидроабразивной резки , однако из-за последующих событий ко времени, когда они могли быть доставлены на АЭС, необходимость в установках отпала [64]. После взрыва потребовалось несколько часов для того, чтобы восстановить подачу воды в реактор первого блока, расчистив завалы и заменив повреждённые пожарные рукава. Сами пожарные машины, хоть в них и были выбиты стёкла, сохранили работоспособность. В связи с исчерпанием запасов очищенной воды пришлось перевести водозабор пожарных машин на морскую воду, ближайшим источником которой оказалась камера переключения задвижек третьего энергоблока, затопленная при цунами [65].

Усилиями сотрудников удалось запустить пожарные насосы в 19:04 [66]. Незадолго до этого в кабинете премьер-министра в Токио обсуждалось положение на АЭС. После получения информации о взрыве Наото Кан решил расширить зону эвакуации с 10 до 20 км от станции, хотя планы эвакуации для этой зоны отсутствовали. Также у премьер-министра возникли сомнения касательно использования морской воды для охлаждения реакторов, и он спросил, не вызовет ли такой способ проблем с контролем подкритичности. Этот вопрос вызвал некоторое замешательство у присутствующих, которые опасались, что если не развеять сомнения Кана, то это ухудшит ситуацию на станции [67]. Полагая, что вопрос об использовании морской воды должен решаться на самом высоком уровне, Такэкуро приказал остановить насосы. Ёсида, видя всю серьёзность и непредсказуемость ситуации на АЭС, принял самостоятельное решение и, отчитавшись руководству о прекращении подачи воды, приказал своим подчинённым продолжать работу.

В конце концов официальное разрешение было получено, и TEPCO сообщила о начале подачи морской воды в реакторы в 20:20, хотя фактически насосы работали уже больше часа [68]. На этих блоках использовалась система расхолаживания, состоящая из паровой турбины и соединённого с ней насоса англ. Турбина приводилась в действие паром из реактора, а насос подавал охлаждающую воду из баков запаса конденсата в реакторную установку [69]. Для контроля и регулирования требовался постоянный ток, но поначалу даже на полностью обесточенном втором энергоблоке система справлялась со своими функциями [70] , поскольку была вручную активирована всего за несколько минут до потери электропитания [71]. Ещё 12 марта на третьем энергоблоке, несмотря на наличие питания постоянного тока, система RCIC самопроизвольно отключилась. Из-за подачи большого количества охлаждающей воды давление в реакторе снизилось до 0,8 МПа, и турбина HPCI работала на сниженных оборотах. Так как работа системы вне рабочего диапазона была ненадёжна, персонал третьего блока решил подавать воду в реактор от стационарного пожарного насоса с дизельным приводом.

В Японии возобновили сброс воды с "Фукусимы" после инцидента с сотрудником

Вопреки Китаю и РФ. Эксперт объяснил, как Япония сливает воду Фукусимы В 2024 году Япония планирует сбросить с «Фукусимы-1» около 54,6 тонны очищенной воды.
«Фукусима» может заразить 65 процентов российского улова Действительно, в районе «Фукусимы» идёт тёплое течение, направленное в сторону американских берегов через весь Тихий океан.
«Мало не покажется»: чем грозит России и миру сброс отходов с «Фукусимы-1» Тогда Япония подтвердила смерть первого работника «Фукусимы-1» от радиационного облучения.
Япония начала сливать воду с АЭС «Фукусима-1» в океан. Она опасна? Главные новости о регионе ФУКУСИМА на япония, фукусима, радиоактивная вода, сброс, тихий океан, протест.

Новая порция радиоактивной воды с Фукусимы угрожает Южным Курилам

Власти Японии приняли решение с 24 августа начать сброс воды, которая использовалась для аварийного охлаждения реакторов АЭС "Фукусима-1". В Японии приступили к третьему этапу сброса очищенной от радиоактивных веществ воды с Фукусима-1. ↑ Япония приняла решение о начале сброса воды с АЭС "Фукусима-1" с 24 августа (рус.).

«До и после 24 августа…» Как китайцы отреагировали на сброс воды с АЭС в Японии

Катастрофе на АЭС «Фукусима» 11 лет: работы по очистке идут успешно, их планируют полностью завершить через 29 лет. Компания Tokyo Electric Power (TEPCO), оператор японской атомной электростанции «Фукусима-1», объявила о завершении третьего этапа сброса в океан очищенной от. Решение Японии сбросить в Тихий океан более миллиона тонн жидких отходов со станции «Фукусима-1» рискует стать продолжением старой экологической катастрофы. В 2024 году Япония планирует сбросить с «Фукусимы-1» около 54,6 тонны очищенной воды. Зачем Япония сбрасывает радиоактивную воду с Фукусимы и чем это грозит.

Похожие новости:

Оцените статью
Добавить комментарий