Новости термоядерный холодный синтез

Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Главная» Новости» Холодный ядерный синтез новости последние. в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза».

Зачем это нужно

  • Что не так с «японским ученым» и его холодным термоядом
  • Навигация по записям
  • Термоядерный синтез вышел на новый уровень: подробности - Hi-Tech
  • В защиту холодного ядерного синтеза (ХЯС)
  • FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв

О холодном синтезе... афёра, но для чего?

Частный термоядерный синтез: фантазии или реальность? Термоядерный синтез заработал, квантовые точки, клей для клеток, уранил из отходов | техно-новости.
Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых Главная» Новости» Холодный термоядерный синтез новости.
Что такое Холодный ядерный синтез? Успешное осуществление реакций холодного термоядерного синтеза повлечет за собой переворот в энергетике и геополитические изменения в мире, но все притязания на успешную реализацию этих реакций пока представляли собой или ошибки экспериментов, или аферы.

Частный термоядерный синтез: фантазии или реальность?

Холодный ядерный синтез или ХЯС специалисты определяют как реакцию слияния1 атомных ядер в холодном водороде, например, мюонный катализ. Термоядерный, холодный синтез. Теория, технология.» на канале «Теплое Событие» в хорошем качестве, опубликованное 11 декабря 2023 г. 20:24 длительностью 00:15:26 на видеохостинге RUTUBE. Термоядерный, холодный синтез. Теория, технология.» на канале «Теплое Событие» в хорошем качестве, опубликованное 11 декабря 2023 г. 20:24 длительностью 00:15:26 на видеохостинге RUTUBE. Ядерный синтез (часто говорят «термоядерный синтез») — это реакция, в которой легкие ядра при столкновении объединяются в одно тяжелое ядро. Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза». Представлены новые данные в пользу реальности холодного термоядерного синтеза – следы возникновения высокоэнергичных нейтронов при электролизе тяжёлой воды.

Частный термоядерный синтез: фантазии или реальность?

Самая грандиозная научная стройка современности. Мы закуем Солнце в «бублик» Термоядерный синтез — это процесс, когда два легких атомных ядра объединяются в одно более тяжелое ядро, высвобождая большое количество энергии.
Прорыв в термоядерном синтезе - Телеканал "Наука" То есть провели реакцию холодного термоядерного синтеза.
Термоядерный синтез вышел на новый уровень: подробности Термоядерный синтез заработал, квантовые точки, клей для клеток, уранил из отходов | техно-новости.
О холодном синтезе... афёра, но для чего? - форум, дискуссии, обсуждение событий и новостей — Если обычная термоядерная реакция основана на синтезе дейтерия и трития с выделением нейтрона, здесь сталкиваются друг с другом протон и бор-11, — рассказывает Павел Владимирович.

В Ливерморе совершили прорыв в получении термоядерной энергии

Однако, при всей невероятности и даже сомнительности холодного термоядерного синтеза, нельзя прятать голову в песок. Общепринятый основан на медленном термоядерном синтезе, в рамках которого физики планируют удерживать горячую плазму с помощью магнитных полей и электрических токов. Термоядерный синтез заработал в плюс: американские учёные смогли запустить реакцию с положительным КПД. Генератор холодного термоядерного синтеза может обеспечить целый поселок энергией, а также очистить озеро, на берегу которого будет расположен. «Между холодным синтезом и уважаемой наукой нет практически никакой связи, потому что «холодные синтезаторы» видят себя как сообщество в осаде и не поощряют внутреннюю критику. Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие.

Частный термоядерный синтез: фантазии или реальность?

Все благодаря международной команде ученых и инженеров в Оксфордшире», — заявил министр ядерной энергетики и сетей Великобритании Эндрю Боуи. Проект разрабатывается с середины 1980-х годов, закончить строительство главной конструкции планируют в 2025 году. В готовом виде токамак ИТЭР будет представлять собой 60-метровое сооружение массой 23 000 т. Знаете, почему термоядерный реактор не могут построить уже 50 лет?

Поэтому я думаю, что вскоре эта история прояснится». Еще один характерный факт, связанный с Росси и Фокарди, заключается в том, что ни один рецензируемый журнал не принял их публикацию про холодный термояд к печати. Но результаты все же опубликованы: специально для этого Росси и Фокарди основали онлайн-журнал Journal of Nuclear Physics. Кроме того, есть информация, что Росси ранее имел проблемы с законом, так как уклонялся от налогов и нелегально перевозил золото. Все это практически не оставляет сомнений в том, что Росси и Фокарди не сделали ничего выдающегося. Но является ли идея холодного термоядерного синтеза лженаукой? Евгений Александров считает, что нет.

Возможность осуществления синтеза при относительно низких температурах позволяет использовать для его инициации гораздо меньшее количество энергии. Что делает такой источник энергии очень эффективным. Учёные уже научились осуществлять горячий ядерный синтез, нагревая атомы или используя лазеры. Но для этого, как правило, используется больше энергии, чем получается на выходе. И смысла в таких источниках энергии нет. Однако работы по этой теме не прекращаются. Несколько реализованных идей Ниже мы перечислим современные подходы к холодному синтезу. Мюон-катализируемый синтез Учёные придумали уже несколько типов холодного синтеза, которые действительно работают. И это делает холодный синтез реальностью с точки зрения его осуществимости.

Ключом к первому подходу в этой проблеме являются мюоны. Дело тут обстоит так: поскольку электроны очень лёгкие, они вращаются вокруг ядра атома достаточно далеко, на расстоянии, которое немного больше, чем необходимое для того, чтобы произошёл синтез. Но мюоны намного тяжелее электронов. И если их поместить на место последних, они будут вращаться гораздо ближе к ядру, сливаясь с атомами гораздо проще и быстрее. Такой способ ядерного синтеза — это реальность. И учёные осуществляли его уже неоднократно. И даже при комнатной температуре. Но, к сожалению, мюоны очень нестабильны. И часто распадаются ещё до начала процесса холодного синтеза, в котором они участвуют.

Нестабильность мюонов приводит к тому, что процесс их создания в ускорителях частиц потребляет намного больше энергии, чем количество, которое возникает при их последующем использовании. Это обстоятельство делает весь этот процесс бессмысленным. И его можно использовать для бомбардировки и осаждения на поверхность металла, такого как титан. Когда кристаллическая решётка металла оказывается заполнена, часть дейтерия начинает вступать в реакцию синтеза. Этот процесс называется синтезом твёрдого тела.

Но если нет ни теорий, ни убедительных экспериментов, то почему же эта тема довольно популярна? Чтобы ответить на этот вопрос, нужно понимать проблемы ядерного синтеза вообще. Ядерный синтез часто говорят «термоядерный синтез» — это реакция, в которой легкие ядра при столкновении объединяются в одно тяжелое ядро. Например, ядра тяжелого водорода дейтерия и трития превращаются в ядро гелия и один нейтрон. При этом выделяется огромное количество энергии в виде тепла. Энергии выделяется настолько много, что 100 тонн тяжелого водорода хватило бы, чтобы обеспечить энергией все человечество на целый год не только электричеством, но и теплом. Именно такие реакции происходят внутри звезд, благодаря чему звезды и живут. Много энергии это хорошо, но есть проблема. Чтобы запустить такую реакцию, нужно сильно столкнуть ядра. Для этого придется разогреть вещество примерно до 100 миллионов градусов Цельсия.

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Эта установка дает надежду на светлое будущее – термоядерный синтез может обеспечить человечество чистой энергией на тысячелетия вперед. Министерство энергетики США (DOE) 13 декабря отметило важную веху в освоении энергии термоядерного синтеза, рассказав о том, как ученые впервые смогли произвести больше энергии, чем необходимо для его запуска.

Мегаджоули управляемого термоядерного синтеза

Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути. Из чего состоит реактор ITER? Токамак — это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. Как уже понятно из определения, у нас есть камера. Глубокая вакуумная камера. В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития. Вакуумная камера, где и обитает плазма. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов. Сверхпроводящие магниты, которые обуздают плазму. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева.

Дивертор, который отводит тепло и продукты термоядерной реакции. Инструменты диагностики для изучения физики плазмы. Включают манометры и нейтронные камеры. Криостат — огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру А вот так выглядит «маленькая» вакуумная камера с моделями работников внутри. Она 11,4 метра в высоту, а вместе с бланкетами и дивертором будет весить 8,5 тыс. Внутри них циркулирует вода. Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы.

Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5—10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению. Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т. И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс. Криостат гарантирует глубокий вакуум и ультрахолодную температуру для камеры токамака и сверхпроводящих магнитов, которые охлаждаются жидким гелием до температуры —269 градусов по Цельсию. Одна третья часть основания криостата. Всего этот «термос» будет состоять из 54 элементов А так выглядит криостат на рендере. Его производство поручено Индии.

Внутри «термоса» соберут реактор Криостат уже собирают. Тут, например, вы можете видеть окошко, через которое в реактор будут забрасывать частицы для нагрева плазмы Производство всего этого оборудования разделено между странами-участницами. Например, над частью бланкетов работают в России, над корпусом криостата — в Индии, над сегментами вакуумной камеры — в Европе и Корее. Но это отнюдь не быстрый процесс.

Нанопорошки уже существуют достаточно долгое время — сигареты делают на нанопорошках. Но у нас раньше не было инструментов, чтобы рассмотреть их. Теперь, когда у нас есть такие инструменты, людей беспокоят нанотехнологии.

Это аналогично тому, что до появления микроскопа мы ничего не знали о микробах, так как не видели их. А как только появился микроскоп, мы стали беспокоиться по поводу микробов. Когда Христофор Колумб прибыл в Америку, он не знал, что это была Америка. Он думал, что это Индия. Мы не знаем, к чему мы придём с холодным синтезом. Для нас это неизведанная земля. У нас ни малейшего представления, что мы получим.

Я объясню на одном примере. Вот у вас есть атом кислорода, в нем восемь электронов крутятся вокруг ядра. Если вы убираете один электрон, остаётся семь. Высокая энергия — это только один электрон. Вы убрали один электрон, и больше нет энергии электрона, есть только энергия ядра. Водород без одного электрона это уже не водород. Но кислород без одного электрона все еще остается кислородом.

Промежуточное состояние высокой энергии имеет абсолютно другое поведение — вот что мы обнаружили. Люди еще не могут осознать этого. Цитатат из видео «Реактор холодного синтеза» на YouTube Реактор холодного синтеза Андрес Ковач, изобретатель, основатель компании BroadBit Словакия : В этом проекте я ответственный за экспериментальную работу и теоретические разработки, и я возглавляю отдел, который будет разрабатывать теорию. Мы собираем все экспериментальные данные и проверяем, какие теории могут лучше всего объяснить то, что происходит. Это нам нужно для того, чтобы выработать рациональный подход к созданию реакторов. Что касается экспериментов, то мы проводим их уже более трех лет и получили интересные результаты, которые позволили нам продвинуться на следующий уровень. В нашей компании мы делаем несколько видов работ.

Это не имеет отношения к коммерции. Это имеет отношение к научному любопытству — мы хотим понять, как всё это работает, и открыть новые виды ядерной энергии. С точки зрения практики мы бы хотели иметь чистую и эффективную технологию. И на сегодняшней день существует ярко выраженная потребность в такой энергии. Поэтому мы бы хотели внести свой вклад. Если подходить к тому, что мы делаем, с точки зрения философии, то, я бы отметил следующее: в течение более 30 последних лет проводились эксперименты, которые подтвердили существующие теории. Это означает, что уже есть нечто, что дает понимание о фундаментальных силах химических элементов и частиц.

Это даёт нам возможность лучше понять, как функционирует природа. Знание имеет неоспоримое преимущество в том, что оно может объяснить, по каким законам живёт мир вокруг нас, каковы эти физические законы природы. А мудрость — это умение наилучшим образом использовать знания и научные открытия для рационального использования ресурсов. Мудрость нужна для того, чтобы выбрать, по какому пути идти дальше. Самая главная преграда, которую мы не можем преодолеть в наших научных изысканиях, — это условия, которые включают в себя допущение ошибок, появляющихся в процессе исследования.

Так что ТРТ - не мутант, а, скорее, естественный продукт эволюции. И его перспективы будут зависеть от той поддержки со стороны правительства в финансировании программы РТТН, о которой мы уже говорили. К концу 2024 года планируем завершить разработку эскизного проекта и отработать ряд ключевых элементов технического проекта. Так что при одобрении "сверху" сооружение ТРТ к 2030 году - вполне реальная задача. У "Росатома" есть действующее соглашение с РАН. Как оцениваете участие академических институтов в совместной реализации федерального проекта "Термоядерные и плазменные технологии"? Виктор Ильгисонис: Как абсолютно необходимое. Дело в том, что все академические институты - участники проекта "Термоядерные и плазменные технологии" - имеют собственные уникальные компетенции, освоение которых в контуре "Росатома" заведомо нецелесообразно, если мы исповедуем государственный подход. О других и не говорим… Виктор Ильгисонис: Так вот: уже упомянутый мною Институт прикладной физики в Нижнем Новгороде разрабатывает и производит лучшие в мире гиротроны - специальные устройства для мощного нагрева электронной компоненты плазмы. Новосибирский ИЯФ создает источники ионов и нейтральных атомов высокой энергии, которые приобретаются всеми ведущими мировыми лабораториями. Санкт-Петербургский физтех - признанный авторитет в методах высокочастотного нагрева плазмы… Список можно продолжать. И сказанное в полной мере относится не только к институтам РАН, но и к организациям НИЦ "Курчатовский институт", к вовлеченным в проект университетам. Какие риски здесь можно и должно прогнозировать с учетом нарастающих антироссийских санкций? Виктор Ильгисонис: Вопрос о пользе нашего участия задают уже лет пятнадцать - с того момента, как проект стартовал. Очевидная и главная польза - это ожидаемое появление в мире уникального экспериментального устройства, создание которого оказалось непосильным ни для одной страны. Причем не только в денежном или техническом плане, но и в интеллектуальном. А практическая польза - это освоение здесь, на родине, новых технологий и производства высочайшего качества. ИТЭР - это легитимная возможность "приземлить" у себя дома современные, в том числе уникальные зарубежные технологии, в создание которых вложились ведущие мировые разработчики. Мы получаем законное право использовать их в национальных целях. Сегодня ИТЭР - реальный драйвер технологического развития. И я искренне рад, что мировое термоядерное сообщество оказалось способным отделить решение глобальной задачи человечества от сиюминутной политической риторики. Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд.

Преодоление предела Гринвальда Теоретический предел, определяющий максимальную плотность плазмы, достижимую в реакторе токамак, известен как "предел Гринвальда". При превышении этого предела плазма может стать нестабильной, и некоторые заряженные частицы могут выйти из-под контроля ограничивающих их магнитных полей. Другими словами, превышение этой плотности чревато разрушением стенок реактора. Команда вводила дейтерий, чтобы замедлить термоядерную реакцию и контролировать ее поведение. Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке. Исследователи использовали метрику под названием H98 y, 2 для оценки эффективности, с которой реактор токамака удерживает плазму. Как объясняют ученые, если значение H98 y, 2 больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте.

Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии

За последние два года физики, работающие с NIF, смогли в несколько раз повысить энергетическую эффективность "быстрого" термоядерного синтеза. Новый атомный проект России – холодный ядерный синтез? объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32. Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза. Представлены новые данные в пользу реальности холодного термоядерного синтеза – следы возникновения высокоэнергичных нейтронов при электролизе тяжёлой воды.

Холодный синтез: желаемое или действительное?

объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32. Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. Реакции термоядерного синтеза возможны в случае экстремального нагрева атомов вплоть до 100 миллионов градусов по Цельсию, что приводит к их слиянию с побочным выделением большого количества энергии.

Холодный синтез: миф и реальность

Об этом сегодня официально сообщили Министерство энергетики США и Национальное управление по ядерной безопасности NNSA , назвав это научным подвигом, к которому шли десятилетиями. Теперь же данные официально подтвердились: 5 декабря команда исследователей провела первый в истории эксперимент по управляемому термоядерному синтезу, в результате которого было произведено больше энергии, чем потрачено лазерной энергии для запуска реакции. Часть установки, в которой была запущена реакция синтеза В рамках эксперимента самая мощная в мире лазерная установка, включающая 192 лазера, доставила до крошечной капсулы с топливом 2,05 МДж энергии, а в результате реакции учёные получили 3,15 МДж энергии. То есть на выходе оказалось более чем в полтора раза больше энергии, чем было затрачено. Термоядерный синтез — это реакция, при которой два лёгких атомных ядра объединяются в одно более тяжелое, при этом генерируя большой объём энергии. То же самое происходит внутри звёзд.

В опытах с порошком никеля в атмосфере водорода экспериментаторы, проводившие проверку, не указали размер частиц, состав элементов-примесей и даже температуру опытов. Все эти факторы имеют принципиальное значение для ядерной реакции и выхода тепла. Очень важно, что в продуктах длительных опытов обнаружено изменение отношения изотопов никеля в десятки раз, что однозначно подтверждает ядерную природу выделяемой энергии. В опытах Александра Пархомова, проведенных по способу А. Так, например, содержание серебра возросло до 200 раз, что вызвано реакцией высокоэнергичных продуктов ядерного синтеза: нейтронов и протонов с изотопами палладия. Образовался галлий, которого в исходном образце вообще не было. Рассчитанное суммарное выделение энергии за счет трансмутаций элементов-примесей составляет основную долю измеренного выхода избыточной энергии в опытах. Это объясняет отрицательные результаты экспериментов при использовании палладия высокой чистоты. Достигнутые нами успехи по значительной интенсификации низкотемпературных ядерных реакций — результат предварительного компьютерного моделирования таких реакций в конденсированных средах, что позволило найти благоприятные условия для их осуществления. Ссылки на наши работы и патенты, в которых приведен также обзор многочисленных статей по ядерным реакциям при низких энергиях, можно найти в недавно опубликованной статье автора « Ядерные реакции в конденсированных средах — основа новой энергетики ».

Стоит заметить, что все исследования, включая разработку и испытания дейтериевого теплогенератора, мы провели на собственные скудные средства. Приведенные выше и сотни других фактов не оставляют сомнения в том, что ядерные реакции можно осуществить в целом ряде физико-химических процессов при низких температурах. Если Google и научные фонды действительно заинтересованы в установлении научной истины, они могли бы выделить равные гранты сторонникам и противникам холодного ядерного синтеза для проведения экспериментов с точным их описанием. Желательно, чтобы Nature и другие авторитетные научные журналы предоставили страницы для опубликования результатов и свободной дискуссии, тогда независимые эксперты и читатели смогут сформировать своё собственное мнение о том, возможен ли холодный ядерный синтез и стоит ли его изучать.

Есть только сумбурные и противоречащие друг другу устные описания от самого Росси и псевдо подробный патент US20140326711 A1. Однако, при всем при этом, его опыт неоднократно воспроизводился и вот самый простой и успешный аналог: Фиг. Сначала реактор нагревается с помощью внешнего источника энергии, но при достижении определенной температуры реакция ХЯС должна начать производить избыточное тепло. За 90 минут работы реактор произвел сверх потребленной электроэнергии около 3МДж или 0,83 кВт-часа энергии. Это сравнимо с энергией, выделяемой при сгорании 70 г бензина. При этом уровень ионизирующих излучений радиации во время работы реактора не превысил фоновые показатели.

Основная польза этого эксперимента состоит в установлении факта, что нет опасной радиации. Можно смело экспериментировать и не заморачиваться счетчиками нейтронов. Реактор представляет собой простейшее устройство: два керамических стаканчика с последовательно включенными нагревателями одинакового омического сопротивления. Стаканчики закупорены пробками из ультратонкого пустотелого кварцевого волокна и помещены между пластинами из этого же материала. Это обшивка шаттла Буран, выдерживает 1650 оС и не пропускает тепло. Для гарантии отсутствия теплопередачи от ячейки к ячейке между пластинами оставлен вентилируемый зазор, вся сборка обернута титановой фольгой. Сначала реактор нагревался с помощью внешнего источника энергии, но при достижении определенной температуры мы брали 1000оС, 1100оС, 1200оС и 1280оС , реакция ХЯС должна начать производить избыточное тепло. Термопары включались, как всегда, встречно. Исходный материал был получен посредством отжига аморфного сплава палладия с цирконием Zr65Pd 35. Контейнер перед началом опыта прогревается и откачивается обезгаживается.

После его охлаждения до комнатной температуры начинается медленный напуск водорода Н2 или дейтерия D2 из баллона с давлением порядка 100 атмосфер. При этом контролируется давление в контейнере и температура в двух выделенных точках. В течение первых десятков минут напуска давление внутри контейнера остаётся близким к нулевому за счёт интенсивной абсорбции газа порошком. При этом происходит быстрый разогрев образца, достигающий максимума 60-700С через 15-18 минут, после чего начинается охлаждение образца. Вскоре после этого около 20 минуты начинается монотонный рост давления газа внутри контейнера. При напуске водорода на 15-й минуте достигается максимальная температура 610С, после чего начинается остывание. Авторы утверждают, что наблюдаемые различия воспроизводимы. Такая реакция совершенно невероятна в классическом термояде порядка 10-6 разницы при столкновении «голых» ядер из-за необходимости удовлетворять законам сохранения импульса и момента импульса. Однако в условиях твёрдого тела такая реакция может оказаться доминирующей. Существенно, что при этой реакции не происходит появления быстрых частиц, отсутствие или дефицит которых неизменно рассматривался в качестве решающего аргумента против гипотезы о ядерном синтезе.

В случае напуска водорода, начиная с 500-ой минуты, температуры образца и контейнера сравниваются с комнатной. При напуске H2 ни в газе, ни в рабочем веществе не обнаружено ни гелия, ни дейтерия. При напуске D2 и в газе, и в рабочем веществе обнаружен гелий. Особенностью этой реакции служит отсутствие нейтронов и гамма-излучения. Дробить его не потребовалось, он уже молотый. После заполнения ячейки замерялись в течение 500 минут, затем снизившееся давление газа, обусловленное его поглощением металлом, восполнялось до 100 атм. Выдержка в 500 минут связана с тем, что за это время в оригинальном опыте Араты устанавливался стационарный режим. В дальнейшем давление в ячейках контролировалось по встроенным манометрам, через 2 месяца в измерительной ячейке фиксировалось давление 89 атм, в контрольной — 95 атм.

Построены гигантские ускорители.

Израсходовано немереное количество денег на эксперименты. Состоялись научные карьеры. Получены нобелевские и иные премии и т. Официальный термояд стал одним из главных коммерческих двигателей современной физики. Однако прошло уже почти 70 лет, а ни одной действующей полноценной термоядерной установки, пригодной для получения энергии, до сих пор не создано. Не говоря уже об установках для промышленного применения. Это не значит, что такие установки не могут быть созданы вообще. Никому не дано знать будущее. Но само по себе появление дешевого холодного термояда сегодня рушит не только научные теории, но и вполне конкретный бизнес серьезных структур и карьеры многих авторитетных ученых.

А это штука посильнее, чем поиск научной истины. Чтобы мир поверил в холодный термояд, не хватит заключения отдельных ученых, какой бы безупречной репутацией они ни обладали. Только когда реально появится чемоданчик, дающий энергии столько же, сколько средняя ГЭС, придется смириться с немыслимым. Однако, при всей невероятности и даже сомнительности холодного термоядерного синтеза, нельзя прятать голову в песок. Отрицание чего-либо, исходя из принципа невыгодности чего-то для кого-то, может дорого обойтись и отдельным ученым и корпорациям и даже целым странам. В этой связи хочу рассказать о великом советском ядерщике, военном конструкторе и физике Иване Степановиче Филимоненко. Он впервые заявил о возможности холодного ядерного синтеза. Ни одно открытие или изобретение не получило в СССР такой политической поддержки, как холодный синтез Филимоненко. Хрущев и А.

Продолжить разработки новых принципов получения энергии, новых принципов получения тяги без отброса масс и получения новых принципов защиты от ядерного излучения. Ответственный за эту программу - ведущий конструктор И. Филимоненко…" Однако после смерти Королёва и Курчатова, отставки Жукова все работы были приостановлены. Филимоненко и вовсе уволили. Несмотря на возражения Косыгина. За увольнение выступили тогдашний Секретарь ЦК, ведавший оборонной промышленностью Д. Устинов, главный партийный идеолог М. Суслов и сам генсек Л. Брежнев, поддержавший отставку просто из-за нелюбви к Косыгину.

Похожие новости:

Оцените статью
Добавить комментарий