нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Просмотрите доску «Фракталы в природе» пользователя Александрина в Pinterest.
Созерцание великого фрактального подобия
Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора. Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе. Просмотрите доску «Фракталы» пользователя Katrine в Pinterest. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе». 97 фото | Фото и картинки - сборники.
Фракталы в природе (102 фото)
Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической». Одним из таких исследований является изучение фракталов в природе. Анимация фракталов, изменение фракталов в пространстве, медитация, фрактальная графика. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе».
Загадочный беспорядок: история фракталов и области их применения
И сходство это не зависит от масштаба рассмотрения, то есть рассматривать в микроскоп или смотреть на фигуру издалека, все равно будет видно повторяющиеся формы. Красота Природы Принцип фрактальности заложен в устройстве самой Природы, где из одного семени или из одной клетки путём многократного дробления создаётся новая структура, похожая, но не идентичная первоначальной. Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией. Природа сама создана из самоподобных фигур, просто мы этого не замечаем. Человек тоже весь построен на основе фракталов: кровеносные сосуды, лёгкие, бронхи имеют фрактальную природу. Посмотрите через увеличительное стекло на свою кожу, и вы увидите фракталы. Примеров фракталов можно привести массу, потому что, они окружают нас повсюду.
Любопытную мысль приводит в своей книге "Фрактальная геометрия природы" американский математик Бенуа Мандельброт: "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря.
Облака — это не сферы, линии берега — это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные — задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать". Все, что существует в реальном мире, является фракталом — это и есть наша гипотеза, а цель данной работы показать, что математика не бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом. Объектом исследования выступают фракталы в математике и в реальном мире. В процессе работы нами были выделены следующие задачи исследования: Проанализировать и проработать литературу по теме исследования.
Рассмотреть и изучить различные виды фракталов. Дать представление о фракталах, встречающихся в нашей жизни. Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия. Структура исследовательской работы определялась логикой исследования и поставленными задачами. Она включает в себя введение, две главы, заключение, список использованной литературы, приложения. История появления понятия «фрактал» Первые идеи фрактальной геометрии возникли в 19 веке. Георг Кантор Cantor, 1845-1918 - немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой рекурсивной повторяющейся процедуры превратил линию в набор несвязанных точек. Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками.
Получалась, так называемая, Пыль Кантора приложения 1, 2. Джузеппе Пеано Giuseppe Peano; 1858-1932 — итальянский математик изобразил особую линию. Он брал прямую и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности. Уникальность такой линии в том, что она заполняет всю плоскость.
Сейчас используется следующий метод: мы берем конкретный фрактал и даем ему некую числовую характеристику. Моя научная деятельность та, которую я начал еще в магистратуре непосредственно связана с разработкой одного из типов характеристик этих самых фракталов. Ведется работа по двум основным направлениям. Первое — это интегрирование. Взятие интегралов по неспрямляемым кривым. Второе: у меня введены конкретные характеристики этих фракталов, они у меня называются «Показатели Марцинкевича» в честь польского математика Йозефа Марцинкевича, а не российского националиста. Эти показатели помогают лучше справляться с некоторыми краевыми задачами. До этого были либо несчитаемые характеристики, либо менее точные. Есть надежда, что в будущем мы переведем всю математику на рельсы неспрямляемых кривых, и это даст прибавку везде. Это даст нам гораздо большую точность в любых расчетах. В обществе распространено мнение об отдаленности математической науки от реальности, от практики. Но это не так. Одно из самых главных, чему учат на мехмате — это построение и изучение математических моделей, моделей того, что нас окружает. А уж что вы будете делать с этими моделями — решать вам. Как говорится, пистолет дали — крутись. А на практике фрактальная геометрия оказывается полезной во многих областях. В первую очередь, в биотехнологиях. Например, при диагностировании онкозаболеваний. Если фрактальная сетка сосудов в каком-то месте нарушена, то следует обратить туда внимание: почти наверняка именно этот участок выступит очагом болезни.
В то время почти все экономисты считали, что в долгосрочной перспективе цены зависят от внешних факторов, а в краткосрочной колеблются случайным образом. Однако Мандельброт сумел разглядеть в динамике цен закономерность — она практически не зависела от масштаба! Говоря другими словами, изменения цен за год и за месяц на графиках выглядели как две практически одинаковые кривые, несмотря на прошедшие за рассматриваемый период две мировые войны. Множество Жюлиа, www. В то же время научным сообществом его исследования воспринимались как нечто недостойное внимания. Отчасти это происходило из-за недостаточной на тот момент формальности теории, отчасти — из-за ее разрозненности. Большинство ученых просто не понимали, как и для чего можно применять эту теорию. Однако это не помешало ее дальнейшему развитию. Функция Вейерштрасса. Иллюстрация: Eeyore22, www. Сама же теория проделала долгий путь от рисования занимательных и необычных фигур и поиска их аналогов в реальном мире до практического использования при решении серьезных научных задач. Например, одно из свойств фракталов основано на их способности иметь дробную размерность. Рассмотрим в качестве примера необычную кривую Гильберта с размерностью, очень близкой к 2, и нарисуем ее на плоскости. Она будет настолько извилистой, что полностью займет всю предоставленную ей плоскость, при этом оставаясь кривой с бесконечной длиной. Аналогично можно представить объемную структуру с небольшим объемом и бесконечной площадью — это человеческие легкие. Способность поглощать кислород напрямую зависит от площади дыхательной поверхности легких, но при этом они должны занимать относительно небольшой объем. Именно поэтому небольшие человеческие легкие имеют дыхательную поверхность большую, чем стандартный теннисный корт. Теорию фракталов используют в материаловедении. Шероховатости и неровности, остающиеся на поверхности любого металла после его полировки или изготовления, имеют фрактальную природу. И более того, по ним можно предсказать прочностные характеристики металла — существует прямая зависимость между фрактальной размерностью и энергией, необходимой для разрушения металла. Аналогичные результаты были в исследованиях полимеров. Оказалось, что полимерные цепочки образуют сложные и запутанные структуры, которые определяют ключевые показатели полимеров. И эти запутанные цепочки — тоже фракталы! Отдельное развитие получили алгоритмы для генерации фракталов. Часть из них придумали еще в XIX веке, другие появились, когда возникла теория фракталов.
Фракталы в природе
Фракталы в природе | Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. |
14 Удивительные фракталы, обнаруженные в природе - Окружающая среда 2024 | Посмотрите больше идей на темы «фракталы, природа, эрнст геккель». |
Фракталы в природе. Мир вокруг нас. Ч.2 | Фракталы в природе. |
Прибыльная торговля с помощью фрактальности существует? | Да, в физической Природе не существуют ни идеальный газ, ни континуальная материя, ни фрактальные объекты с «действительно бесконечной» лестницей иерархических этажей. |
Фракталы: что это такое и какие они бывают
Посмотрите больше идей на темы «фракталы, природа, эрнст геккель». Фракталы часто встречаются в природе. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе.
Любопытные фото природы, которые успокоят
Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны. Пятая глава книги «Фрактальная геометрия природы» посвящена, на первый взгляд, довольно простому вопросу: «Какова длина береговой линии Британии? Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера. Последний, как и многие другие известные математики, очень любил общаться с детьми, задавая им вопросы и получая неожиданные ответы. Иногда это приводило к удивительным последствиям. Так, например, девятилетний племянник Эдварда Каснера придумал хорошо всем известное теперь слово «гугол», обозначающее единицу со ста нулями. Но вернемся к фракталам. Американский математик любил задавать вопрос, какова длина береговой линии США. Выслушав мнение собеседника, Эдвард сам говорил правильный ответ. Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей. А что будет, если измерять максимально точно?
Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности. Чем меньше мера при измерении, тем больше измеряемая длина Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа. На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность. Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение. Фрактальную размерность в математике можно условно рассматривать как «неровность». Чем выше неровность кривой, тем больше ее фрактальная размерность.
Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений. В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков. Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень. В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия. В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг. Вы можете добавлять их на холст, масштабировать чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift и вращать. Перекрываясь по принципу булевых операций сложения, эти простейшие элементы образуют новые, менее тривиальные формы. Далее эти новые формы можно добавлять в проект, а программа будет повторять генерирование этих изображений до бесконечности.
На любом этапе работы над фракталом можно возвращаться к любой составляющей сложной формы и редактировать ее положение и геометрию. Увлекательное занятие, особенно если учесть, что единственный инструмент, который вам нужен для творчества, — браузер. Если вам будет непонятен принцип работы с этим рекурсивным векторным редактором, советуем вам посмотреть видео на официальном сайте проекта, на котором подробно показывается весь процесс создания фрактала. Однако эти инструменты обычно являются второстепенными и не позволяют выполнить тонкую настройку генерируемого фрактального узора. В тех случаях, когда необходимо построить математически точный фрактал, на помощь придет кроссплатформенный редактор XaoS. Эта программа дает возможность не только строить самоподобное изображение, но и выполнять с ним различные манипуляции. Например, в режиме реального времени вы можете совершить «прогулку» по фракталу, изменив его масштаб. Анимированное движение вдоль фрактала можно сохранить в виде файла XAF и затем воспроизвести в самой программе. XaoS может загружать случайный набор параметров, а также использовать различные фильтры постобработки изображения — добавлять эффект смазанного движения, сглаживать резкие переходы между точками фрактала, имитировать 3D-картинку и так далее. Во-первых, он совсем небольшой по размеру и не требует установки.
Во-вторых, в нем реализована возможность определять цветовую палитру рисунка. Также очень удобно использовать опцию случайного подбора цветовых оттенков и функцию инвертирования всех цветов на картинке. Для настройки цвета имеется функция цикличного перебора оттенков — при включении соответствующего режима программа анимирует изображение, циклично меняя на нем цвета. Fractal Zoomer может визуализировать 85 различных фрактальных функций, причем в меню программы наглядно показываются формулы. Фильтры для постобработки изображения в программе имеются, хотя и в небольшом количестве. Каждый назначенный фильтр можно в любой момент отменить. Однако фрактальная геометрия выходит за рамки 2D-измерения. В природе можно найти как примеры плоских фрактальных форм, скажем, геометрию молнии, так и трехмерные объемные фигуры. Фрактальные поверхности могут быть трехмерными, и одна из очень наглядных иллюстраций 3D-фракталов в повседневной жизни — кочан капусты. Наверное, лучше всего фракталы можно разглядеть в сорте романеско — гибриде цветной капусты и брокколи.
А еще этот фрактал можно съесть Создавать трехмерные объекты с похожей формой умеет программа Mandelbulb3D.
Здесь движущей силой эволюции полагаются взаимодействия материя , которые сами себя развивают в направлении возрастания сложности и разнообразия форм, интенсификации взаимодействий. Скажем, Ньютон в письме к Ричарду Бентли 1692 объяснял, что из-за гравитации вещество не может оставаться однородно рассеянным в пространстве. Если бы пространство было конечным, объяснял он, вещество собралось бы в одну сферическую массу. В бесконечном же пространстве вещество соберется в бесчисленное множество сферических масс звезд. Сегодня мы знаем, что под давлением гравитации образуются не только звезды, но и всевозможные космические структуры. Я солидарен, далее, с лауреатом Нобелевской премии по физике за 1977 год Филипом Андерсоном, утверждающим, что «на каждом уровне сложности появляются совершенно новые свойства». При этом на разных уровнях организации материи, возникающих один за другим в ходе ее материи самоорганизации, начинают действовать все новые законы — физические, химические, биологические, социальные. Эволюция под давлением взаимодействий протекает тем успешнее, чем то позволяют обстоятельства.
Это касается и феномена жизни. Как писал Роберт Чемберс в своей «Естественной истории мироздания» 1844 , жизнь «появлялась всюду и постоянно, когда только возникали благоприятные для того условия». Скажем, из всех планет Солнечной системы жизнь в ее развитых формах возникла только на Земле. На других планетах давление взаимодействий оказалось не столь результативным. Отбор отбору рознь Главным конкурентом автогенетической теории эволюции сегодня продолжает оставаться теория естественного отбора. Отбор в ней — только один из трех компонентов естественного отбора, включающего в себя: 1 возникновение множества наследуемых малых случайных направленных «во все стороны» мутаций; 2 выживание наиболее адаптивных из этих мутаций в результате конкуренции особей и их взаимодействия со средой собственно отбор ; 3 накопление малых мутаций, выживающих на протяжении ряда поколений, в адаптивные признаки. Второй компонент, который часто некорректно отождествляют со всем естественным отбором, вполне реален, тогда как первый и третий реальности не отражают. Если бы Господь здесь это метафора положился только на естественный отбор, то никакой эволюции не происходило бы. Первый аргумент.
Темпы органической эволюции превосходят темпы эволюции неорганической среды, так что сама по себе адаптация к среде не могла бы двигать эволюцию органического мира. Второй аргумент. Появляющиеся в ходе эволюции все более сложные формы зачастую не превосходят по адаптированности старые, скажем, бактерии или лишайники, проявляющие чудеса выживаемости в самых невероятных условиях. Третий аргумент. В ходе эволюционных изменений данный органический вид становится другим видом, репродуктивно обособленным от старого, который после того зачастую гибнет. Объяснить это адаптацией к среде старого вида невозможно. Четвертый аргумент. Позиции теории естественного отбора подрывает и возникшая в последние десятилетия эволюционная биология развития evo-devo. Получаемые здесь результаты позволяют все увереннее утверждать, что органическая эволюция осуществляется посредством макромутаций, для появления которых оказывается достаточно изменений в нескольких и даже одном-двух генах.
В научной литературе обсуждаются и другие аргументы против теории естественного отбора. Я знаю, что ничего не знаю Эти слова, обычно приписываемые Сократу, в полной мере могут быть отнесены к нашим представлениям о Вселенной. После открытия космического расширения стало понятно, что наблюдаемый мир ограничен для нас горизонтом видимости радиусом около 13,8 млрд световых лет. Так как никакой сигнал не может распространяться быстрее света, а расширение началось около 13,8 млрд лет назад, то события, происходящие вне этой сферы, в принципе не могут нами наблюдаться. Весь не ограниченный горизонтом видимости материальный мир называют Вселенной, сферический же ее участок, находящийся в пределах горизонта видимости, то есть наблюдаемый нами мир, — Метагалактикой. Более строго нашей Метагалактикой было бы называть относительно компактную космическую макроструктуру, включающую в себя наблюдаемый нами мир и отделенную от других метагалактик во Вселенной расстояниями, многократно превышающими ее собственные размеры. Ниоткуда не следует, что размеры нашей Метагалактики совпадают с размерами наблюдаемого мира.
До 1975 года, фракталы встречались в истории время от времени, но после работы Бенуа Мандельброта, изучение фракталов начало приобретать массовый характер, все больше интегрируясь в мир. Изучение фракталов вызвало новый виток в изучении разных сфер жизни: в компьютерной графике, в передаче данных, в радиотехнике, в производстве, в работе мозга, в движениях человека, в росте живых существ и многом другом.
Представьте, насколько упрощается построение графических моделей, зная, что они самоподобны и вычисляются по одной простой формуле. Насколько становиться проще кодирование и передача информации, когда есть понимание, что их можно «сжать» по определённой фрактальный закономерности. И насколько понятней становится эволюция живых существ, когда мы можем найти фракталную модель их развития. Фракталы в тейдинге. Тема фракталов сложна и интересна, но как же она соотносится с торговлей на бирже? Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности. Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба.
В случае с Поллоком его фрактальная эстетика была результатом интригующей смеси обоих. Его фрактальные паттерны возникли из движений его тела в частности, автоматического процесса, связанного с балансом, известного как фрактал.
Но он потратил 10 лет, сознательно совершенствуя свою технику заливки, чтобы увеличить визуальную сложность этих фрактальных паттернов. Тест Роршаха на чернильных пятнах основан на том, что вы прочитали на изображении. Герман Роршах Фрактальная сложность Мотивация Поллока к постоянному увеличению сложности его фрактальных структур стала очевидной недавно, когда я изучил фрактальные свойства чернильных пятен Роршаха. Эти абстрактные пятна известны, потому что люди видят в них воображаемые формы фигуры и животных. Я объяснил этот процесс с точки зрения эффекта фрактальной беглости, который улучшает процессы распознавания образов людей. Фрактальные чернильные шарики низкой сложности сделали этот процесс счастливым, заставляя наблюдателей видеть изображения, которых там нет. Поллоку не понравилась идея, что зрители его картин были отвлечены такими воображаемыми фигурами, которые он назвал «дополнительным грузом». Он интуитивно увеличил сложность своих работ, чтобы предотвратить это явление. Коллега по абстрактному экспрессионизму Поллока Виллем де Кунинг также рисовала фракталы. Когда ему поставили диагноз слабоумие, некоторые искусствоведы призывали уйти в отставку на фоне опасений, что это уменьшит воспитательную составляющую его работы.
Все же, хотя они предсказывали ухудшение его картин, его более поздние работы передали спокойствие, отсутствующее в его более ранних частях. Недавно было показано, что сложность фрактала его картин неуклонно снижается, когда он впадает в слабоумие. Исследование было сосредоточено на семи художниках с различными неврологическими состояниями и выявило потенциал использования произведений искусства в качестве нового инструмента для изучения этих заболеваний. Для меня самое вдохновляющее сообщение заключается в том, что, борясь с этими болезнями, художники все еще могут создавать прекрасные произведения искусства. Признание того, как взгляд на фракталы уменьшает стресс, означает, что можно создавать имплантаты сетчатки, имитирующие механизм.
Фракталы в природе. Мир вокруг нас. Ч.2
Дерево воспроизводит само себя, на каждом уровне. При этом его структура постоянно усложняется, но остается себе подобной. Это ли не фрактал? Кровообращение А вот кровеносная система человека. Она тоже имеет фрактальную структуру. Есть артерии и вены.
По одним из них кровь подходит к сердцу вены , по другим поступает от него артерии. А далее, кровеносная система начинает напоминать то самое дерево, о котором мы говорили выше. Сосуды, сохраняя свое строение, становятся все более тонкими и разветвленными. Они проникают в самые отдаленные участки нашего тела, доносят кислород и другие жизненно важные компоненты до каждой клетки. Это типичная фрактальная структура, которая воспроизводит саму себя все в более и более мелких масштабах.
Стоки реки «Из далека долго течет река Волга». На географической карте это такая голубая извилистая линия. Ну, притоки крупные обозначены. Ока, Кама. А если мы уменьшим масштаб?
Выяснится, что притоков этих намного больше. Не только у самой Волги, но и у Оки и Камы. А у них есть и свои притоки, только более мелкие. А у тех — свои. Возникает структура, удивительно похожая на кровеносную систему человека.
И опять возникает вопрос. Какова протяженность всей этой водной системы? Если измерять протяженность только основного русла — все понятно. В любом учебнике можно прочитать. А если все измерять?
Опять в пределе бесконечность получается. Наша Вселенная Конечно, в масштабах миллиардов световых лет, она, Вселенная, устроена однородно. Но давайте посмотрим на нее поближе. И тогда мы увидим, что никакой однородности в ней нет. Где-то расположены галактики звездные скопления , где-то — пустота.
Почему распределение материи подчиняется иррегулярным иерархическим законам. А что происходит внутри галактик еще одно уменьшение масштаба. Где-то звезд больше, где-то меньше. Где-то существуют планетные системы, как в нашей Солнечной, а где-то — нет. Не проявляется ли здесь фрактальная сущность мира?
Сейчас, конечно, существует огромный разрыв между общей теорией относительности, которая объясняет возникновение нашей Вселенной и ее устройством, и фрактальной математикой. Но кто знает? Возможно, это все когда-то будет приведено к «общему знаменателю», и мы посмотрим на окружающий нас космос совсем другими глазами. К практическим делам Подобных примеров можно приводить много. Но давайте вернемся к более прозаическим вещам.
Вот, например, экономика. Казалось бы, причем здесь фракталы. Оказывается, очень даже причем.
Также можно заметить схожесть этой снежинки с изрезанной береговой линией — каждый ее фрагмент в крупном масштабе подобен ее же более мелкому фрагменту.
Это свойство называется самоподобием — оно ключевое для всех фракталов. Из аналогии с береговой линией мы можем получить интуитивное понимание нецелой размерности — ее можно описать как «степень изрезанности кривой». Губка Менгера. Иллюстрация: Niabot, www.
Наиболее общее, предложенное Мандельбротом, гласит, что фракталом называют структуру, состоящую из частей, которые в каком-то смысле подобны целому. При этом фрактал не обязательно должен быть кривой, как в предыдущих примерах, — это может быть как плоская, так и объемная фигура. Например, фракталами являются ковер Серпинского или губка Менгера. Само слово фрактал Мандельброт придумал на основе латинского fractus, означающего «сломанный» и созвучного английскому fraction — «дробь».
Это слово одновременно отображает как необычность, извилистость фракталов, так и их свойства, связанные с их дробной размерностью. Одинокий ученый Развитие теории фракталов тесно связано с ее основателем, Бенуа Мандельбротом — в одиночку он долгое время отстаивал и доказывал свою идею всему научному сообществу. Поэтому история открытия фракталов — в значительной степени биография Бенуа Мандельброта, хотя частные случаи фракталов множества Жюлиа, снежинка Коха и функция Вейерштрасса были известны и раньше. Но только Мандельброт увидел что-то общее в этих примерах и дал им описание.
Бенуа Мандельброт. Фото: Yale University, www. В начале 60-х годов Мандельброт занимался экономикой, изучал динамику цен на хлопок. В то время почти все экономисты считали, что в долгосрочной перспективе цены зависят от внешних факторов, а в краткосрочной колеблются случайным образом.
Однако Мандельброт сумел разглядеть в динамике цен закономерность — она практически не зависела от масштаба! Говоря другими словами, изменения цен за год и за месяц на графиках выглядели как две практически одинаковые кривые, несмотря на прошедшие за рассматриваемый период две мировые войны. Множество Жюлиа, www. В то же время научным сообществом его исследования воспринимались как нечто недостойное внимания.
Отчасти это происходило из-за недостаточной на тот момент формальности теории, отчасти — из-за ее разрозненности. Большинство ученых просто не понимали, как и для чего можно применять эту теорию. Однако это не помешало ее дальнейшему развитию. Функция Вейерштрасса.
Если вы посмотрите на сложное дерево, то заметите повторение Y-образной формы на всем его протяжении. Такой фрактальный дизайн, подобно спирали суккулентов, помогает деревьям оптимизировать воздействие солнечного света и не позволяет верхним ветвям затенять нижние. Это явление мастерски продемонстрировано на примере кристаллов меди, которые разветвляются во всех направлениях, как ветви дерева. Каждая «веточка» является новой точкой роста — по мере разветвления она превращается в твердую металлическую медь.
Из-за своей древовидной природы и уникального красновато-коричневого цвета кристаллы меди часто выращивают для искусства. Хотя иногда ручьи могут быть расположены по прямой линии, они быстро становятся извилистыми, поскольку приспосабливаются к помехам, таким как норы диких животных. Всего одна помеха может изменить течение реки и заставить ее изгибаться на всем протяжении. Ширина этих ручьев также чрезвычайно шаблонна.
Кривые, как установили эксперты, всегда в шесть раз больше ширины русла. Такое самоподобие характерно для фракталов и является причиной того, что реки во всем мире выглядят одинаково.
А если это, по каким-то причинам не случится, их всегда можно сделать заставкой на свой компьютер.
Приятного просмотра! Фрактал лат. В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность в смысле Минковского или Хаусдорфа , либо метрическую размерность, отличную от топологической.
На свете существует около 13000 определений термину фрактал. Но лишь одно из них считается верным. Слово «фрактал» может употребляться не только как математический термин.
Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств: Обладает нетривиальной структурой на всех масштабах.
Созерцание великого фрактального подобия
Тема фракталов сложна и интересна, но как же она соотносится с торговлей на бирже? Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности. Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба. Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность. А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача. Получается, что рынок, как минимум, имеет фрактальные свойства.
Само наличие закономерностей в движении говорит об этом. Волны Элиота — также определенная фрактальная закономерность в движении цены Каждая часть графика делится по определенной закономерность на самоподобные части. Что еще интересного можно найти на основе модели Мандельброта?
Этот фрактальный объект представляет собой треугольный узор, в котором каждый треугольник является уменьшенной копией целого. До сих пор ученым не встречались подобные молекулярные образования, сохраняющие самоподобие на разных масштабных уровнях.
Уникальная сборка Изображение белковой молекулы было получено с помощью электронного микроскопа. В процессе своего роста фрактал образует внутри себя треугольные пустоты, что не делает ни одна из ранее известных белковых структур.
Фракталы также встречаются в природе.
В частности, изрезанные береговые линии можно описать с помощью этих фигур, а кочан цветной капусты сорта Романеско, контуры облаков и ветвящаяся форма молний обладают свойством самоподбия. В новой работе физики обнаружили фракталы в лазерах. Как отмечают авторы, лазеры являются практически полной противоположностью природе, так как создаются в максимально приближенных к идеальным условиях: для возникновения когерентного излучения необходим резонатор из безупречно отшлифованных сферических зеркал и усиливающая колебания среда.
В 1998 году было предсказано существование фрактальных распределений в поперечных срезах интенсивности некоторых лазеров, однако экспериментальных подтверждений эффекту не было.
Как оказалось, создание фракталов не занимает много времени и сил. Решение Карпентера Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные геометрические фигуры на мелкие элементы, а те - на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения. Сегодня этот принцип используется для имитации различных реалистичных природных форм. Первая 3D-визуализация на фрактальном алгоритме Уже через несколько лет Лорен применил свои наработки в масштабном проекте — анимационном ролике Vol Libre, показанном на Siggraph в 1980 году. Это видео потрясло многих, и его создатель был приглашен работать в Lucasfilm.
Здесь аниматор смог реализоваться в полной мере, он создал трехмерные ландшафты целую планету для полнометражного фильма "Star Trek". Любая современная программа «Фракталы» или приложение для создания трехмерной графики Terragen, Vue, Bryce использует все тот же алгоритм для моделирования текстур и поверхностей. Том Беддард В прошлом лазерный физик, а ныне цифровых дел мастер и художник , Беддард создал ряд весьма интригующих геометрических фигур, которые назвал фракталы Фаберже. Внешне они напоминают декоративные яйца русского ювелира, на них такой же блестящий замысловатый узор. Беддард использовал шаблонный метод для создания своих цифровых визуализаций моделей. Полученные изделия поражают своей красотой. Хоть многие отказываются сравнивать продукт ручной работы с компьютерной программой, однако следует признать, что полученные формы необычайно красивы. Изюминка заключается в том, что построить такой фрактал сможет любой желающий, воспользовавшись программной библиотекой WebGL. Она позволяет исследовать в реальном времени различные фрактальные структуры.
Фракталы в природе Мало кто обращает внимание, но эти удивительные фигуры присутствуют повсюду. Природа создана из самоподобных фигур, просто мы этого не замечаем. Достаточно посмотреть через увеличительное стекло на нашу кожу или листок дерева, и мы увидим фракталы. Или взять, к примеру, ананас или даже хвост павлина — они состоят из подобных фигур. А сорт капусты брокколи Романеску вообще поражает своим видом, ведь это поистине можно назвать чудом природы. Музыкальная пауза Оказывается, фракталы - это не только геометрические фигуры, они могут быть и звуками. Так, музыкант Джонатан Колтон пишет музыку с помощью фрактальных алгоритмов. Он утверждает, что такая мелодия соответствует природной гармонии. Композитор все свои произведения публикует под лицензией CreativeCommons Attribution-Noncommercial, которая предусматривает свободное распространение, копирование, передачу произведений другими лицами.
Индикатор-фрактал Данная методика нашла весьма неожиданное применение. На ее основе создан инструмент для анализа рынка фондовой биржи, и, как следствие, его начали применять на рынке «Форекс». Сейчас индикатор-фрактал находится на всех торговых платформах и применяется в торговой технике, которую называют ценовым прорывом. Разработал эту методику Билл Вильямс. Как комментирует свое изобретение автор, данный алгоритм является сочетанием нескольких «свечей», в котором центральная отражает максимальную либо, наоборот, минимальную экстремальную точку.
Любопытные фото природы, которые успокоят
Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. В ней он впервые заговорил о фрактальной природе нашего многомерного мира. Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского.
Фракталы — потрясающая красота математики в природе
- Фракталы – Красота Повтора
- Математика в природе: самые красивые закономерности в окружающем мире
- Фракталы в живой природе
- Фрактальные узоры в природе и искусстве эстетичны и снимают стресс
- Удивительный мир фракталов
- Математика в природе: самые красивые закономерности в окружающем мире
Художники интуитивно понимают привлекательность фракталов
- Фракталы в Природе
- Исследовательская работа: «Фракталы в нашей жизни».
- Фракталы в живой природе
- Фракталы в природе. Мир вокруг нас. Ч.2
Загадочный беспорядок: история фракталов и области их применения
Этот термин придумал в семидесятых годах ХХ века Бенуа Мандельброт, который признан отцом фрактальной геометрии. Сегодня под понятием фрактала подразумевают графическое изображение некой структуры, которая при увеличенном масштабе будет подобна сама себе. Однако математическая база для создания этой теории была заложена еще до рождения самого Мандельброта, а вот развиваться она не могла, пока не появились электронные вычислительные машины. Историческая справка, или Как все начиналось На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Это объясняется тем, что математики предпочитали изучать объекты, поддающиеся исследованию, на основе общих теорий и методов. В 1872 году немецким математиком К. Вейерштрассом был построен пример непрерывной функции, нигде не дифференцируемой. Однако это построение оказалась целиком абстрактным и трудным для восприятия. Дальше пошел швед Хельге фон Кох, который в 1904 году построил непрерывную кривую, не имеющую нигде касательной.
Ее довольно легко нарисовать, и, как оказалось, она характеризуется фрактальными свойствами. Один из вариантов данной кривой назвали в честь ее автора — «снежинка Коха». Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви. В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому». В ней он описал новый вид — С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы. Динамические, или алгебраические фракталы К данному классу относится множество Мандельброта.
Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа. В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций. Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли. И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь. ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений вручную такой объем невозможно провести , позволивших построить изображение этих фигур. Человек с пространственным воображением Мандельброт начинал свою научную карьеру в исследовательском центре IBM.
Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех. Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени. Аналогичная картина наблюдалась как для периода в один день, так и для семи дней или для часа. Сам Бенуа Мандельброт часто повторял, что он работает не с формулами, а играет с картинками. Этот ученый отличался образным мышлением, любую алгебраическую задачу он переводил в геометрическую область, где правильный ответ очевиден.
ПРОСТО ФРАКТАЛ Фракталы в природе В природе нет недостатка в самоподобных формах: подсолнух и брокколи, морские раковины, папоротник, снежинки, горные расселины, береговые линии, фьорды, сталагмиты и сталактиты, молнии, ветви деревьев, русла рек, турбулентные вихри, сосудистая система человека, планировка городов и общественное устройство.
Неправильные и фрагментарные формы — облака, горы, листья — демонстрируют повтор почти однотипных фрагментов при разных масштабах наблюдения. На рисунке эти формы застыли.
Похожи на них сети жилок листьев. Аналогичное разветвление наблюдается в строении кровеносной, нервной, дыхательной системы человека и многих животных. Фрактальные формы ярко проявляются в строении ананасов, цветной капусты романеско, а также в спиралевидных бутонах цветов. Повторяются в себе множество раз формы кораллов, морских звезд, ракушек, улиток. Еще больше фракталов создано неживой природой: Снежинки и морозные узоры на стекле построены кристаллическими структурами, повторяемыми много раз. В молнии раскрывается структура, в которой каждая ветвь — это копия всей формы. Береговые линии, горные хребты, географические границы, русла рек, разветвления их дельт повторяются множество раз. В воде повторяются узоры волн, водоворотов, течений.
Большинство природных фракталов отличаются неполным и неточным повторением. В малом масштабе они исчезают, потому что ограничены размерами живой клетки или молекул.
Ананас - необычный плод это есть, фактически, фрактал. Хоть он часто связывается с Гавайями, плод - уроженец южной Бразилии. Облака - Посмотрите в окно. Практически в любой момент вы можете увидеть фракталы на небе. Кристаллы - Лед, морозные узоры на окнах это тоже фракталы. Горы - Горные расселины, береговые линии хоть и произвольны по линиям, но так же фрактальны. Деревья и листья - От увеличенного изображения листочка, до ветвей дерева - во всём можно обнаружить фракталы.
Береговая линия - Отдельные фрагменты побережья создают фрактальность - это Флорида.