Новости атомная батарейка

Новость «Ученые разработали атомную батарейку для космических кораблей» вызвала бы определенный интерес. Отмечается, что ядерные батарейки работают за счет преобразования в электричество энергии распада метастабильных ядер. Устройство ядерной батарейки можно сравнить с полупроводниковой солнечной батареей. Уникальность атомной батарейки еще и в размере. В сравнении с литий-ионными аккумуляторами, батарейка на основе никеля-63 в 30 раз компактнее. Betavolt планирует выпустить версию ядерной батарейки на 1 ватт к 2025 году.

От смартфона до ракеты. Учёные создали "вечную" атомную батарейку

Российские физики уплотнили энергию ядерной батарейки в десять раз В 1975 г. был впервые имплантирован кардиостимулятор РЭКС-А1, где источником питания служила плутониевая атомная батарейка.
«Ядерные батарейки» для космической техники Ядерные батарейки способны бесперебойно питать элементы годами, пока не достигнут периода полураспада радиоактивного изотопа.
Росатом Госкорпорация «Росатом» ядерные технологии атомная энергетика АЭС ядерная медицина Два года назад учёные Национального исследовательского технологического университета «МИСиС» представили компактную атомную батарейку.
Создана уникальная ядерная батарейка | Наука и жизнь В отличие от батарейки Росатома, бристольская атомная батарейка использует изотоп C 14 и может работать 5730 лет!

80 лет без подзарядки: в России создали атомную батарею

«Это совершенно безопасно» — в Китае создали ядерную батарейку размером меньше монеты "Росатом" изготовил первую опытную партию компактных ядерных батареек.
В России создали «ядерную батарейку» для космоса и авиации - Телеканал "Наука" В батарейке МИФИ несколько иной принцип действия — изотоп в вакуумной камере нагревается до 1500 градусов Цельсия и начинает светиться.
Российские ученые оценили созданную в Китае ядерную батарейку - Онлайн-журнал «Энергия+» Российские учёные презентовали прототип атомной батареи, способной работать без подзарядки 80 лет.

Атомная батарейка. 80 лет без подзарядки

Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта. В России создали прототип атомной батареи, которая может работать без подзарядки 80 лет. примерно 100 лет). «Ядерная батарейка» впервые разработана в России, передает РИА «Новости».

Российские ученые оценили созданную в Китае ядерную батарейку

Создана самая маленькая ядерная батарея — с ней смартфоны будут работать 50 лет без подзарядки Первую опытную партию ядерных батареек для космоса и авиации изготовил «Росатом».
Почему ядерные батарейки так и не стали популярны? История почти забытой технологии Как устроена батарейка на ядерном топливе, и насколько она безопасна? Многоствольные скорострельные пулемёты.
В НИЯУ МИФИ создали прототип ядерной батарейки | Официальный сайт НИЯУ МИФИ Ядерные батарейки способны бесперебойно питать элементы годами, пока не достигнут периода полураспада радиоактивного изотопа.
Российские ученые создали батарейку, работающую 100 лет - Российская газета Теперь пришло время рассказать о компактной атомной батарее созданной российскими учеными.
В России разработана атомная батарейка / ИА REX «Ядерная батарейка» впервые разработана в России, передает РИА «Новости».

Что за ядерную батарейку создали российские учёные?

Со слов Сергея Зырянова, руководителя изотопного отдела это единственное в мире предприятие, занимающееся изготовления радиоизотопа в промышленных масштабах. Для производства идеи данных атомных батареек будет использоваться радиоизотоп Никель-63. Сам изотоп добывают в ядерном реакторе из Никеля-62 - природного изотопа. Батареи в основу которых ляжет данное вещество будут производить низкое B-излучение, поглощение которого будет происходить уже внутри источника питания и не будет нести вред живым существам.

Компания утверждает, что она является первой, кто успешно миниатюризировал атомную энергию, поместив 63 ядерных изотопа в батарею размером меньше монеты. Этот прорыв ставит его «далеко впереди» всех других европейских и американских академических и коммерческих учреждений, отмечается в публикации. При этом инженеры уверяют, что устройство безопасно для людей: в нем используется никель и алмазные полупроводники, уточняет «Газета. Компания планирует начать массовое производство батареи в этом году, а через год планирует представить еще более мощную версию.

У него нет разъема для подзарядки, но гаджет все равно исправно работает — день за днем, месяц за месяцем, не требуя подключения к розетке. Спустя несколько лет смартфон сломался, и вы купили новый. Но прежде чем избавиться от старого, вы вынули из него батарейку, вставили ее в новый, и он проработал еще несколько лет. Вы еще много раз меняли гаджеты, каждый раз используя в них одну и ту же батарейку — ту самую, первую. Затем вы завещали ее сыну. А он — вашему внуку. Потом она перешла к правнуку, к праправнуку и так далее. И все это время продолжала вырабатывать энергию — приблизительно 28 000 лет… Понимаем, что звучит это слишком смело даже для научной фантастики, и тем не менее есть реальные шансы, что подобная батарейка поступит в продажу в самое ближайшее время.

Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Применение такой батареи возможно лишь в специальных микроэлектронных устройствах, в том числе в приборах, работающих в критических условиях — в космосе, под водой или в горах, отмечают исследователи. Например, в качестве аварийного источника питания небольших датчиков. Несмотря на относительную безопасность для человека и возможность работать до 20 и более лет, атомные батарейки пока не находят применения в быту из-за дороговизны производства.

Ученые создали атомную батарейку. Она может работать 20 лет

Таким образом, формирование нанокластерных пленок никеля-63 с градиентным распределением наночастиц по размерам открывает уникальную возможность и позволяет совместить сразу два важных процесса: во-первых, формировать покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, осуществлять преобразование энергии бета-распада 63Ni в ток электронов без использования дополнительных сложных для реализации полупроводниковых систем. Главным вопросом, которому посвящена разработка НИЯУ МИФИ, является исследование электрофизических свойств формируемой нанокластерной пленки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада 63Ni в электричество. Первичные результаты, подтверждающие возможность реализации такой системы, ранее были опубликованы коллективом авторов в престижном журнале Applied Physics Letters. Однако оказалось, что данные наноструктурированные пленки могут использоваться в качестве селективного фотоэмиттера — системы с перераспределенным спектром излучения в заданном спектральном диапазоне. Как показали проведенные эксперименты, процесс окисления данной пленки приводит к образованию оксидной оболочки поверх металлического ядра нанокластера.

Таким образом, при окислении металлической пленки формируется ансамбль металлических нанокластеров с пространственным распределением нанокластеров по размерам и имеющих слой оболочку оксида. Малые размеры нанокластеров 2-15 нм приводят к проявлению квантовых свойств, в связи с чем ансамбль подобных нанокластеров, имеющих оксидную оболочку, представляет собой набор полупроводниковых материалов с широким разбросом значений ширины запрещенной зоны. Это обеспечивает возможность эмиссии фотонов заданной длины волны при нагреве и, следовательно, обеспечивает возможность «настройки» спектра излучения предлагаемой системы под требуемый диапазон длин волн.

При работе «алмазная» батарейка будет передавать излишки электричества литиевому аккумулятору. Наша разработка полностью заряжала бы вашу батарею с нуля пять раз в час. Представьте себе это.

Представьте себе мир, в котором вам вообще не придется заряжать аккумулятор в течение дня. А теперь представьте себе неделю, месяц… Как насчет десятилетий? Вот что мы можем сделать с помощью нашей технологии», — рассказал о разработке NDB сотрудник стартапа Нил Найкер. Компания NDB поделилась планами наладить коммерческое производство бета-гальванических батарей к концу года. Заключены два предварительных контракта на поставку батарей американским компаниям. Будущие бета-тестеры занимаются производством, обслуживанием и утилизацией продуктов ядерного топлива, а также производством аэрокосмической, оборонной и охранной продукции.

Названия первых клиентов пока держат в секрете.

К, заставляя ее поверхность светиться. Это улавливают окружающие капсулу фотоэлементы, способные выдерживать колоссальную жару. И на выходе уже сейчас, на стадии прототипа, обеспечивается мощность, способная заставить светиться электрическую лампочку на несколько свечей.

Казалось бы, зачем так сложно? Ведь тепло, неизменный спутник процесса радиоактивного распада, способно давать ток напрямую. Примерно так рассуждали ученые прошлых поколений в Советском Союзе, когда конструировали и запускали в серийное производство радиоизотопный термоэлектрический генератор РИТЭГ. Он работал на бета-частицах стронция 90 по другому принципу — термоэлектрическому.

Иначе говоря, как термопара: между холодным и разогретым от активного источника контактами возникало напряжение, током от которого и запитывали приборы. Для эвакуации последних РИТЭГов с автономных антарктических метеопостов в 2015 году, кстати, пришлось снаряжать полярную миссию. С тех пор российские автоматические метеостанции в труднодоступных районах электричество получают от ветряков. Секрет в специальных термофотоэлементах, которые эффективно преобразуют свет ближнего диапазона инфракрасного спектра в электричество.

Батарея якобы уже передана клиентам для изучения, а по-настоящему мощный 1-Вт элемент будет представлен в 2025 году. Сообщается, что аккумулятор будет полностью безопасным, так как на него не будут влиять температура воздуха и другие факторы. Также отмечается, что проблем с утилизацией быть не должно — к концу эксплуатации почти все радиоактивные элементы попросту распадутся. Эта разработка, как и множество других подобных в США, России и в других странах, использует источник изотопов, который выделяет энергию при радиоактивном бета-распаде.

У таких батарей низкий КПД на уровне единиц процентов, но работать они могут десятилетиями, поэтому, например, нашли применение в качестве бортовых систем питания межпланетных станций, которые направляются вглубь Солнечной системы. Пригодные для использования в массовой электронике портативные прототипы атомных бета-гальванических батарей безуспешно пытаются создать в США, России и не только.

В МИФИ создали прототип плутониевой батарейки

Их конструкция работает на никелевом бета-гальваническом элементе, который служит около 20 лет. Эти элементы можно размещать на одежде и использовать их энергию для зарядки мобильных устройств. Термохимические ячейки Фото: misis. Эти панели можно будет устанавливать в окнах домов и офисов. Они будут аккумулировать энергию солнечного света в течение дня.

А в 2020 году Tesla презентовала собственный инвертор солнечной энергии, который дополнит линейку домашних солнечных батарей компании. Он будет преобразовывать солнечную энергию в энергию постоянного тока, а затем — в энергию переменного тока для бытового потребления. В зависимости от числа трекеров точки максимальной мощности, оно сможет выдавать от 3,8 кВт до 7,6 кВт мощности. Инвертор Tesla Фото: electrek.

Система объединит солнечные тепловые коллекторы с параболическими зеркалами фокусируют лучи в одной точке , подземное хранилище тепла в осадочных породах образуются при низких температурах и давлении и электрогенерирующее оборудование на пару в виде трубок и турбины. При нагревании солнцем вода в трубках будет испаряться, а пар будет входить в турбину и одновременно закачиваться под землю, разогревая осадочную породу. Ночью вода под землей будет испаряться уже под воздействием разогретой породы. Получаемый пар используют для выработки электроэнергии.

Эту жидкость поместят в баки с теплоизоляцией и низким давлением. Нагревание вернет воздух в газообразное состояние, а газ приведет в действие турбины генераторов, которые будут вырабатывать электричество. Схема работы CRYOBattery В мае 2021 года международная группа ученых представила новые ультратонкие металлические электроды из золота, которые можно будет применять для разработки прозрачных солнечных панелей. Потенциально такие панели можно будет встраивать в окна домов и офисов, чтобы аккумулировать энергию.

Гравитация и другие необычные решения Шотландский стартап Gravitricity в 2021 году объявил о начале пилотного проекта гравитационного накопителя энергии в Эдинбурге, крупнейшем закрытом глубоководном порту. Демонстрационный образец накопителя энергии Gravitricity мощностью 250 кВт Фото: gravitricity.

Батарейку можно применять в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах, а также в труднодоступных или абсолютно не доступных местах: в космосе, под водой, в высокогорных районах.

В настоящий момент разработчики завершают процедуру международного патентования изобретения, а само устройство уже признано зарубежными экспертами.

Без кобальта В конце 2019 года IBM представила образец аккумулятора без никеля и кобальта, из материалов, которые могут быть получены из морской воды. Он включает комбинацию катодного материала без тяжелых металлов и безопасного жидкого электролита с высокой температурой горения. Специалисты уже подсчитали, что эти материалы могут сделать аккумуляторы дешевле существующих литий-ионных и при этом будут иметь более высокие характеристики скорости зарядки и энергетической плотности, а также будут менее огнеопасными.

Авторы разработки считают, что у нее есть потенциал для внедрения в отрасль электромобилей. Кроме того, тесты показали, что батарея способна прослужить достаточно долго, чтобы ее можно было использовать в интеллектуальных электросетях и новой энергетической инфраструктуре. Для будущего производства аккумуляторов IBM уже заключила коммерческое соглашение с Mercedes-Benz, поставщиком электролита Central Glass и производителем батарей Sidus. Полимеры В 2017 году стартап Ionic Materials презентовал полимерный аккумулятор, который в перспективе сможет заменить литий-ионные.

Компания заявила, что полимерные литий-металлические аккумуляторы будут безопаснее, долговечнее и экономически выгоднее, так как процесс их производства похож на производство пластиковой упаковки. Аккумулятор Ionic Materials Фото: ionicmaterials. Прототип, как заявляет производитель, выдерживает до 400 циклов заряда-разряда. Компания работает над тем, чтобы увеличить этот показатель втрое.

Полимер для аккумуляторов получили из алюминия и других распространенных материалов. На цинке EnZinc, стартап по производству цинковых батарей, заявил в 2021 году, что нашел способ для замены лития на нетоксичный и дешевый цинк в аккумуляторах. До этого на рынке существовали только неперезаряжаемые цинковые батареи. Они выдерживают несколько тысяч циклов зарядки и разрядки.

Ведутся испытания образцов. Их можно будет масштабировать для мобильных телефонов и до транспортных систем, а также для нужд электроэнергетики. Разработка имеет специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный центр, работающий на переработанных ядерных отходах углерода-14. Бета-излучение изотопов преобразуется в электрический ток.

Радиоизотопные генераторы давали энергию автономным маякам, навигационным знаком для судов, гидрографическим станциям. Это был идеальный источник электроэнергии, не обслуживаемый, в котором ничего не крутится, не вертится, который не надо часто менять. Только лишь ученые приезжали, снимали показания, и уезжали опять. Чтобы найти последние четыре генератора в Антарктиде, в 2015 была организована целая экспедиция.

Чем заменить снятые с эксплуатации генераторы? Сейчас на Севере используют солнечные батареи и ветряки, но батареи заледеневают, ветряки сносит пурга... Выручить может универсальная атомная батарейка, у которой и срок службы дольше, и КПД выше чем у советских ритегов. РИТЭГи сделаны по технологии термоэлектрической генерации, а наши ядерные батарейки сделаны по технологии термофотовольтаического преобразования.

Пётр Борисюк, заведующий кафедрой физико-технических проблем метрологии Института ЛаПлаз НИЯУ МИФИ Морозы ядерной батарейке не помеха, в лаборатории уже протестировали систему, которая может работать при самом суровом минусе, на Северном морском пути например. Наша ядерная батарейка является продолжением РИТЭГа, это фактически РИТЭГи второго поколения, на другом принципе преобразования, более эффективные, более надежные и фактически позволяют вам запитывать удаленные инфраструктурные объекты индивидуальными источниками питания. Это могут быть буи, створные знаки, это могут быть маяки, могут быть какие-то другие объекты Северного морского пути, в том числе метеостанции маленькие или другие. В Московском научно-исследовательском институте технической физики и автоматизации есть образцы радиоизотопных термоэлектрических генераторов для будущей лунной и марсианской программы России, однако их тоже возможно заменит атомная батарейка, как более эффективный источник питания.

Разработка может пригодиться в том числе и для спутников, которые полетят исследовать глубокий космос, там, где солнечные батареи уже не в состоянии дать достаточно энергии.

Китай представил ядерную батарейку размером с монету, которой хватит на 50 лет

Старший вице-президент АО ТВЭЛ по научно-технической деятельности, технологии и качеству Константин Вергазов считает, что разделение на центрифугах радиоизотопов — перспективное направление, открывающее для атомной промышленности новые рынки. Источники бета-излучения на основе криптона-85 применяются для точных измерений в метрологии, а вещества с содержанием углерода-14 являются основным средством при изучении метаболизма новых лекарственных и косметических препаратов», — отметил г-н Вергазов. В топливную компанию «Росатома» ТВЭЛ входят предприятия по фабрикации ядерного топлива, конверсии и обогащению урана, производству газовых центрифуг, а также научно-исследовательские и конструкторские организации. ТВЭЛ — единственный поставщик ядерного топлива для российских АЭС, обеспечивает ядерным топливом 72 энергетических реактора в 14 странах, исследовательские реакторы в восьми странах мира, а также транспортные реакторы российского атомного флота.

Почему никель-63? Сегодня ученые НИЯУ МИФИ занялись исследованием возможностей использования никеля-63 в качестве радиоизотопа для ядерных батарей в гражданском секторе. Это наиболее перспективный радионуклид: в миниатюрном элементе питания от излучаемого этим изотопом мягкого бета-излучения легко создать защиту, а его период полураспада - более 100 лет - достаточно длительный. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный многократными соударениями излучаемых изотопом бета-частиц. Эта система является относительно простой, она представляет собой ансамбль плотно упакованных нанокластеров никеля, наночастицы которого осаждены на поверхности диэлектрика — оксида кремния. Ключевая особенность предложенной системы заключается в том, что наночиастицы никеля распределены по размерам, средний размер частицы постепенно изменяется в выделенном направлении. И в этом же направлении происходит увеличение электрических зарядов. Таким образом, формирование нанокластерных пленок никеля-63 с градиентным распределением наночастиц по размерам позволяет совместить сразу два важных процесса: во-первых, формировать покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, осуществлять преобразование энергии бета-распада в электрический ток без использования дополнительных сложных полупроводниковых систем.

Для будущего. Selectel Разработка представляет собой специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный сердечник. В процессе неупругого рассеивания бета-излучение изотопов преобразуется в электрический ток. В качестве топлива используются переработанные ядерные отходы углерода-14. Этот изотоп применяется для радиоизотопного датирования и диагностики некоторых заболеваний желудочно-кишечного тракта. Он также накапливается в графитовых деталях ядерных реакторов, которые поглощают излучение ядерных топливных стержней. Хранить такие отходы опасно, дорого и трудно. Батареи на углероде-14 решают сразу две проблемы — недолговечность обычных элементов питания и переработки радиоактивных отходов. В Nano Diamond Battery отмечают, что батарейки безопасны для человека и окружающей среды. В процессе испытаний радиационный фон оставался в норме.

В 1979 году началось частичное разрушение объекта. Причины остались неизвестны, предполагалось столкновение. Также считается, что радиоактивные элементы оказались в космосе. Фото: energy. В рамках проекта NERVA, например, были испытаны ЯРДы ядерные ракетные двигатели, относятся к радиоизотопным источникам энергии, как и РИТЭГ , способные произвести до 4500 мегаватт тепловой энергии и 1,1 млн ньютонов реактивной тяги половина тяги маршевого двигателя шаттла , работая до 90 минут. Плюс таких двигателей — в значительном сокращении времени полета. Но это другая история, которая пока не закончилась. Модификация одного из них обогревала измерительный инструмент, который взяли с собой участники миссии «Аполлон-11». И пока это так. Однако подобные системы практически незаменимы при отправке зондов на сверхдальние расстояния — туда, где солнечные батареи бесполезны. Первопроходцем в этом деле стала межпланетная станция «Пионер-10», отправленная в космос 3 марта 1972 года. Перед запуском они выдавали 155 Вт электроэнергии, но при подлете к Юпитеру показатель снизился до 140 Вт. Этого было более чем достаточно для работы систем, потреблявших 100 Вт, но к 2001 году энергии уже едва хватало на поддержание функционирования лишь некоторых модулей. До этого новые системы прошли обкатку в спутниках на околоземной орбите. Каждый из космических аппаратов получил по три РИТЭГа общей электрической мощностью 470 Вт на момент запуска с перспективой снижения электрической мощности в два раза примерно через 88 лет. Источниками энергии стали 24 спрессованные сферы из оксида плутония. Плюс на борту имелось по девять нагревателей RHU их может быть и больше, они устанавливаются точечно в рассчитанных местах. Инженерам приходилось решать проблемы с нагревом в тысячи градусов как в случае с новой системой, так и в прошлом и будущем Спустя пару лет после запуска «Вояджеров» США временно вышли из гонки, а СССР, напротив, наращивал количество запущенных спутников — это были аппараты серии УС-А. Но на них устанавливали ядерные энергетические установки БЭС-5 «Бук», работавшие на уране. Их электрическая мощность составляла 3 кВт при тепловой мощности 100 кВт, что заметно превосходило показатели американских систем, работавших по несколько иному принципу. Фото: Los Alamos National Laboratory Срок работы спутников с «Буками» был заметно меньше: он составлял около полугода потом аппарат становился мусором, который летает вокруг Земли до сих пор , и это при более высоком весе ядерного топлива.

Китай представил ядерную батарейку размером с монету, которой хватит на 50 лет

Новость «Ученые разработали атомную батарейку для космических кораблей» вызвала бы определенный интерес. Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта. Ученые российской атомной отрасли вплотную приблизились к созданию так называемого бета-вольтаического источника питания на основе радиоактивного изотопа никель-63. С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи, пишет RT. Атомная батарейка, также известная как радиоизотопный генератор тепла (РИГТ), является источником энергии, который использует процесс распада радиоактивных изотопов для. Ученые НИТУ «МИСиС» представили инновационный автономный источник питания — компактную атомную батарейку, которая может работать до 20 лет.

Вечный заряд: российские ученые создают батарейку, способную работать десятилетиями

"Росатом" изготовил первую опытную партию компактных ядерных батареек. Конструкция ядерной батареи BV100. Ядерный аккумулятор BV100 очень маленький — его габариты составляют 15x15x5 миллиметров. Ядерная батарейка работает на изотопе никель-63. Компактные «атомные батарейки» со сроком службы до 50 лет крайне востребованы в приборах и системах, где замена источников питания затруднительна, высокозатратна или. Физики оптимизировали толщину слоев ядерной батарейки, использующей для производства электрической энергии бета-распад изотопа никеля-63.

В НИЯУ МИФИ создали прототип ядерной батарейки

Полониевые батареи и сейчас используются в космических аппаратах, только их КПД оставляет желать лучшего. КПД батарей российских учных теоретически могут дать куда больший результат. Атомную батарейку можно применять в нескольких режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах длительное время. В бытовых приборах она тоже могла бы сослужить службу, но из-за потенциальной опасности для здоровья человека вдруг, кто-то решить разобрать часы или мобильный телефон с таким источником питания , делать это нецелесообразно.

Существует американский аналог изотопного источника питания, но российские ученые принципиально использовали только российские комплектующие. Но удельная активность потока бета-частиц в российских батареях выше», — рассказал начальник отдела разработки технологий и оборудования для изотопной продукции ВНИИНМ Александр Аникин. Полупроводниковые преобразователи служат для преобразования в электричество энергии, излучаемой тритием — радиоактивным изотопом водорода.

Выбор ядра для атомной батареи из широкого спектра радионуклидов, используемых в радиоизотопной энергетике, зависит от конкретной цели, для которой создается источник питания, режима его эксплуатации и целого ряда других условий. Области применения ядерных батарей разнообразны: в ближайшем будущем ядерные батарейки станут незаменимы на территориях, удаленных от инфраструктуры, например, в Арктике, на больших глубинах, на газо- и нефтепроводах большой протяженности, в космосе, а также в связи и медицине — там, где нужен длительный мониторинг без возможности подзарядки или замены источников энергии. Кроме высокой удельной мощности, важны также простота и удобство наработки радионуклида например, в атомном реакторе и такой параметр, как отсутствие гамма-излучения. Поэтому, скажем, для ядерных батареек в кардиостимуляторах или датчиках артериального давления и показателей крови подходят только плутоний-238 и никель-63. Требование безопасного радиоизотопа резко сужает круг потенциальных кандидатов, поскольку ядра при распаде должны либо все переходить в основное состояние дочернего ядра, либо заселять возбужденные состояния дочернего ядра с очень низкой вероятностью. Кроме выбора радиоизотопа, принципиально важным при разработке радиоизотопных источников энергии является и выбор схемы преобразования энергии ядерного распада в электричество. На практике преобразование ядерной энергии в электрическую осуществляется преимущественно по непрямому ступенчатому принципу: кинетическая и кулоновская энергия альфа- и бета-частиц сначала превращаются в иную, например, тепловую, химическую, механическую, световую и т. Это наиболее перспективный радионуклид в бета-вольтаике — средняя энергия бета-частиц 63Ni 17.

Полониевые батареи и сейчас используются в космических аппаратах, только их КПД оставляет желать лучшего. КПД батарей российских учных теоретически могут дать куда больший результат. Атомную батарейку можно применять в нескольких режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах длительное время. В бытовых приборах она тоже могла бы сослужить службу, но из-за потенциальной опасности для здоровья человека вдруг, кто-то решить разобрать часы или мобильный телефон с таким источником питания , делать это нецелесообразно.

Похожие новости:

Оцените статью
Добавить комментарий