Новости нервные импульсы поступают непосредственно к железам по

Рецептор преобразует раздражение в нервный импульс, который достигает тела нервной клетки. Из продолговатого мозга импульсы поступают к слюнным железам и железам стенок желудка, стимулируя образование и выделение слюны и желудочного сока. Войти Регистрация. Биология. Нервные импульсы поступают непосредственно. нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных.

Химическая передача нервного импульса

Может быть один этап ферментативного катализа ацетилхолин или до трёх этапов адреналин. Аминокислоты синтезируются из глюкозы. Многие этапы синтеза можно блокировать фармакологическими агентами, что лежит в основе действия многих лекарств, влияющих на нервную систему. После выработки молекул медиатора они накапливаются и хранятся в окончании аксона в маленьких мешочках, связанных с мембраной. В одном окончании могут быть тысячи синаптических пузырьков, каждый из которых содержит от 10 тыс. Высвобождение Приход нервного импульса в окончание аксона вызывает высвобождение множества молекул медиатора из окончания в синаптическую щель.

Механизм такого выделения остаётся????? Взаимодействие с рецептором. Вышедшие молекулы медиатора быстро проходят через наполненную жидкостью щель между окончанием аксона и мембраной воспринимающего нейрона. Здесь они взаимодействуют со специфическими рецепторами постсинаптической мембраны. Рецепторы фактически представляют собой крупные белковые молекулы, погружённые в полужидкую матрицу клеточной мембраны: части их торчат над и под мембраной подобно айсбергам.

Выходящий на поверхность участок рецепторного блока и молекула медиатора имеют одинаковые очертания, они соответствуют друг другу как ключ и замок. Существует 2 основных типа медиаторных рецепторов: быстро действующие — осуществляют передачу, регулируя проницаемость ионной поры, и медленно действующие, которые вызывают образование второго посредника, который в свою очередь опосредует эффекты, производимые медиатором в постсинаптическом нейроне. Окончательное действие Взаимодействие медиатора с его рецептором меняет трёхмерную форму рецепторного белка, инициируя этим определённую последовательность событий. Это взаимодействие может вызвать возбуждение или торможение нейрона, сокращение миоцита, а также образование и выделение гормона клеткой железы. Во всех этих случаях рецептор "переводит сообщение, закодированное в молекулярной структуре медиатора, в специфическую физиологическую реакцию.

Как только молекула медиатора свяжется со своим рецептором, она должна быть инактивированна во избежание слишком длительного её действия и нарушения точного контроля передачи. Существуют разнообразные механизмы рецепции на молекулярном уровне. Ацетилхолин взаимодействует с рецепторным белком в постсинаптической мембране. АХ является лигандом, когда имеют ввиду, что он связывается с определенным участком белка. И это вызывает изменение проницаемости мембраны.

Реакция мембраны может быть либо быстрая либо медленная. ГАМК может связываться с 2 типами мембранных рецепторов — с высоким и низким сродством. Бензодиазепиновые препараты вызывают угнетение ГАМК-эргических синапсов и, благодаря этому, используются для лечения тревожных состояний и страха. ГАМК удаляется из щели путем захвата пресинаптическим окончанием, а также клетками глии. Глия играет важную роль как в захвате так и в метаболизме ГАМК.

Однако последующая реакция в постсинаптическом окончании более сложна.

Простейшая рефлекторная дуга состоит из трех нейронов - чувствительного, вставочного и двигательного или секреторного. Тело первого нейрона афферентного находится в спинномозговом узле или чувствительном узле черепного нерва.

Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру. В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона.

Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу. Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного.

Рефлекторная дуга состоит чаще всего из многих нейронов. Между афферентным чувствительным и эфферентным двигательным или секреторным нейронами расположено несколько вставочных нейронов. В такой рефлекторной дуге возбуждение от чувствительного нейрона передается по центральному отростку к последовательно расположенным друг за другом вставочным нейронам.

Вместе с гипофизом он образует гипоталамо-гипофизарную систему и регулирует интенсивность выработки его гормонов. Гипоталамус получает сигналы от следующих структур: базальных ядер ганглиев — скоплений серого вещества в белом веществе головного мозга; спинного мозга; отделов головного мозга: продолговатого, среднего, таламуса, а также некоторых участков больших полушарий. Гипоталамус — это центр, который накапливает данные из всего организма, а также из внешней среды. Нервные клетки гипоталамуса способны вырабатывать несколько типов нейроэндокринных трансмиттеров — биологически активных веществ, которые влияют на интенсивность синтеза тропных гормонов гипофиза: Либерины — группа соединений, которые стимулируют гормональный синтез. Так, соматолиберин увеличивает выработку соматотропного гормона роста, тиреолиберин — тиреотропного, гонадолиберин — лютенизирующего и фолликулостимулирующего гормонов. Статины — вещества, которые подавляют выработку тропных гормонов гипофиза. Различают такие разновидности, как соматостатин, пролактостатин, меланостатин.

Окситоцин и вазопрессин — гормоны, которые вырабатываются гипоталамусом, но накапливаются в задней доле гипофиза. Первый возрастает во время родов и вызывает сокращение мышечной стенки матки, но также выполняет и другие функции. Вазопрессин регулирует водный обмен, повышает тонус сосудов.

Нервный импульс возникает только в том случае, если вызванное возбуждение любым способом изменяет напряжение мембраны за пороговую величину, которая обычно равна 10-15 мВ.

Суммируя вышесказанное можно предположить, что передача электрических сигналов в нервных сетях основан на изменении МП в результате прохождения относительно небольшого числа ионов через мембранные каналы. В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль нервного волокна, пока не достигнет его окончания — места контакта с мышечной клеткой или, как принято называть, «концевой пластинкой». Применение микроэлектродной техники отведения спонтанных биопотенциалов концевой пластинки позволило определить пороговую чувствительность синаптической области мышечной мембраны путем нанесения незначительного количества АХ. Показано, что АХ в количестве 108-109 молекул уже вызывает деполяризацию мышечной мембраны в области наружной поверхности синапса.

Сама же мембрана является непроницаемой для АХ. При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот.

Входящий кальциевый ток оказывает клетке значительное воздействие. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии — сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями квантами. Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки МПКП.

Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны. В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего». Известно, что один квант медиатора — АХ открывает около 1000 каналов ионной проводимости. Изучение длинных последовательностей до нескольких тысяч МПКП показало, что распределение интервалов t между импульсами вокруг среднего значения tх симметрично, а частота, с которой встречаются интервалы t, следуют простому экспоненциальному закону, характерному для случайного процесса.

Этот разброс связан, прежде всего с тем, что места возникновения МПКП находятся на разном расстоянии от регистрирующего электрода. МПКП регистрируются внеклеточным микроэлектродом от наружной поверхности мышечных мембран, от различных, но строго локальных участков синапса, что свидетельствует о выделении АХ не диффузно, а в определенных активных точках. При изучении возникновения постсинаптического потенциала концевой пластинки ПКП многие исследователи пришли к выводу, что ПКП возникает вследствие резкого увеличения частоты МПКП и, что между частотой и силой поляризующего тока имеется линейная зависимость. Деполяризация пресинаптических окончаний на 60 мВ увеличивает частоту в 104 раз, что вызывает появление ПКП.

Однако, в последние годы появилось много убедительных данных, в которых показано, что временное распределение интервалов не подчиняется закону Пуассона. Обнаружено существование низко- и высокоамплитудных МПКП, которые возникали в той же самой концевой пластинке. Анализ встречаемости обоих видов МПКП в односекундные и 100миллисекундные непрерывающиеся интервалы показал, что имеются существенные отклонения от пуассоновского распределения, тем большие, чем меньше диаметр волокна и частота МПКП. Этот статистический подход представляет интерес, поскольку позволяет подтвердить предположение о квантовом характере освобождения медиатора.

Химическая передача нервного импульса

Общие данные. Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон.. Афферентный сигнал. Афферентный нерв. Исполнительные органы. Обратная афферентация связь. Замкнутая кольцевая цепь рефлексов. Вегетативная автономная и анимальная нервная система. Развитие нервной системы.

Филогенез нервной системы. Трубчатая нервная система. Развитие отделов мозга: промежуточный, передний, конечный. Новый мозг. Первая сигнальная система. Вторая сигнальная система. Эмбриогенез нервной системы. Понимание физико-химической природы генерации нервного сигнала, путей передачи информации с одной нервной клетки на другую или на мышечную клетку позволит вплотную подойти к объяснению механизма деятельности нервной системы. Нервные клетки передают информацию с помощью сигналов, представляющие собой электрические токи, генерируемой поверхностной мембраной нейрона.

Эти токи возникают благодаря движению зарядов, принадлежащих ионам натрия, калия, кальция и хлора. От наружной среды внутреннее пространство нейрона отделено клеточной мембраной, которая является плохим изолятором и допускает некоторую утечку ионов в обоих направлениях. Если бы мембрана была проницаема только для ионов калия, разность потенциалов на ней могла бы достигать величин, определяемой уравнением Нернста 1 для калиевого электрода. По данным различных авторов, эта величина соответствует 70-75 мВ. При этом последние выходят из клетки и в результате чего происходит восстановление ПП клетки. Эти изменения разности потенциалов и создают электрический импульс, распространяющийся по нервному волокну.

Паутинная оболочка головного мозга расположена после твердой мозговой оболочки и имеет вид паутины. Образована соединительной тканью, клетки которой синтезируют внеклеточное вещество.

Функция паутинной оболочки состоит в поддержании биохимического состава и регуляции давления ликвора - спинномозговой жидкости, которая циркулирует в паутинном пространстве. Мягкая сосудистая оболочка сращена с тканью мозга, состоит из рыхлой соединительной ткани, в толще которой находятся кровеносные сосуды, обеспечивающие питание мозга. Она принимает участие в образовании сосудистых сплетений желудочков головного мозга, продуцирующих спинномозговую жидкость ликвор. Эта информация доступна зарегистрированным пользователям Кровеносные сосуды, проникающие в ткань головного мозга, находятся в толще мягкой сосудистой оболочки. Между стенками сосудов и белым веществом головного мозга имеется периваскулярное пространство, которое заполнено ликвором и способствует регуляции оттока спинномозговой жидкости. Вокруг кровеносных капилляров такого пространства нет. Содержимое кровеносных капилляров отделено от ткани головного мозга гематоэнцефалическим барьером ГЭБ. Функции ГЭБ: поддержание гомеостаза постоянство внутренней среды мозга очищение крови, которая поступает в головной мозг от микроорганизмов, вредных веществ эндотелиальные клетки капилляров- осуществляют активный транспорт и обмен веществ перициты- отростчатые клетки соединительной ткани стенок капилляров, способны сокращаться и фагоцитировать астроциты- выстилают стенки мозговых капилляров со стороны мозговой ткани, тесно взаимодействуют с эндотелиальными клетками и между ними осуществляется постоянный обмен веществ Теперь поговорим о нервах, которые отходят от головного мозга, всего их 12 пар, которые называют черепно-мозговыми нервами.

Ритмические сокращения делят пищевую кашицу на отдельные сегменты, что способствует ее лучшему растиранию и перемешиванию с пищеварительными соками. Маятникообразные движения обусловлены сокращением круговых и продольных мышц кишечника. Маятникообразные движения способствуют тщательному перемешиванию химуса с пищеварительными соками. В регуляции моторной активности тонкого кишечника участвуют нервные и гуморальные механизмы, объединенные в единую регуляторную систему, за счет деятельности которой усиливается или ослабляется моторная функция тонкого кишечника. Нервный механизм. Моторная функция кишечника регулируется интрамуральной и экстрамуральной нервной системой.

К интрамуральной нервной системе относят мышечно-кишечное ауэрбаховское , глубокое межмышечное и подслизистое мейсснеровское сплетения. Они обеспечивают возникновение местных рефлекторных реакций, которые возникают при раздражении слизистой оболочки кишечника его содержимым. Экстрамуральная нервная система кишечника представлена блуждающими и чревными нервами. Блуждающие нервы при их возбуждении стимулируют моторную функцию кишечника, чревные тормозят ее. Моторная функция тонкого кишечника стимулируется рефлекторно при возбуждении рецепторов различных отделов желудочно-кишечного тракта. Рефлекторно стимулирует моторную функцию тонкого кишечника акт еды. Гуморальная регуляция моторной функции тонкого кишечника.

Стимулирующее влияние на моторную функцию кишечника оказывают биологически активные вещества серотонин, гистамин, брадикинин и др. Тормозят двигательную активность кишечника гормоны мозгового слоя надпочечников — адреналин и норадреналин. Вследствие этого такие эмоциональные состояния организма, как страх, испуг, гнев, злость, ярость и т. Существенное значение в регуляции моторной функции кишечника имеют физико-химические свойства пищи. Грубая пища, содержащая большое количество клетчатки, овощи стимулируют двигательную активность кишечника. Составные части пищеварительных соков — хлористоводородная кислота, желчные кислоты — также усиливают моторную функцию кишечника. При отсутствии пищеварения илеоцекальный сфинктер закрыт.

В результате пищевая кашица небольшими порциями поступает в слепую кишку. Основной функцией проксимальной части толстых кишок является всасывание воды. Роль дистального отдела толстого кишечника состоит в формировании каловых масс и удалении их из организма. Всасывание питательных веществ в толстом кишечнике незначительно. Существенная роль в процессе пищеварения принадлежит микрофлоре — кишечной палочке и бактериям молочнокислого брожения. Бактерии в процессе своей жизнедеятельности выполняют полезные для организма функции. Бактерии молочнокислого брожения образуют молочную кислоту, которая обладает антисептическим свойством.

Бактерии синтезируют витамины группы В, витамин К, пантотеновую и амидникотиновую кислоты, лактофлавин. Микроорганизмы подавляют размножение патогенных микробов. Отрицательная роль микроорганизмов кишечника состоит в том, что они образуют эндотоксины, вызывают брожение и гнилостные процессы с образованием ядовитых веществ индол, скатол, фенол и в определенных случаях могут стать причиной заболеваний. Моторная функция толстого кишечника. Моторная функция толстого кишечника обеспечивает накапливание каловых масс и периодическое их удаление из организма. Кроме того, моторная активность кишечника способствует всасыванию воды. В толстом кишечнике наблюдаются перистальтические, антиперистальтические и маятникообразные движения.

Все они осуществляются медленно. Обеспечивают перемешивание, разминание содержимого, способствуют его сгущению и всасыванию воды. Толстому кишечнику присущ особый вид сокращения, который получил название масс-сокращение. Возникает масс-перистальтика редко, до 3—4 раз в сутки. Сокращения захватывают большую часть толстой кишки и обеспечивают быстрое опорожнение значительных ее участков. Регуляция моторной функции толстого кишечника. Толстый кишечник имеет интрамуральную и экстрамуральную иннервацию.

Последняя представлена симпатическими нервами, которые выходят из верхнего и нижнего брыжеечных сплетений, и парасимпатическими, входящими в состав блуждающих и тазового нервов. Рефлекторные воздействия на двигательную активность толстого кишечника осуществляются во время еды, в результате возбуждения хемо- и механорецепторов желудка, двенадцатиперстной кишки и тонкого кишечника. Моторная функция толстого кишечника определяется и характером принимаемой пищи. Чем больше в пище клетчатки, тем выраженнее моторная активность толстого кишечника. Формированию кала способствуют комочки слизи кишечного сока, которые склеивают непереваренные частицы пищи Дефекация — сложнорефлекторный акт опорожнения дистального отдела толстой кишки через задний проход. Дефекация наступает при растягивании прямой кишки каловыми массами. Осуществлению дефекации способствуют сокращения мышц диафрагмы и передней брюшной стенки, мышцы, поднимающей задний проход.

Все это ведет к уменьшению объема брюшной полости и повышению внутрибрюшного давления. Центр рефлекса дефекации находится в пояснично-крестцовом отделе спинного мозга. Он обеспечивает непроизвольный акт дефекации. На этот центр оказывают влияние продолговатый мозг, гипоталамус, кора большого мозга. Нервные импульсы, поступающие от этих отделов центральной нервной системы к центру рефлекса дефекации, могут ускорить или замедлить акт дефекации. Всасывание — универсальный физиологический процесс, который связан с переходом разного рода веществ через слой каких-либо клеток во внутреннюю среду организма. Благодаря всасыванию в желудочно-кишечном тракте организм получает всё необходимое для жизнедеятельности.

Всасывание происходит на всем протяжении пищеварительного канала, но основным местом является тонкий кишечник. В ротовой полости всасываются некоторые лекарственные вещества. В желудке всасываются вода, минеральные соли, моносахара, алкоголь, лекарственные вещества, гормоны, альбумозы, пептоны. В двенадцатиперстной кишке также осуществляется всасывание воды, минеральных веществ, гормонов и продуктов расщепления белка. Основной процесс всасывания происходит в тонком кишечнике.

Распространяет информацию по звеньям. Исполнительный нейрон. Передает импульс к нужному органу или железе. Рефлекторная дуга отвечает не только за возбуждение импульса, но и за его торможение. Нервная ткань. Проводимость — это свойство, которое передает информацию по клеткам ткани. Возбуждения передаются по чувствительным волокнам в мышцах, затем по двигательным волокнам скелетных мышц. Прохождение нервных импульсов Нервы передают друг другу кодированную информацию. Это называется возбуждением. Мембрана нервной клетки покрыта двойным липидным слоем, содержит ионы калия и натрия, фермент АТФ-азу. Этот комплекс называется ионный насос. Он обеспечивает неравенство концентрации ионов. Процесс сопровождается затратой энергии.

Нервные импульсы поступают непосредственно к железам по...?

1. Нервные импульсы поступают непосредственно к железам по. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель. По какому нейрону нервные импульсы поступают из ЦНС к рабочему органу? Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов.

КР Нервная система 8 класс. Вариант Часть Нервные импульсы поступают непосредственно к железам по

1. Нервные импульсы поступают непосредственно к железам по. По нисходящим волокнам нервные импульсы от нейронов головного мозга проводятся вниз – к нижерасположенным сегментам спинного мозга. От него по волокнам симпатической нервной системы импульсы идут к мышцам сосудов и вызывают их сокращение, вследствие чего наступает сужение сосудов. Нервные импульсы передаются в мозг по нейронам. Нервные импульсы поступают непосредственно к железам по 1) аксонам. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов 2. аксонам вставочных мозга 4. белому в-ву спинного мозга.

Нервные импульсы поступают непосредственно

Рефлекторный механизм вызывает закрытие сфинктера привратника за счет сокращения его кольцевых мышц. Сфинктер будет закрыт до тех пор, пока химус волной перистальтики не продвинется дальше по двенадцатиперстной кишке. Регуляция деятельности сфинктера привратника осуществляется также хлористоводородной кислотой. Открытие сфинктера привратника происходит вследствие раздражения слизистой оболочки пилорической части желудка хлористоводородной кислотой желудочного сока. Часть пищи в это время переходит в двенадцатиперстную кишку и реакция ее содержимого становится кислой вместо щелочной. Здесь начинается второй этап пищеварения, который имеет ряд особенностей.

В процессе пищеварения в двенадцатиперстной кишке участвуют панкреатический поджелудочный сок, желчь и кишечный сок, которые имеют выраженную щелочную реакцию. В состав поджелудочного и кишечного соков входят ферменты, расщепляющие белки, жиры, углеводы. Состав, свойства и значение панкреатического сока. У взрослого человека за сутки выделяется 1,5-2 л поджелудочного сока. В состав поджелудочного сока входят органические протеолитические, амилолитические, липолитические ферменты и неорганические вещества.

К протеолитическим ферментам панкреатического сока относятся: трипсин, химотрипсин, панкреатопептид эластаза и карбоксипептидазы. Под их влиянием нативные белки и продукты их распада высокомолекулярные полипептиды расщепляются до низкомолекулярных полипептидов и аминокислот. В панкреатическом соке содержатся также ингибиторы протеолитических ферментов. Они имеют существенное значение в предохранении поджелудочной железы от самопереваривания аутолиз. К амилолитическим ферментам поджелудочного сока относятся амилаза, расщепляющая углеводы до мальтозы, мальтаза, превращающая солодовый сахар мальто зу в глюкозу, лактаза, расщепляющая молочный сахар лактозу до моносахаридов.

В состав липолитических ферментов входят липаза и фосфолипаза А. Липаза расщепляет жиры до глицерина и жирных кислот. Фосфолипаза А действует на продукты расщепления жиров. Регуляция секреции поджелудочной железы Секреция поджелудочного сока протекает в три фазы: сложнорефлекторную мозговую , желудочную и кишечную. Сложнорефлекторная фаза осуществляется на основе условных и безусловных рефлексов.

Вид пищи, ее запах, звуковые раздражения, связанные с приготовлением пищи, разговор о вкусной пище или воспоминания о ней при наличии аппетита приводят к отделению поджелудочного сока. В этом случае выделение сока происходит под влиянием нервных импульсов, идущих от коры большого мозга к поджелудочной железе, то есть условнорефлекторно. Безусловнорефлекторная секреция поджелудочного сока происходит при раздражении пищей рецепторов ротовой полости и глотки. Первая фаза секреции поджелудочного сока непродолжительная, сока выделяется мало, но он содержит значительное количество органических веществ, в том числе ферментов. Желудочная фаза секреции панкреатического сока связана с раздражением рецепторов желудка поступившей пищей.

Нервные импульсы от рецепторов желудка по афферентным волокнам блуждающего нерва поступают в продолговатый мозг к ядрам блуждающих нервов. Под влиянием нервных импульсов нейроны ядер блуждающих нервов возбуждаются. Это возбуждение по эфферентным секреторным волокнам блуждающего нерва передается к поджелудочной железе и вызывает отделение панкреатического сока. Желудочная фаза секреции панкреатического сока обеспечивается также гормоном гастрином, который действует непосредственно на секреторные клетки поджелудочной железы. Сок, выделяющийся во вторую фазу, как и в первую, богат органическими веществами, но содержит меньше воды и солей.

Кишечная фаза секреции поджелудочного сока осуществляется при участии нервного и гуморального механизмов. Под влиянием кислого содержимого желудка, поступившего в двенадцатиперстную кишку, и продуктов частичного гидролиза питательных веществ происходит возбуждение рецепторов, которое передается в центральную нервную систему. По блуждающим нервам нервные импульсы от центральной нервной системы поступают к поджелудочной железе и обеспечивают образование и выделение панкреатического сока. Гуморальная регуляция секреторной активности поджелудочной железы. В слизистой оболочке двенадцатиперстной кишки и верхнем отделе тонкого кишечника находится особое вещество секретин , которое активируется хлористоводородной кислотой и гуморально стимулирует секрецию поджелудочной железы.

В настоящее время установлено участие и других биологически активных веществ, образующихся в слизистой оболочке желудочно-кишечного тракта, в регуляции секреторной активности поджелудочной железы. К ним относятся холецистокинин панкреозимин и уропанкреозимин. Влияние состава пищи на отделение поджелудочного сока. В периоды покоя поджелудочной железы секреция полностью отсутствует. Во время и после еды секреция поджелудочного сока становится непрерывной.

При этом количество выделяющегося сока, его переваривающая способность и продолжительность секреции зависят от состава и количества принятой пищи. Наибольшее количество сока выделяется на хлеб, несколько меньше — на мясо и минимальное количество сока секретируется на молоко. Сок, полученный на мясо, имеет более щелочную реакцию, чем сок, выделяющийся на хлеб и молоко. При употреблении пищи, богатой жирами, в поджелудочном соке содержание липазы в 2—5 раз больше, чем в соке, который выделился на мясо. Преобладание в пищевом рационе углеводов приводит к увеличению количества амилазы в поджелудочном соке.

При мясной диете в поджелудочном соке обнаруживается значительное количество протеолитических ферментов. Состав, свойства желчи и ее значение в пищеварении. Желчь — продукт секреции печеночных клеток, представляет собой жидкость золотисто-желтого цвета, имеющую щелочную реакцию рН 7,3—8,0 и относительную плотность 1,008—1,015. Основными компонентами сухого остатка являются желчные кислоты, пигменты и холестерин. Кроме того, в желчи содержатся муцин, жирные кислоты, неорганические соли, ферменты и витамины.

У здорового человека в сутки выделяется 0,5—1,2 л желчи. Секреция желчи осуществляется непрерывно, а поступление ее в двенадцатиперстную кишку происходит во время пищеварения. Вне пищеварения желчь поступает в желчный пузырь. Желчь относят к пищеварительным сокам. Желчь повышает активность ферментов панкреатического сока, прежде всего липазы.

Желчные кислоты эмульгируют нейтральные жиры. Желчь необходима для всасывания жирных кислот, а следовательно, жирорастворимых витаминов А, В, Е и К. Желчь усиливает сокоотделение поджелудочной железы, повышает тонус и стимулирует перистальтику кишечника двенадцатиперстная и толстая кишка. Желчь участвует в пристеночном пищеварении.

Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.

Нервные импульсы поступают непосредственно к железам по1 аксонам двигательных Сердитые импульсы поступают конкретно к железам по 1.

Вазопрессин регулирует водный обмен, повышает тонус сосудов. Гормоны гипоталамуса поступают к гипофизу по кровеносному руслу и там воздействуют на его функции.

Статины и либерины не всегда действуют строго избирательно. Так, соматостатин может подавлять выработку не только соматотропина, но также тиротропного гормона, инсулина и пролактина. Нервная регуляция работы надпочечников Надпочечники — парные железы, которые у человека расположены в области верхнего полюса почек. В их строении выделяют две составляющих: корковое и мозговое вещество.

Кора выполняют эндокринную функцию и вырабатывает гормоны в кровь, а мозговой слой представляет собой промежуточное звено между нервной и эндокринной системами. Одна из функций мозгового вещества надпочечников — выработка катехоламинов. Это группа биологически активных соединений, которая включает адреналин и норадреналин. Они максимально активируются в стрессовых ситуациях, когда необходимо срочно привести организм в тонус, и запускают ряд изменений: ускорение сердцебиения;.

Это называется возбуждением. Мембрана нервной клетки покрыта двойным липидным слоем, содержит ионы калия и натрия, фермент АТФ-азу. Этот комплекс называется ионный насос. Он обеспечивает неравенство концентрации ионов. Процесс сопровождается затратой энергии. Одной молекулы АТФ хватает на транспорт 2 молекул калия и трех молекул натрия. Калий преобладает в клетках нейрона над натрием и свободно выходит из наружу. Когда на клетку действует раздражитель, возбуждение вызывает возрастание проницаемости мембраны клеток нервов. Ионы получают возможность перемещаться по градиенту концентрации. После чего, поток ионов натрия становится выше, чем калия.

Это действие обуславливает потенциал действия. Нервы проводят через себя электрический ток. Ток проходит через тело нейрона к периферическому концу.

Остались вопросы?

Нервные импульсы поступают непосредственно к мышцам и железам по1)аксонам вставочных. Информация улавливается рецепторами, далее движется в виде импульсов по нервным клеткам и достигает головного мозга. среды путем модификационного приема и проведения импульсов, поступающим по различным каналам. 2. Нервные импульсы поступают непосредственно к железам по. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа).

Нервные импульсы поступают непосредственно к мышцам и железам по

Поэтому И. Павлов называет этот нейрон контактором, замыкателем. Эфферентный центробежный нейрон, осуществляющий ответную реакцию двигательную или секреторную благодаря проведению нервного возбуждения от центра к периферии, к эффектору. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу мышца, железа. Поэтому этот нейрон называют также эффекторным. Рецепторы возбуждаются со стороны трех чувствительных поверхностей, или рецепторных полей, организма: 1 с наружной, кожной, поверхности тела экстероцептивное поле при посредстве связанных с ней генетически органов чувств, получающих раздражение из внешней среды; 2 с внутренней поверхности тела интероцептивное поле , принимающей раздражения главным образом со стороны химических веществ, поступающих в полости внутренностей, и 3 из толщи стенок собственно тела проприоцептивное поле , в которых заложены кости, мышцы и другие органы, производящие раздражения, воспринимаемые специальными рецепторами. Рецепторы от названных полей связаны с афферентными нейронами, которые достигают центра и там переключаются при посредстве подчас весьма сложной системы кондукторов на различные эфферентные проводники; последние, соединяясь с рабочими органами, дают тот или иной эффект. Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг. Рефлекс - это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности.

Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой.

Дендритов может быть один или несколько. Каждая нервная клетка имеет один длинный отросток — аксон, по которому импульсы направляются от тела клетки.

Длина аксона может достигать нескольких десятков сантиметров. Объединяясь в пучки, аксоны образуют нервы. Длинные отростки нервной клетки аксоны покрыты миелиновой оболочкой.

Скопления таких отростков, покрытых миелином жироподобным веществом белого цвета , в центральной нервной системе образуют белое вещество головного и спинного мозга. Короткие отростки дендриты и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга.

Тигроид состоит из сильно развитой шероховатой ЭПС с активными рибосомами и аппарата Гольджи; его функция — синтез специфических белков. Выглядит эта структура как «мелкая зернистость и полосатость» в теле и дендритах нейрона отсюда и название. Длительное голодание или стресс приводит к разрушению тигроида и прекращению синтеза специфических белков. Связь нейрона с другими клетками Нейрофибриллы нейрофиламенты состоят из микротрубочек и являются основным структурным компонентом цитоскелета. Их функция — аксональный транспорт перемещение веществ по аксону. Аксональный транспорт Помимо своей специфической функции в качестве проводника нервных импульсов аксон является каналом для транспорта веществ. Аксональный аксонный транспорт — это перемещение веществ по аксону. Белки, синтезированные в теле клетки, нейромедиаторы и низкомолекулярные соединения перемещаются по аксону вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен также транспорт в обратном направлении. Вирусы и токсины могут проникать в аксон на его периферии и перемещаться по нему.

Аксональный транспорт — активный процесс — зависит от энергии АТФ. При снижении уровня АТФ вдвое аксональный транспорт блокируется. Различают антероградный от тела нейрона и ретроградный к телу нейрона аксонный транспорт. Выделяют два вида отростков: короткие ветвящиеся дендриты и один длинный не ветвящийся аксон. Дендриты ветвятся дихотомически надвое , аксоны же дают коллатерали боковые ответвления. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки.

Слюнные железы — это железы внешней секреции, потому что 1 в их составе имеются дезинфицирующие вещества 2 они смачивают сухую пищу 3 в них содержатся гормоны 4 их секрет выводится по протокам в ротовую полость Лейкоциты, в отличие от других форменных элементов крови, способны 1 сохранять форму своего тела 2 вступать в непрочное соединение с кислородом 3 вступать в непрочное соединение с углекислым газом 4 выходить из капилляров в межклеточное пространство В каком из перечисленных сосудов кровеносной системы наблюдается наиболее высокое давление крови?

Как нервная система регулирует работу эндокринной системы?

Назовите три органа. Слюнные железы — это железы внешней секреции, потому что 1 в их составе имеются дезинфицирующие вещества 2 они смачивают сухую пищу 3 в них содержатся гормоны 4 их секрет выводится по протокам в ротовую полость Лейкоциты, в отличие от других форменных элементов крови, способны 1 сохранять форму своего тела 2 вступать в непрочное соединение с кислородом 3 вступать в непрочное соединение с углекислым газом 4 выходить из капилляров в межклеточное пространство В каком из перечисленных сосудов кровеносной системы наблюдается наиболее высокое давление крови?

Роль гипоталамуса Гипоталамус — небольшой участок промежуточного мозга, который считается центром нейроэндокринной регуляции. Он связан с другими отделами нервной системы, головным и спинным мозгом. Вместе с гипофизом он образует гипоталамо-гипофизарную систему и регулирует интенсивность выработки его гормонов. Гипоталамус получает сигналы от следующих структур: базальных ядер ганглиев — скоплений серого вещества в белом веществе головного мозга; спинного мозга; отделов головного мозга: продолговатого, среднего, таламуса, а также некоторых участков больших полушарий. Гипоталамус — это центр, который накапливает данные из всего организма, а также из внешней среды. Нервные клетки гипоталамуса способны вырабатывать несколько типов нейроэндокринных трансмиттеров — биологически активных веществ, которые влияют на интенсивность синтеза тропных гормонов гипофиза: Либерины — группа соединений, которые стимулируют гормональный синтез. Так, соматолиберин увеличивает выработку соматотропного гормона роста, тиреолиберин — тиреотропного, гонадолиберин — лютенизирующего и фолликулостимулирующего гормонов. Статины — вещества, которые подавляют выработку тропных гормонов гипофиза. Различают такие разновидности, как соматостатин, пролактостатин, меланостатин.

Окситоцин и вазопрессин — гормоны, которые вырабатываются гипоталамусом, но накапливаются в задней доле гипофиза.

Тесты 34-01. Какой элемент соматической рефлекторной дуги полностью расположен в спинном мозге? А двигательный нейрон.

Твердая оболочка головного мозга одновременно является надкостницей внутренней поверхности костей черепа. Наиболее плотное соединение этой оболочки наблюдаются в районе черепных швов. Здесь проходит большое количество кровеносных сосудов. Твердая мозговая оболочка обладает болевой чувствительностью. Паутинная оболочка головного мозга расположена после твердой мозговой оболочки и имеет вид паутины. Образована соединительной тканью, клетки которой синтезируют внеклеточное вещество. Функция паутинной оболочки состоит в поддержании биохимического состава и регуляции давления ликвора - спинномозговой жидкости, которая циркулирует в паутинном пространстве. Мягкая сосудистая оболочка сращена с тканью мозга, состоит из рыхлой соединительной ткани, в толще которой находятся кровеносные сосуды, обеспечивающие питание мозга. Она принимает участие в образовании сосудистых сплетений желудочков головного мозга, продуцирующих спинномозговую жидкость ликвор. Эта информация доступна зарегистрированным пользователям Кровеносные сосуды, проникающие в ткань головного мозга, находятся в толще мягкой сосудистой оболочки. Между стенками сосудов и белым веществом головного мозга имеется периваскулярное пространство, которое заполнено ликвором и способствует регуляции оттока спинномозговой жидкости.

Похожие новости:

Оцените статью
Добавить комментарий