Нужно создать кубиты и квантовую запутанность между ними, уметь их контролировать, строить вентили на их базе. Квантовые вентили управляют состояниями кубитов, позволяя квантовым компьютерам выполнять такие операции, как суперпозиция, запутывание и измерение.
Категории статьи
- От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
- Международная гонка кубитов
- Квантовый компьютер: что это, отличие от обычного, как купить и стоит ли покупать
- Что такое квантовые вычисления – как они изменят интернет
- Публикации
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
В России создан первый сверхпроводящий кубит | 504 — это рекорд для Китая по количеству кубитов в сверхпроводящем квантовом чипе. По данным QuantumCTek, чип Xiaohong используется для проверки килокубитной системы, уже разработанной компанией независимо. |
Русский союз - Новость: Квантовый компьютер как способ движения в завтра | Начнем с понятия кубита и его отличий от бита классических компьютеров. |
ЧТО ТАКОЕ КУБИТ | С точки зрения физики кубит — это элементарная частица, например электрон, а значение кубита — это значение одного из физических свойств этой частицы. |
Самое недолговечное в мире устройство стало «жить» в два раза дольше
Кубит — это носитель квантовой информации и аналог бита в квантовом мире, основной элемент любых квантовых вычислителей. Кроме того, кубиты могут быть квантово запутаны друг с другом, что позволяет проводить параллельные вычисления и работать с большими объёмами информации. К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии. Квантовый бит (кубит) может находиться в любом из бесконечного множества промежуточных состояний и плавно переключаться между ними.
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
В погоне за миллионом кубитов | Последние новости о разработке собраны в этой статье. |
Что такое кубиты и как они помогают обойти санкции? | Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности. |
Квантовые компьютеры | Квантовая интегральная микросхема (КИМС) содержит пять кубитов, один из которых в данном эксперименте не использовался. |
Технологии квантовых компьютеров в 2022: достижения, ограничения
Но именно они и позволят в будущем фантастически увеличить скорость и мощность вычислений. Однако есть препятствия. Кубиты — «создания» очень нежные, если можно так выразиться. Чувствительны к внешним возмущениям — чуть что «погибают». То есть, утрачивают свои энергетические состояния. А вместе с ними и информацию. Ученые, естественно, работают над тем, чтобы продлить «жизнь» кубитов в квантовых компьютерах. Недавно исследователи из Йельского университета Yale University in Connecticut установили своеобразный рекорд — кубиты у них прожили 1,8 миллисекунды. Миг, какой-то. Тем не менее, прежнее достижение перекрыто в два раза.
Чтобы на реальном процессоре запутать кубит 0 с, например, 15-м может потребоваться несколько десятков дополнительных операций. Использование максимально защищенных от внешних воздействий процессорных блоков. Использование систем квантовой коррекции ошибок Логический кубит.
Использование оптимизаторов при программировании схем для конкретного процессора. Также проводятся исследования, направленные на увеличение времени декогеренции, на поиск новых и доработку известных физических реализаций квантовых объектов, на оптимизацию схем коррекции и прочее и прочее. Прогресс есть посмотрите выше на характеристики более ранних и топовых на сегодняшний день чипов , но пока идет медленно, очень очень медленно.
Первый в мире протокол квантового интернета Нидерландские ученые разработали первый в мире протокол для так называемого квантового интернета, работающего без помех и максимально защищенного от взлома. Идея принадлежит специалистам исследовательского центра QuTech. Протокол, работающий на канальном уровне, разработан группой ученых под руководством профессора Стефани Вейнер Stephanie Wehner.
Также они проработали общую концепцию квантовых сетей, которые в будущем, по их мнению, могут заменить собой традиционный интернет и локальные сети. В основе идеи специалистов QuTech лежит принцип очень быстрой обработки кубитов, поскольку они не могут находиться в памяти длительное время. Это обеспечит высокую скорость передачи информации, а явление квантовой запутанности, еще одна основа протокола, даст возможность максимально защитить передаваемые данные.
Явление квантовой запутанности подразумевает взаимозависимость двух и более объектов, в данном случае кубитов, и их неразрывную связь друг с другом. Попытка перехвата данных приведет к изменению квантового состояния одного или нескольких кубитов и, как следствие, к потере передаваемой информации. Другими словами, информацию может получить исключительно целевое устройство — несанкционированный доступ к ней исключен.
Однако глубина данного алгоритма такова, что к концу его исполнения полезная информация в вычислительном регистре будет почти полностью уничтожена шумами. Справиться с такими нежелательными эффектами призвана технология коррекции ошибок. Вероятность того, что несколько кубитов одновременно потеряют информацию о своём состоянии под действием шумов — ниже, чем для одного. Для коррекции ошибок вводится понятие логического кубита, состояние которого кодируется несколькими физическими кубитами. Если часть физических кубитов, кодирующих один логический, оказалась зашумлена, их состояния могут быть восстановлены с опорой на информацию, сохранённую в остальных кубитах.
Таким образом, для повреждения состояния логического кубита необходимо, чтобы к моменту выполнения коррекции большая доля физических кубитов была значительно зашумлена. Такой подход в теории позволяет бороться с шумами, но кратно увеличивает требования к объёму регистра квантовых вычислителей. Объём регистра, необходимого для выполнения атаки Гровреа на AES с применением коррекции ошибок составляет от нескольких тысяч до десятков тысяч кубитов. Объём регистра, необходимого для атаки шифра RSA алгоритмом Шора преодолевает порог в сто тысяч кубитов. Возможность реализации вычислителя с регистром такого объёма в ближайшие пять лет представляется крайне маловероятной.
Однако не исключено, что первые попытки лабораторной реализации подобных алгоритмов или их элементов начнут появляться к концу десятилетия. Рост числа кубитов по годам Другим возможным подходом к борьбе с шумами является не коррекция, а подавление ошибок [14]. Наиболее распространёнными являются подходы с так называемой экстраполяцией к нулевому шуму и с применением в схеме дополнительных параметризованных гейтов, призванных статистически подавлять влияние специфических шумов. Преимуществом подхода является то, что он не требует увеличения числа физических кубитов в алгоритме. Метод экстраполяции к нулевому шуму является наиболее простым методом подавления ошибки, и он отлично подходит для применения в вариационных квантовых алгоритмах.
Данный тип алгоритмов — самый реальный кандидат на практическое использование в NISQ-устройствах. Вариационный алгоритм сочетает использование квантового вычислителя для ускоренного расчёта некоторой целевой функции с использованием классического оптимизатора. Можно сказать, что прямая реализация принципа, высказанного Ричардом Фейнманом: для расчёта состояний квантово-механической системы используется квантовый вычислитель. В зависимости от того, какая квантовая схема используется, оптимизируемая целевая функция может решать задачи квантовой химии, оптимизации или даже криптоанализа [15, 16]. Интереснее всего то, что неизвестны точные асимптотики эффективности квантовых вариационных алгоритмов.
В отдельных случаях они способны демонстрировать результаты, превосходящие и классический оптимизатор, и даже квантовый алгоритм Гровера. В совокупности со сравнительно низкими требованиями по числу кубитов вариационные алгоритмы можно оценить как потенциально одну из самых близких к практическому внедрению технологию из области квантовых вычислений. Сверхпроводники Долгое время квантовые компьютеры на основе сверхпроводящих кубитов удерживали рекорд по доступному объёму вычислительного регистра. Именно на машине такой архитектуры было продемонстрировано практическое квантовое превосходство [1]. В основе физической реализации данного типа кубитов лежит квантование уровней энергии электрического колебательного контура в условиях сверхпроводимости.
Такой подход обеспечивает достаточно высокую степень точности исполнения операций, однако поддержание вычислителя в сверхпроводящем состоянии требует создания криогенных температур в значительном объёме. Это, в свою очередь, ведёт к существенной чувствительности вычислителей данного типа к внешнему воздействию, а также создаёт дополнительные препятствия для масштабирования. Тем не менее, достижением 2022 года является представленный компанией IBM вычислитель Osprey с 433 сверхпроводящими кубитами [17]. Если представленный годом ранее Eagle, обладающий 127 кубитами, теоретически позволял промоделировать отдельные элементы атаки S-AES с простейшей коррекцией ошибок, например, с девятикубитным кодом Шора, то в регистре Osprey можно проводить эксперименты со значительно более сложными и совершенными кодами коррекции. В контексте этого вызывает интерес исследование методов подавления ошибки на уровне логических кубитов.
Точная оценка перспектив этих подходов требует более подробных экспериментальных данных, однако, можно утверждать, что IBM пока достаточно успешно поддерживают тренд роста числа кубитов сверхпроводниковых вычислителей. Озвученным прогнозом специалистов IBM стало получение компьютера с 4000 кубитов к 2025 году. И, несмотря на всю кажущуюся амбициозность данного заявления, фундаментальных ограничений, которые могли бы препятствовать достижению заявленных параметров, нет. Если специалисты IBM справятся с подавлением шумов и поддержанием когерентности для регистра с таким количеством кубитов — они смогут выполнить обещание. Холодные атомы Вычислители на основе холодных атомов не требуют криогенного охлаждения кубитов.
Теоретически, за счёт возможности наращивания числа оптических ловушек, удерживающих атомы, и большей устойчивости к шумам, вычислители данного типа обладают несколько большим потенциалом масштабирования, по сравнению с квантовыми компьютерами на основе сверхпроводящих цепей. В то же время возникающие при работе с атомными кубитами ошибки в значительной мере поддаются контролю за счёт методов подавления. Это было продемонстрировано в 2021 году с представлением программируемого атомного симулятора на 256 кубитов [18]. По количеству кубитов для архитектуры на основе холодных атомов рекорд прошлого года — 256 кубитов на программируемом симуляторе, остаётся актуален. Однако произошел прорыв в технологии реализации двухкубитных гейтов.
Поскольку атомы электрически нейтральны, они не взаимодействуют на расстоянии. Реализация двухкубитного гейта для них требует возбуждения одного из атомов в состояние с очень высокой энергией, называемое ридберговским. В таком состоянии радиус, на котором атомы могут взаимодействовать, существенно увеличивается и наблюдается эффект ридберговской блокады: если один атом уже находится в ридберговском состоянии, это приводит к смещению электронных уровней соседнего атома, что не позволяет возбудить его в ридберговское состояние при помощи характерного лазерного импульса. На основе этого эффекта может быть построен запутывающий гейт [19]. Новый подход использует ультракороткие лазерные импульсы для одновременного возбуждения атомов в ридберговские состояния за пределами режима ридберговской блокады [20].
Это даёт возможность преодолеть характерное временное ограничение и перейти от микросекундного временного масштаба к наносекундному. И, хотя рекордная точность операции пока не продемонстрирована, такой подход за счёт скорости взаимодействия атомов ведёт к значительному снижению вероятности возникновения ошибки при применении двухкубитного гейта. Новый тип запутывающих гейтов не предоставляет технологию для реализации квантовых операций с гигагерцовой частотой. Однако он позволяет преодолеть характерный временной барьер, так что вычислитель, построенный на гейтах такого типа, теоретически сможет по порядку величины приблизиться к быстродействию классических компьютеров. В совокупности со сравнительно долгим временем жизни атомного кубита данная технология в перспективе существенно повышает потенциал масштабируемости вычислителей на основе холодных атомов.
Оптические кубиты Электрическая нейтральность атомов обеспечивает им меньшую чувствительность к шумам окружающей среды, но, в то же время, создаёт сложности для обеспечения взаимодействия атомов между собой. Это заставляет использовать более сложные схемы реализации двухкубитных гейтов, такие как гейты на основе ридберговской блокады. Ещё дальше в этом направлении заходят кубиты на основе фотонов. Фотоны практически не взаимодействуют ни с окружением, ни между собой. За счёт этого они, с одной стороны, практически не подвержены влиянию шума, но, с другой, реализация запутывающего гейта для фотонных кубитов в ряде случаев связана с фундаментальными ограничениями.
По этой причине до недавнего времени оптические квантовые вычислители оценивались как наиболее перспективные на временном горизонте от 10 лет. Но в 2021-2022 годах стали доступны новые технические возможности, позволяющие обойти характерные для оптической архитектуры фундаментальные ограничения. Существуют несколько способов кодирования кубита в состоянии фотона.
Это когда много кубитов зависят друг от друга и на них может повлиять всё что угодно: космические лучи, радиация, колебания температуры и все остальные явления окружающего мира. Такой «фазовый шум» — катастрофа для квантового компьютера, потому что он уничтожает суперпозицию и заставляет кубиты принимать ограниченные значения. Квантовый компьютер превращается в обычный — и очень медленный. С декогеренцией можно бороться разными способами.
Например, компания D-Wave, которая производит квантовые компьютеры, охлаждает атомы почти до абсолютного нуля, чтобы отсечь все внешние процессы. Поэтому они такие большие — почти всё место занимает защита для квантового процессора. Квантовый процессор на девяти кубитах от Google Зачем нужны квантовые компьютеры Одно из самых важных применений квантового компьютера сейчас — разложение на простые числа. Дело в том, что вся современная криптография основана на том, что никто не сможет быстро разложить число из 30—40 знаков или больше на простые множители. На обычном компьютере на это уйдёт миллиарды лет. Квантовый компьютер сможет это сделать примерно за 18 секунд. Это означает, что тайн больше не будет, потому что любые алгоритмы шифрования можно будет сразу взломать и получить доступ к чему угодно.
Это касается всего — от банковских переводов до сообщений в мессенджере. Возможно, наступит интересный момент, когда обычное шифрование перестанет работать, а квантовое шифрование ещё не изобретут. Симметричное шифрование Ещё квантовые компьютеры отлично подходят для моделирования сложных ситуаций, например, расчёта физических свойств новых элементов на молекулярном уровне. Это, возможно, позволит быстрее находить новые лекарства или решать сложные ресурсоёмкие задачи.
Технологии квантовых компьютеров в 2022: достижения, ограничения
Элементы классических компьютеров могут хранить только один бит: 1 или 0. Кубиты — это квантовые объекты, которые могут находиться в суперпозиции двух состояний, то есть кодировать одновременно и логическую единицу, и ноль. Это открывает новые возможности для обработки информации: компьютер из нескольких тысяч кубитов может производить вычисления со скоростью, недоступной современным суперкомпьютерам. В роли кубитов могут выступать атомы или электроны — цифровые данные записываются на их спине.
Уже есть успехи — американская IT-компания , например, в конце 2022 года представила процессор, внутри которого 433 кубита. Теоретически в нем может одновременно содержаться на много порядков больше бит информации, чем атомов в наблюдаемой Вселенной. Но решить какую-то задачу гораздо быстрее обычного компьютера, то есть «продемонстрировать квантовое превосходство», такой процессор пока не может — слишком нестабильны элементы. Подобные удачи, впрочем, уже случались. Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. В этом году квантовый вычислитель обещают уже использовать в медицинских целях. Его установят в клинике города Кливленд в США. Он поможет выявлять новые штаммы вирусов и займется поиском лекарств от болезни Альцгеймера. Но есть и опасения по поводу новой технологии. Наталья Малеева, старший научный сотрудник криолаборатории электронных систем НИТУ МИСиС: «Квантовый компьютер — это разложение больших чисел на простые множители, это несортированный поиск. Обе эти задачи часто вспоминаются в приложении к современной криптографии.
Источник На аппаратном уровне главная сложность в конструировании кубитов заключается в их вероятностной природе ведь они не детерминированы , что означает, что их состояние может очень легко изменяться под воздействием внешних сил. Кубиты трудно поддерживать по той же причине, по которой они так мощны — множество их возможных состояний трудно контролировать более нескольких секунд. Применение квантовых вентилей для осуществления операций зачастую может приводить к ошибкам вентиля из-за случайного неосторожного обращения с кубитом. Напомню, что кубитом может быть что угодно от фотона до электрона или определённых молекул , если они демонстрируют квантовое поведение. Многокубитные системы и запутанность Ваш компьютер далеко не продвинется с одним битом , ведь он может принимать только два значения, а компьютер работает с огромной многоразрядной системой. Как и биты, кубиты можно собрать в многокубитную систему. В 2-кубитной системе в состоянии 10 первый кубит находится в состоянии 1 и второй в состоянии 0. Однако из-за суперпозиции 2-кубитные системы не ограничены только детерминированными значениями 0 или 1. Они могут находиться в суперпозиции. Это означает, что при измерении системы она имеет равные шансы перейти в одно из четырёх детерминированных 2-кубитных состояний. Запутанность — ещё одно часто встречающееся умное слово, которое сбивает с толку. Скажем, при двух запутанных кубитах A и B в любой суперпозиции, когда Боб измеряет кубит A в состоянии 1, он мгновенно без измерения узнаёт состояние кубита B — тоже 1. Если Боб измерит кубит B, он убедится в этом. Что ещё более замечательно, это явление работает даже если A и B находятся на расстоянии триллионов световых лет друг от друга, так как расстояние не является коэффициентом запутанности. На первый взгляд запутанность выглядит как колдовство, но она реальна и не настолько сложна, если смотреть на её систему кубитов. Если 2-кубитная система с кубитами A и B находится в запутанном состоянии, кубиты могут находиться наполовину в состоянии 00, наполовину в 11. Таким образом, независимо от измерений системы два кубита останутся теми же самыми. Запутанная система может быть так же наполовину в 01, наполовину в 10, где два состояния всегда противоположны друг другу. Состояние 00 или 11 — два кубита останутся теми же Альберт Эйнштейн и другие физики считали запутанность ошибкой, потому что она противоречит специальной теории относительности Эйнштейна, в которой говорится, что ничто не может двигаться быстрее скорости света. Если у Алисы есть кубит A, а у Боба есть кубит B оба кубита находятся в запутанности , и Боб улетит за миллиарды световых лет от Алисы, измерение её кубита покажет то же, что и измерение кубита Боба — любые изменения в кубите Алисы с применением квантового вентиля повлияют на состояние кубита Боба. Формирует ли это общение? Никто не знает наверняка, потому что невозможно найти точное вероятностное состояние кубита, так как измерение кубита вынуждает его перейти в одно из двух детерминированных состояний. Этот вопрос всё ещё горячо обсуждается.
Пока наша страна в роли догоняющей, однако недавно президенту России Владимиру Путину был представлен 16-кубитный КК, что соответствует лучшим мировым достижениям в этой области 2019 г. Зачем это нужно Сейчас Российский квантовый центр РКЦ работает над предоставлением облачного доступа к российским квантовым компьютерам. КК полезен в логистике и финансовой отрасли, задачах моделирования технологических процессов и анализа больших данных в нефтегазовом секторе, а также поможет разработкам в квантовой химии моделирование новых соединений, поиск лекарств , биоинформатике и криптоанализе. Квантовые вычисления являются принципиально вероятностными, а банки зарабатывают на расчете рисков, то есть возможности наступления негативных событий. Поэтому применение квантовых компьютеров позволит улучшить риск-модели и ускорить обработку больших данных, рассказал квантовый энтузиаст, директор по цифровому развитию Делобанка Антон Семенников. Когда же технология получит широкое распространение, можно ожидать снижения ставок в экономике за счет более качественного расчета рисков, добавил он. Требуется не только создать действующий квантовый компьютер, но и разработать соответствующие алгоритмы и программное обеспечение. У России большой научный потенциал в области математики, программирования, физики и квантовой механики», — считает Семенников. На квантовый мир мы смотрим с позиции разработчика, рассказал заместитель генерального директора холдинга Т1 по технологическому развитию Антон Якимов. Квантовый объем 100-200 кубитов не кажется недостижимым для 2025 г. Однако, по его мнению, вопрос больше в практической плоскости: через какое время такие облачные вычислительные мощности станут доступны для рынка на понятных условиях по модели Quantum-Computing-as-a-Service. Имеется в виду то, над чем сейчас работает РКЦ. Как же это работает Какие же свойства так привлекают исследователей со всего света? В классическом компьютере единицей хранения информации является бит, который в зависимости от наличия или отсутствия напряжения принимает значение 0 или 1. В КК роль основной единицы в квантовых вычислениях играют квантовые биты, или кубиты. Они отличаются от обычных битов тем, что могут равняться 0, 1 или находиться в суперпозиции. Что такое квантовая суперпозиция, чаще всего объясняют на примере подброшенной в воздух монетки. Пока она летит, для бросавшего монета находится в суперпозиции: ее значение и орел, и решка. Суперпозиция сохраняется, пока монетку не поймали и не определили, что выпало. Еще один пример — кот Шредингера. Суперпозиция — это состояние кота, пока не открыли крышку ящика, то есть кот жив и мертв одновременно.
Что такое квантовый компьютер и как он работает
Они были предложены теоретически, и были даже первые эксперименты, которые такие методы уже продемонстрировали, в том числе со сверхпроводниками. Эти методы позволяют фактически корректировать сбои когерентности в квантовой системе. Для этого необходимо, чтобы система жила хотя бы какое-то количество определенных операций. То есть если мы можем за время без корректировки сделать 10 тысяч операций, то оказывается, что можно принципиально построить схему исправления ошибок, которая позволит такой компьютер использовать уже долговременно. Время же одной операции на наших кубитах составляет несколько десятков наносекунд. То есть мы можем успеть выполнить порядка 100 операций даже с нашими скромными значениями. А чем эти кубиты отличаются от того, который есть у вас? Если не вдаваться в подробности, то это тоже кольца, но в них встроены не только джозефсоновские переходы, но и более сложные элементы.
Обычно СКВИДы используются в качестве сверхчувствительных магнитометров для измерения очень слабых магнитных полей. В СКВИДе волны куперовских пар электронов, пройдя через два джозефсоновских перехода, проявляют интерференцию, похожую на оптическую картину прохождения световых волн через две щели. Амплитуда интерференционного тока зависит от внешнего магнитного поля, что позволяет в случае трансмона изменять его квантовые уровни энергии. Так что же можно сделать на основе кубитов такого, чего еще никто не делал? Есть такая интересная задача, как создание квантовых метаматериалов. Она находится на стыке задач лаборатории, созданной в МИСиС, и лаборатории квантового центра, которая занимается кубитами. Мы с уже упомянутым Валерием Рязановым на самом деле присутствуем и там, и там, это два проекта, которые двигаются параллельно.
Вот у них сближение как раз в том, что сверхпроводящие метаматериалы, которые изучаются в МИСиС, могут быть превращены в квантовые, если в качестве элементов использовать кубит. Свойства материалов при взаимодействии с таким излучением определяются только их внутренней структурой. Сейчас метаматериалы, особенно микроволновые, крайне популярны. Например, с помощью них создаются « плащи-невидимки », скрывающие объекты от того же излучения. Все эти вещи делались с классическими резонаторами, которые имеют, во-первых, потери, что в сверхпроводниках отсутствует, а во-вторых, совершенно не квантовые. В данном случае мы можем руками сделать фактически метаматериал, состоящий из метаатомов, которые ведут себя как настоящие двухуровневые системы и в состоянии ноль и один. Эти материалы могут оказаться гораздо интереснее обычных метаматериалов, ведь сила взаимодействия кубитов с электромагнитным полем сильнее в разы.
Вся наука, которая создана для атомной физики и квантовой оптики, здесь применяется только лишь частично, потому что при очень сильном взаимодействии возникает совершенно другая, новая физика. Такое сильное взаимодействие с метавеществом нужно изучать. Это интересная, совершенно новая фундаментальная деятельность. Беседовал Андрей Коняев.
Технические характеристики реально существующих квантовых компьютеров Квантовые компьютеры могут быть реализованы на разных физических платформах, которые используют разные типы кубитов.
Кубиты могут быть связаны друг с другом через квантовую запутанность, что позволяет проводить сложные вычисления. Существует несколько основных параметров, которые характеризуют квантовые компьютеры: Число кубитов — определяет размер квантового состояния и количество информации, которое может храниться и обрабатываться на квантовом компьютере. Чем больше кубитов, тем больше возможностей для решения сложных задач. Коэрентное время — определяет время, в течение которого кубит сохраняет свое квантовое состояние без потери информации из-за воздействия внешних факторов. Чем дольше коэрентное время, тем надежнее работает квантовый компьютер.
Скорость операций — определяет время, необходимое для выполнения одной элементарной операции над одним или несколькими кубитами. Чем выше скорость операций, тем быстрее работает квантовый компьютер. Точность операций — определяет вероятность ошибки при выполнении одной элементарной операции над одним или несколькими кубитами. Чем ниже точность операций, тем больше шума и искажений вносится в вычисления. Масштабируемость — определяет возможность увеличения числа кубитов и связей между ними без потери производительности и надежности.
Чем выше масштабируемость, тем больше потенциал для развития квантового компьютера. В настоящее время существует несколько основных типов кубитов, которые используются для создания квантовых компьютеров: Сверхпроводящие кубиты — основаны на электрических цепях из сверхпроводящих материалов, которые имеют два дискретных энергетических уровня. Сверхпроводящие кубиты имеют высокую скорость операций и масштабируемость, но низкое коэрентное время и точность операций. Ионные кубиты — основаны на заряженных атомах ионах , которые поддерживаются в ловушке электрическим или магнитным полем. Ионные кубиты имеют высокое коэрентное время и точность операций, но низкую скорость операций и масштабируемость.
Фотонные кубиты — основаны на световых частицах фотонах , которые могут быть кодированы поляризацией или частотой. Фотонные кубиты имеют высокое коэрентное время и скорость операций, но низкую точность операций и масштабируемость. Фотонные кубиты используются в квантовых компьютерах Xanadu и PsiQuantum. Спиновые кубиты — основаны на спине электрона или ядра атома, который может быть ориентирован вверх или вниз. Спиновые кубиты имеют среднее коэрентное время и точность операций, но высокую масштабируемость.
Спиновые кубиты используются в квантовых компьютерах Intel и QuTech. Рассмотрение ключевых игроков в индустрии квантовых вычислений Индустрия квантовых вычислений является одной из самых динамичных и конкурентных в сфере высоких технологий. В этой области участвуют как традиционные ИТ-гиганты, так и стартапы, а также академические и правительственные организации. Вот некоторые из ключевых игроков в индустрии квантовых вычислений: IBM — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих кубитов. Компания имеет самый большой парк квантовых компьютеров, доступных через облачный сервис IBM Quantum Experience.
Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Qiskit и среда IBM Quantum Composer. Google — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих кубитов. Компания заявила о достижении квантового превосходства в 2019 году с помощью своего 53-кубитного компьютера Sycamore. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Cirq и среда Google Quantum Playground. Intel — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих и спиновых кубитов.
Компания имеет собственную лабораторию Intel Labs , где проводит исследования и разработки в области квантовых технологий. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Q и среда Intel Quantum Simulator. IonQ — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе ионных кубитов. Компания имеет самый мощный коммерческий квантовый компьютер на 32 кубитах, доступный через облачный сервис IonQ Cloud. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык QUIL и среда IonQ Studio.
А в Китае стартап Shenzhen SpinQ Technology разработал, пожалуй, самый доступный квантовый компьютер для школ и колледжей. Первые образцы китайского квантового компьютера отправились в Тайвань и Гонконг. В гонку стран включился даже Иран, правда, неудачно — в сети появилась новость об их удивительном квантовом компьютере. Но пользователей в интернете не так просто обмануть — подвох нашли быстро.
Иранская разработка оказалась обычным процессором. Пока купить квантовый компьютер могут лишь крупные компании и научные лаборатории, где цена будет оправдана. Но пока вычислительные машины на кубитах не настолько превосходят обычные ЭВМ и подходят лишь для определенного рода задач. Впрочем, в ближайшее десятилетие ученые панируют это изменить.
А облачные вычисления на процессорах будущего доступны простым пользователям уже 8 лет: IBM в 2016 году запустила облачную платформу IBM Q Experience с удалённым доступом к квантовому компьютеру. Самый мощный квантовый компьютер для коммерческого использования на сегодня содержит 5 000 кубитов. Это разработка немецкого исследовательского центра на базе канадской системы D-Wave, Advantage, так назвали машину. Ее возможности можно протестировать — вычисления доступны через облако.
Первые квантовые ЦОД Сейчас квантовые машины используют в основном в лабораториях — им нужны особые условия. Это не ПК и не ноутбук, который можно легко взять с собой в дорогу — компьютер на кубитах по размеру больше холодильника. Суть в том, что чем больше кубитов, тем более неустойчивой становится система. Пока самый успешный концепт холодильника для квантовых компьютеров представила D-Wave.
Несмотря на особые условия размещения, которые не просто обеспечить, в сети уже появились новости о строительстве первых квантовых дата-центров — IBM планирует построить первый ЦОД для суперкопьютеров в Германии. С его помощью компания планирует облегчить доступ к передовым вычислениям исследовательским и государственным учреждениям. Но квантовые технологии не только научный прорыв, а еще и вызов для ученых — для защиты квантовых данных уже недостаточно обычных методов асимметричного шифрования, любые данные с суперкомпьютером можно взломать за несколько минут. Для безопасной и быстрой передачи данных уже сейчас прокладывают квантовые магистральные связи — в России такая линия соединяет Москву, Санкт-Петербург и Нижний Новгород, в ближайшие несколько лет продолжат подключать и другие города.
Сеть позволит шифровать данные алгоритмом квантового распределения ключей, который усиливает защиту информации за счет своей симметричности.
Однако, чтобы достичь квантового превосходства и превзойти классические компьютеры, требуется устройство с достаточным количеством стабильных кубитов и минимальным воздействием шумов и возмущений из окружающей среды. Главная сложность в разработке квантовых компьютеров заключается в сохранении квантовых состояний кубитов, так как чрезвычайно чувствительны к внешним воздействиям и шумам. Чем больше кубитов, тем сложнее поддерживать их запутанное состояние без искажений данных. На сегодняшний день исследователи используют различные технологии для создания кубитов, такие как сверхпроводники, ультрахолодные атомы и ионы, оптические системы и другие.
Квантовые компьютеры
Да и скорость передачи данных в них быстрее скорости света не сделать. Ужимать скоро будет некуда, значит пора искать другие пути решения. Один из них дает квантовая физика. Квантовые компьютеры не создаются для замены привычных транзисторных. Итак, квантовые компьютеры ориентированы на сложные расчеты. За свои открытия в 1999 году Ричард Фейнман попал в десятку лучших физиков всех времен. Фото: britannica.
Возможно, мы научимся моделировать ДНК, взломаем существующие шифры и сделаем бессмысленными современные системы шифрования. О том, насколько сильно квантовые компьютеры изменят наш мир, можно судить по термину «квантовое превосходство» — способность квантовых компьютеров решить задачи, которые обычным компьютерам либо неподвластны, либо требуют тысячи лет на просчет.
В мае 2015 года российские ученые впервые создали шесть кубитов, каждый из которых состоит из четырех джозефсоновских контактов. Сами контакты состоят из алюминиевых полосок, разделенных слоем диэлектрика оксида алюминия толщиной около двух нанометров. В качестве проводников использовался алюминий.
По данным QuantumCTek, чип Xiaohong используется для проверки килокубитной системы, уже разработанной компанией независимо. Международная гонка кубитов Доцент CAS Лян Футянь Liang Futian сказал, что ключевые показатели чипа Xiaohong, как ожидается, достигнут уровня производительности чипов основных международных облачных платформ квантовых вычислений, таких как IBM. IBM заявила о выпуске чипа на тысячу кубитов в декабре 2023 г. Журнал Nature назвал его первым в мире. В январе 2024 г. Ранее D-Wave заявляла также о важных результатах исследований, демонстрирующих успешное устранение квантовых ошибок QEM в прототипе Advantage2.
По этой причине эти системы называются двоичными цифрами, БИТ. Один бит состоит из абсолютных состояний 1 и 0. Один pbit вероятностный бит может быть любым состоянием 1 или 0. Один кубит может быть равен 1 или 0. Кубиты обладают свойством суперпозиции, что означает, что они могут находиться в нескольких состояниях одновременно. Это свойство позволяет квантовым компьютерам выполнять несколько вычислений одновременно, что делает их намного быстрее классических компьютеров. Суперпозиция — не единственное свойство, которое отличает кубиты от классических битов. Другим важным свойством является запутанность.
Когда кубиты запутаны, они становятся связанными так, что их состояния коррелируют, независимо от расстояния между ними. Это свойство позволяет квантовым компьютерам выполнять операции, которые были бы невозможны с классическими компьютерами. Для создания кубитов квантовые компьютеры используют различные технологии, включая сверхпроводящие схемы, ионные ловушки и фотонику. Одна из самых популярных технологий создания кубитов — сверхпроводящие схемы. Сверхпроводящие схемы состоят из крошечных витков сверхпроводящего провода, охлажденных почти до нуля.
Как работает квантовый компьютер: простыми словами о будущем
Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255. Но время идет, новости о квантовых компьютерах с завидной периодичностью выходят в свет, а мир все никак не перевернется. Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. Для кубитов IBM и Google безошибочная работа кубитов означает, что каждый логический кубит должен состоять из 1000 физических кубитов. Кубит — это носитель квантовой информации и аналог бита в квантовом мире, основной элемент любых квантовых вычислителей.
Что такое кубит?
Нужно создать кубиты и квантовую запутанность между ними, уметь их контролировать, строить вентили на их базе. Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света. Один кубит – это атом или фотон – мельчайшая частица вещества или энергии. Недавно исследователи разработали флюксониевый кубит, способный сохранять информацию в течение 1,43 миллисекунды, что в десять раз дольше, чем предыдущие технологии создания кубитов. Фундаментальные принципы кубитов, простое объяснение того, что такое суперпозиция. Кубит может принять значение любого из квадратов в сфере, а бит — только 1 или 0.
Миллион задач в секунду: как работают квантовые компьютеры
Однако есть препятствия. Кубиты — «создания» очень нежные, если можно так выразиться. Чувствительны к внешним возмущениям — чуть что «погибают». То есть, утрачивают свои энергетические состояния.
А вместе с ними и информацию. Ученые, естественно, работают над тем, чтобы продлить «жизнь» кубитов в квантовых компьютерах. Недавно исследователи из Йельского университета Yale University in Connecticut установили своеобразный рекорд — кубиты у них прожили 1,8 миллисекунды.
Миг, какой-то. Тем не менее, прежнее достижение перекрыто в два раза. Физики, которыми руководил Майкл Деворет Michel Devoret , не усердствовали, ограждая «неженок» от возмущений, а стали в реальном времени исправлять появляющиеся ошибки.
Однако, чтобы достичь квантового превосходства и превзойти классические компьютеры, требуется устройство с достаточным количеством стабильных кубитов и минимальным воздействием шумов и возмущений из окружающей среды. Главная сложность в разработке квантовых компьютеров заключается в сохранении квантовых состояний кубитов, так как чрезвычайно чувствительны к внешним воздействиям и шумам. Чем больше кубитов, тем сложнее поддерживать их запутанное состояние без искажений данных. На сегодняшний день исследователи используют различные технологии для создания кубитов, такие как сверхпроводники, ультрахолодные атомы и ионы, оптические системы и другие.
В начале 2000-х годов ученые создали «искусственные атомы», которые ведут себя в соответствии с законами квантовой физики, но проще в использовании. Одни из таких объектов — джозефсоновские контакты — состоят из двух сверхпроводников, разделенных тонким слоем диэлектрика. Электроны благодаря квантовым эффектам могут «просачиваться» туннелировать сквозь диэлектрик.
Кубиты, построенные из нескольких джозефсоновских контактов, работают как настоящие атомы: они могут излучать и поглощать свет, пребывать в нейтральном и возбужденном состоянии.
Huawei Высокопроизводительная облачная платформа для крупномасштабного моделирования квантовых схем на основе мощной вычислительной инфраструктуры и инфраструктуры хранения HUAWEI CLOUD Rigetti — компания, занимающаяся интегрированными системами. Создает квантовые компьютеры и сверхпроводящие квантовые процессоры, на которых они работают. Благодаря платформе Quantum Cloud Services QCS машины могут быть интегрированы в любое публичное, частное или гибридное облако. Honeywell — разработка компьютера с высококачественными кубитами.
Квантовые компьютеры и фондовый рынок Компании, связанные с КК можно разделить на 2 группы. Каждая имеет свои особенности и инвестиционный подход. Первая группа производители КК. Это компании которые занимаются разработкой и производством квантового оборудования и ПО. В этой группе можно выделить 2 категории.
Первая категория — крупные технологические компании. Особенностью этой категории является то, что это компании с огромной капитализацией и КК одно из подразделений бизнеса. В связи с эти развитие квантовый технологий незначительно повлияет на их капитализацию. Вторая категория — небольшие стартапы, единственной деятельностью которых является разработка КК и, программного обеспечения и предоставление доступа к своим и чужим вычислительным мощностям. Особенностью этих компаний, является низкая капитализация с высоким потенциалом роста, к этой категории относятся такие компании как IonQ, Atom Computing, D-Wave, Rigetti.
Вторая группа — компании использующие квантовые вычисления в своих технологиях и исследованиях. В этой группе можно также выделить 2 категории: Компании, использующие квантовые вычисления для увеличения эффективности существующих технологий. Например нефтяные компании моделируют объемы месторождений и способы эффективной добычи. Понятно что из 1 млрд баррелей запасов нельзя добыть 2 млрд. Другими словами увеличение эффективности старых рынков.
Компании использующие квантовые вычисления для получения новых технологий и продуктов. К этой категории относятся фармацевтические, химические компании. Используя квантовые вычисления они смогут открыть эффективные лекарственные средства от разного рода заболеваний, новый материалы и вещества с уникальными свойствами, что приведет к настоящему прорыву и значительному росту прибыли компании. К таким относятся Mitsubishi Chemical. Что покупать.
На фондовом рынке представлены следующие компании из области квантовых вычислений: Honeywell HON.