Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. Платформа Искусственного интеллекта Минздрава России — первый национальный проект, объединяющий медицинское сообщество и разработчиков решений на основе технологий машинного обучения и искусственного интеллекта (ИИ). Использование искусственного интеллекта (ИИ) для анализа данных в целях фармаконадзора. Ученые из Сколковского института наук и технологий (Сколтех) занимаются применением методов машинного обучения и искусственного интеллекта в медицине.
Искусственный интеллект в медицине: применение и перспективы
Применение систем искусственного интеллекта в клинической медицине открывает новые горизонты в диагностике, лечении и управлении здоровьем пациентов. Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. по использованию алгоритмов искусственного интеллекта для решения научных и прикладных задач в области офтальмологии. Технологии искусственного интеллекта для системы здравоохранения. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств.
Что хотите найти?
Такие системы выявляют закономерности и предоставляют информацию о характеристиках любых отклонений от нормы, экономя время врача. В тех случаях, когда у пациента есть несколько снимков, сделанных на протяжении некоторого времени, искусственный интеллект также может анализировать динамику заболевания. Так, для проверки работы своей системы на основе ИИ в корпорации Google провели эксперимент: снимки предложили изучить шестерым сертифицированным радиологам. В тех случаях, когда диагноз ставился по единственному снимку, искусственный интеллект справился так же или даже лучше людей. Сегодня рядом с живыми медсестрами в госпиталях США уже работают компьютерные помощники, от которых можно получать советы, подсказки и другую информацию. Например, цифровой ассистент Салли, улыбающаяся женщина в белом халате, или медбрат Уолт. Салли и Уолт — это анимированные аватары, виртуальные личные тренеры по здоровью из платформы iCare Navigator на базе искусственного интеллекта, предназначенной для взаимодействия с пациентами и их обучения. Компания TeleHealth Services, разработавшая iCare Navigator, утверждает, что использует электронные медицинские записи пациентов и применяет машинное обучение для выстраивания индивидуальных отношений. Приложение определяет, когда пациент будет наиболее восприимчив к информации о состоянии своего здоровья и можно будет лучше всего управлять его лечением. Толчком для создания платформы iCare Navigator стали исследования Медицинской школы Бостонского университета, в ходе которых были разработаны виртуальные медсестры Луиза и Элизабет, объясняющие пациентам, например, когда принимать лекарства.
Молли от компании Sensely — еще один популярный аватар медсестры с искусственным интеллектом, который используют Калифорнийский университет в Сан-Франциско и Национальная служба здравоохранения Великобритании. Молли задает пациентам вопросы, касающиеся их здоровья, оценивает симптомы и на основе симптомов дает рекомендации по наиболее эффективному лечению. Таким образом, вместо того, чтобы искать обнаруженные у себя симптомы в интернете, сегодня человек может получить помощь от виртуальной медсестры. Виртуальные медсестры не только предоставляют медицинские консультации по поводу распространенных заболеваний или недомоганий, но также позволяют записаться на прием к врачу. Они доступны круглосуточно и без выходных и готовы ответить на вопросы в режиме реального времени. Это одно из основных приложений искусственного интеллекта в здравоохранении, которое все чаще применяется для повышения информированности и улучшения навыков самоуправления у пациентов с хроническими заболеваниями. Благодаря виртуальной медсестре пациент сможет предотвратить ухудшение своего состояния. Системы мультимодальной диагностики В развитии ИИ можно выделить несколько трендов, один из которых связан с интеграцией типов модальностей данных, на которых выполняется обучение.
Кроме того, использование ИИ позволяет выявлять людей, подверженных риску заболеваний, с более высокой вероятностью предсказывать хронические заболевания у пациентов, чтобы принимать соответствующие профилактические меры и давать рекомендации пациентам. Ещё одно преимущество — повышение эффективности управления оказанием медпомощи. Анализ исторических данных, электронных медкарт и данные о потоках пациентов позволяют предотвращать скопление заражённых и здоровых людей в помещениях или нехватку коек в стационарах. Создание цифровых двойников пациентов. Виртуальные пациенты могут использоваться для изучения различных патологий, тестирования лекарств и методов лечения. На данный момент уже есть симуляции отдельных органов или систем, однако в ближайшей перспективе возможно создание моделей, имитирующих целые тела. Созданием цифровых двойников группы наиболее распространенных заболеваний в области кардиологии и онкологии занимаются ученые Сеченовского университета. Разработку прототипов цифровых двойников планируется завершить к 2025 году. Обучение медперсонала. Медики осваивают новые навыки благодаря симуляции реальных обстоятельств, без риска нанести травму пациенту или испортить оборудование. Например, уже разработана технология виртуальной реальности для обучения специалистов по рентгенографии. Разработка новых лекарств.
Приложение нацелено на то, чтобы построить будущее медицины при помощи ИИ. Сервис работает более, чем в 70 странах, в клиентской базе более 790 учреждений здравоохранения. Платформа специализируется на диагностике онкологических патологий и наследственных заболеваний. На основании анализа ДНК можно получить информацию о предрасположенности к различным заболеваниям. Область применения этого сервиса — фармакогеномика. Это подбор эффективного препарата и дозировки в лечении различных заболеваний на основе анализа генетического теста. Врачи при лечении чаще всего используют стандартные схемы медикаментозной терапии. ИИ помогает создать индивидуальный план с учетом индивидуальных особенностей пациента. Надежный виртуальный помощник для врачей и пациентов, мгновенно отвечает на все вопросы. ИИ ежедневно собирает все новшества в области здравоохранения и оперирует только актуальными данными. Сервис помогает разработать алгоритм для эффективного лечения диабетической ретинопатии, спрогнозировать риск развития сердечно-сосудистых заболеваний. Приложение распознает человеческую речь, может интересоваться самочувствием, отвечать на любые вопросы, связанные со здоровьем. Это приложение предназначено для распознавания симптомов и формирования общей клинической картины. Оно предполагает диагнозы, исходя из полученных данных, подсказывает, к какому специалисту нужно обратиться. Это помогает пациенту внимательно следить за состоянием своего здоровья, быстро получать нужную врачебную помощь без нерациональной траты времени на запись, ожидание и посещение непрофильных специалистов. Снижается нагрузка на медперсонал, увеличивается время общения доктора с пациентом. Использование искусственного интеллекта в медицине — это один из эффективных методов профилактики различных заболеваний. Любой человек может получить точную информацию о том, как скорректировать образ жизни, питания, чтобы избежать проблем со здоровьем. Для врачей ИИ стал надежным помощником при установлении наиболее вероятного диагноза и разработке эффективной схемы лечения. Применение искусственного интеллекта в медицине для разработки новых препаратов Чтобы разработать вакцину или новое лекарственное средство, требуется много времени и средств на дорогостоящие исследования и испытания. ИИ помогает сократить время на разработку новых препаратов в несколько раз. Искусственный интеллект анализирует структуру существующих медикаментов на молекулярном уровне, предлагает новые, с учетом заданных требований.
У Ксюши — врожденный гиперинсулинизм. Это редкое и тяжелое заболевание, при котором стремительно падает уровень глюкозы. Если его вовремя не обнаружить и не начать лечить, исход может быть летальным. Помочь маленькой пациентке смогли лишь в Санкт-Петербурге, проведя специально исследование. Медики спасли жизнь маленькой Ксюши. Помочь врачам определить опасную болезнь всего за несколько минут помог искусственный интеллект. Ученым удалось установить связь между формой заболевания, яркостью и цветовым тоном очагов инсулина при анализе каждого пикселя на КТ-снимках. Причем программа может фиксировать различия в цветовых характеристиках, которые невидимы для глаза врача. Сейчас они пролечены, и мы имеем на исходе выздоровление», — рассказала заведующая кафедрой детских болезней Центра Алмазова Ирина Никитина.
Искусственный интеллект в медицине: применение и перспективы
Преимущества искусственного интеллекта. Благодаря использованию технологий ИИ в медицине, сможет повысится эффективность оказания медицинских услуг, практически единогласно говорят участники рынка. Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении. Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны.
AI-платформа для анализа медицинских изображений
Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. По прогнозу генерального директора Ассоциации разработчиков и пользователей систем искусственного интеллекта в медицине «Национальная база медицинских знаний» Бориса Зингермана, ИИ будет активно закрывать ниши, в которых не хватает квалифицированных. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии.
Комплексный анализ работы сервисов ИИ в медицине провели в Москве
Вся информация, все снимки, загруженные в электронную медицинскую карту пациента, могут стать частью «обучающей программы» для искусственного интеллекта. ИИ не нужен отдых, сон, он не болеет и не устает. Поэтому в алгоритмизированных задачах он может превзойти человека. Как калькулятор, автоматическая линейка. Это продвинутые математические системы, способные мгновенно или за считаные минуты обрабатывать данные и выдавать стабильно точный результат.
Также способность ИИ анализировать гигантские объемы данных позволит учитывать влияние неочевидных факторов на развитие рисков и заболеваний. То, что недоступно возможностям человека в условиях временных ограничений. ИИ может в считаные минуты обрабатывать полный объем данных и просчитать все взаимосвязи, учесть ретроспективные данные. Однако эффективная работа ИИ возможна только в результате совместных усилий ученых, экспертного врачебного сообщества и разработчиков.
Последнее слово будет оставаться за врачом. Это позволит держать работу ИИ под контролем, объективно оценивать алгоритмы и видеть потенциал развития. На основе медицинской истории пациента, данных о его образе жизни формируется цифровой двойник пациента. Это позволит перейти от всеобщей унификации к персонализированному здравоохранению.
Извлечь ценность из этих данных можно при помощи ИИ. ИИ-помощники смогут формировать необходимый набор профилактических мер, обследований для конкретного пациента, назначения, исходя не из установленных стандартов, а индивидуальные, в том числе учитывая резистентность к лекарственным препаратам, аллергоанамнез пациента и другие важные индивидуальные особенности. ИИ сможет освободить, с одной стороны, врача от рутины, а с другой стороны — стать персонализированным помощником для пациентов. Умным и эмпатичным, который сможет ответить на определенные вопросы, помочь подготовиться к исследованиям, оптимизировать прием препаратов.
ИИ станет помощником в проактивном выявлении рисков развития заболевания и диагностировать болезнь не на стадии ее проявления или обострения, а заранее выявить риск и сформировать набор мер для предотвращения ее развития. В будущем сервисы ИИ могут стать «младшим научным сотрудником», помогая врачам и ученым в научных и клинических исследованиях. Все мы хотим меньше соприкасаться с системой здравоохранения, переживать о своем здоровье, а если все же пришлось — получить быстрый, искренний и качественный сервис. Врачи, со своей стороны, хотят заниматься лечением, а не административными вопросами, избавиться от рутины.
В этих целях мы и пробуем применять ИИ — он не склонен к профессиональному выгоранию и готов круглосуточно выполнять рутинные операции. Какие риски могут возникнуть при использовании ИИ в медицине? Внедрение новой технологии всегда ставит на первый план вопросы безопасности и этики. Если не урегулировать вопросы ответственности, не встроить механизмы контроля качества ИИ, обычной реакцией на допускаемые ошибки искусственного интеллекта станет рост регуляторного давления, которое замедлит развитие технологии.
Но совершенно точно не остановит.
Искусственный интеллект имеет большие возможности, но решать с его помощью все задачи сразу не требуется, полагают эксперты. Инвесторы, работающие в сегменте цифровой медицины, считают, что нужно фокусироваться на отдельных ключевых элементах, где ИИ сегодня действительно может помогать, отметил директор по развитию венчурного фонда НТИ под управлением Kama Flow Евгений Борисов. В первую очередь это все, что связано с ассистированием и поддержкой врачебных решений. Второе - это работа с таргетами. Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована, - сказал эксперт. Например, когда роботизированный хирургический комплекс дополняется ассистентами, в том числе позволяющими в режиме реального времени распознавать и размечать путь хирургического вмешательства. Это снижает риск врачебной ошибки, облегчает нагрузку на хирурга и ускоряет сам процесс проведения операции". По словам специалиста, сегодня среди инвесторов цифрового здравоохранения и сервисов ИИ доминируют не крупнейшие фармацевтические компании и не производители медицинского оборудования. В эту отрасль пришли ИТ-гиганты, телеком и финансовые организации.
Еще одна важная сфера применения ИИ - разработка новых лекарственных препаратов. Обычно на этапе ранней разработки в пробирках синтезируют примерно 10 тысяч препаратов, которые прогоняют через серию тестов, чтобы выбрать 250 препаратов, которые затем отправят на доклинические испытания.
Ведущие страны, такие как США и Китай, вкладывают большие ресурсы исследований и разработок в эту область. В России важным фактором сдерживания развития ИИ-медицины, является недостаток финансирования, ограниченный доступ к высокотехнологичному оборудованию, а также недостаточная масштабность проектов. Тем не менее, Россия продолжает развивать эту сферу и прилагает усилия для преодоления препятствий. Вместе с тем, нужно отметить, что эта область относительно новая и ее развитие может занять много времени и усилий. Риски использования ИИ и нейросетей в области здравоохранения ИИ может «подсказать» неправильный диагноз, особенно если модель была обучена на неполных или неточных данных. Если искусственный интеллект используется неправильно или алгоритмы машинного обучения неправильно обучены, то они могут привести к опасным ошибкам, которые нанесут вред пациентам.
Возникают и морально-нравственные аспекты — кто несет ответственность за принятое и непринятое решение. Эта проблема рождается в самом алгоритме: он гибкий и критерий «не навреди» не всегда самый быстрый или дешевый способ лечения пациента. Разработчики могут установить параметры для системы, которые не совпадают с медицинской этикой и это также может повредить здоровью пациентов. Вопрос потери конфиденциальности тоже стоит довольно остро — данные пациента должны быть защищены от несанкционированного доступа, а использование ИИ в медицине может невольно повысить риск утечки личной информации. Еще одна проблема — неуместное лечение. Может возникнуть ситуация, когда ИИ предлагает протокол, который не подходит пациенту или его приоритетному заболеванию, что может привести к серьезным последствиям. Алгоритмы ИИ могут быть недостаточно точными в отношении определенных групп пациентов, таких как дети, пожилые люди и беременные женщины. Наконец, использование ИИ может создать зависимость от технологии и уменьшить важность роли врача в лечебном процессе или даже вызвать что-то новое — типа «киосков самолечения».
Перспективы ИИ-медицины Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике.
Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников. Это позволяет им создавать комплексные продукты, которые включают не доступные ранее возможности. Например, Google Health — это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей. С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т. Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств.
Следовательно, чтобы удовлетворить аудиторию, нужно создавать оптимальные продукты. Например, более простые и дешевые ИИ-системы сделают медицину доступнее, а качественный маркетинг и положительные отзывы убедят клиентов в пользе искусственного интеллекта. Это отличный шанс нащупать правильный подход к аудитории и занять прибыльную нишу. Кроме того, согласно исследованиям, рынок ИИ в медицине будет стремительно расти в ближайшие несколько лет: Источник: McKinsey and Company За искусственным интеллектом будущее, и оно наступает уже сегодня. Мы в Azoft стремимся использовать все возможности новейших технологий. Наш отдел RnD разрабатывает и использует искусственный интеллект, машинное обучение и нейронные сети для решения задач в области медицины и не только.
Что такое искусственный интеллект
- Искусственный интеллект в медицине: пример того, как ИИ улучшает здравоохранение / Skillbox Media
- Искусственный интеллект в медицине: применение и перспективы
- Доктор нейросеть: что умеет искусственный интеллект в медицине - Ведомости.Город
- Полная роботизация: как искусственный интеллект помогает врачам
- Врачам и пациентам: как искусственный интеллект помогает в
Нейросеть ииМед спрогнозировала достижения ИИ в медицине к 2030 году. Вот они.
- Искусственный интеллект в медицине: главные тренды в мире
- Хочу убедиться, что мне звонил ВЦИОМ
- ИИ в медицине: тренды и примеры применения -
- Нейронные сети для пациентов
- Содержание
Искусственный интеллект в клинической медицине
Крупная международная биотехнологическая компания Insilico Medicine объявила о том, что лекарство, которое открыл искусственный интеллект, впервые в мире успешно прошло первую фазу клинических испытаний. Сбор данных и искусственный интеллект в медицине. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении.
Искусственный интеллект в медицине
по использованию алгоритмов искусственного интеллекта для решения научных и прикладных задач в области офтальмологии. По прогнозу генерального директора Ассоциации разработчиков и пользователей систем искусственного интеллекта в медицине «Национальная база медицинских знаний» Бориса Зингермана, ИИ будет активно закрывать ниши, в которых не хватает квалифицированных. Какова же ситуация с применением ИИ в медицине по состоянию на июнь 2021 г.? На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области. Многие россияне опасаются применения ИИ в медицине.
Роман Душкин: «Медицина — это область доверия»
На это ушло еще 25 дней. Таким образом на выбор потенциального лекарства потребовалось всего 46 дней. Для сравнения, традиционный процесс разработки кандидатов на звание лекарства занимает около 8 лет и обходится компаниям в несколько миллионов долларов США. В то время как на создание ИИ ушло всего 150 тысяч долларов. Слева — нормальная мышечная ткань. Справа — ткань с развитием фиброза При этом Insilico подчеркивают, что они еще не доказали, что новый препарат эффективнее существующих лекарств. Однако время и затраты, которые ушли у ученых на создание потенциальных лекарств, куда меньше, чем у традиционных методов фармации.
За 18 месяцев команда смогла создать препарат, который уже успешно прошел две фазы клинических исследований. Для сравнения, в обычных условиях разработка и тестирование лекарственного препарата занимает от пяти до десяти лет. При этом затраты на его создание просто на порядки меньше классических.
В части поиска информации и ее классификации нейросети показывают отличные результаты. Они способны относительно быстро сканировать интернет на всех существующих языках, собирая данные, которые касаются конкретной темы. Добиться такой эффективности при работе вручную не получится. Искусственный интеллект и персонифицированная медицина Для большинства наиболее распространенных болезней разработаны терапевтические схемы приема лекарственных препаратов. Для лечения некоторых болезней например, туберкулеза или онкологии единственными эффективными препаратами выступают довольно токсичные вещества. Из-за низкой селективности такие лекарства оказывают побочные действия, пагубно влияют на печень, почки и сердечно-сосудистую систему. И если ранее альтернатив не существовало и применение агрессивных препаратов считалось допустимым с причинением ущерба для здоровья в процессе лечения, то сейчас методика меняется. Развитие медицины и медицинской химии позволяет работать не только над поиском принципиально новых лекарств, но и над подбором оптимальных схем лечения по уже известным методикам. Индивидуальная дозировка препаратов, имеющих сильные побочные эффекты, могла бы снизить негативное влияние на пациентов, но сложность расчетов не позволяет проводить их массово.
К тому же их нужно проводить несколько раз в день. Нейросети способны проводить такие расчеты быстро и качественно. AI для комбинационной терапии раковых больных с помощью искусственного интеллекта. Уже во время первого тестирования система показала свою эффективность. Для пациента с прогрессирующим раком простаты система рассчитывала индивидуальную комбинацию препаратов на протяжении всего курса лечения. Как результат — рост опухоли значительно замедлился, а затем болезнь и вовсе перешла в стадию ремиссии.
Это позволяет улучшить точность диагностики и своевременно выявлять заболевания, такие как рак или сердечно-сосудистые заболевания и многое другое.
Другим применением искусственного интеллекта является прогнозирование результатов лечения. Системы ИИ могут анализировать исторические данные о лечении пациентов и предсказывать вероятность успеха лечения для конкретного пациента. Это позволяет врачам принимать более обоснованные решения и выбирать оптимальные лечебные стратегии. Еще одной областью применения искусственного интеллекта является персонализированная медицина. Системы ИИ могут анализировать генетические данные пациентов, учитывать их индивидуальные особенности и предлагать персонализированные подходы к диагностике и лечению.
Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера Принять все.