Земля и вся наша Солнечная система находятся внутри галактики Млечный Путь, вместе с миллиардами других звезд, солнц и планет.
У Земли было два Солнца. Неожиданное открытие астрофизиков
Согласно их данным, следующий пик солнечной активности наступит в июле 2025 года и будет таким же слабым, как и в апреле 2014 года. Сколько звёзд в нашей Солнечной системе? Вне зависимости от того, сколько раз наш мир мог оказаться и оказывался в огне, наша конечная судьба — замерзнуть в холодной, пустой Вселенной. The Sun is the star at the heart of our solar system. Its gravity holds the solar system together, keeping everything – from the biggest planets to the smallest bits of debris – in its orbit. И поскольку мы неизбежно обнаружим, что вселенная больше, чем мы предполагали ранее, ожидаем, что это число возрастет.
NASA открыло второе Солнце во Вселенной
И тут оказалось, что Уран идет немного «не по расписанию». В чем это выражалось? Проходит этот месяц, наблюдатели вновь измеряют положение Урана на небесной сфере, и к немалому удивлению ученых мужей всего мира обнаруживается, что Уран почему-то находится немного в другом месте. Надеюсь, Вы понимаете, что в науке не допускаются всякие «немного», да «чуть-чуть». Либо в теории все в порядке и положение планеты предвычисляется в пределах точности измерений, либо надо менять теорию. И второе «либо» было страшным, ибо оно недвусмысленно намекало на неверность главного из законов Вселенной — Закона Всемирного Тяготения — ведь на основе него в астрономии вычисляется всё, и если формула выведенная Ньютоном еще в 1687 году не абсолютна, то все труды астрономов за последние полтора столетия можно смело кидать в корзину, и все изыскания начинать сначала, а этого очень не хотелось. Что тут скажешь? Если вначале отклонения его положения от расчетных значений как-то можно было списать на неточность определения орбиты, то дальше объяснить расхождение теории и практики было нечем… если только не существовало бы поблизости какого-то другого массивного небесного тела, отклоняющего или как говорят астрономы — «возмущающего» своим тяготением движение Урана от его «законной» орбиты.
Это была смелая идея для XIX века. Автор идеи — Алекс Бувард — не решился на вычисления и определение положения такого тела, полагая, что задача очень сложна, если вообще разрешима. Тем не менее за эту же задачу взялись независимо два астронома — Джон Адамс англичанин и Урбен Жозеф Леверье француз. Адамс приступил к расчетам раньше и занимался ими несколько лет, и в 1843 году представил их Джорджу Эйри — королевскому астроному Великобритании, который не отнесся к вычислениям серьезно. Очевидно английская консервативность не позволила главнейшему из астрономов страны допустить, что планеты можно открывать и за письменным столом. И работа Адамса была отвергнута. Сам же Джон Адамс, будучи человеком скромным, не стал настаивать и добиваться проверки своих вычислений.
Параллельно с этим, но двумя годами позже, Леверье выполнил свои расчеты и почему-то тоже отправил их в Англию — в Кембриджскую Обсерваторию — с просьбой поискать в предполагаемом районе неба слабосветящийся звездообразный объект. Пару месяцев в Кембридже что-то там искали, но ничего не нашли, но по большей части от того, что просто отложили обработку наблюдений на неопределенный срок. Открытие Нептуна «на кончике пера» стало триумфом науки и очередным подтверждением справедливости Закона Всемирного Тяготения. Добавлю, что и в отношении Джона Адамса была восстановлена справедливость, и уже после открытия Нептуна его расчеты были опубликованы, а Урбен Жозеф Леверье вынужден был признать их более точными и разделил с Адамсом славу сооткрывателя. Если бы это было все... С той первой ночи, когда в виде слабой звездочки 8-й звездной величины был открыт Нептун название планеты менялось неоднократно в самых широких пределах, вплоть до попыток дать ей название «Леверье» в честь понятно кого астрономы принялись вычислять элементы его орбиты и вскоре — О Ужас! Были ли эти отклонения столь значительны на самом деле или просто астрономам захотелось открыть еще одну планету на кончике пера — это сейчас трудно комментировать, но эту идею подхватили сразу несколько обсерваторий и вслед за грандиозными расчетами начались не менее грандиозные поиски новой — транснептуновой планеты.
Долгое время такие поиски не приносили открытий и вскоре были свернуты — они все больше походили на поиск иголки в стоге сена — попробуй найти слабую гораздо более слабую чем Нептун похожую на звезду планетку среди миллионов таких же по яркости звезд. С заметным постоянством поиски продолжал только Персиваль Лоуэлл — бостонский богач, вложивший немало средств в строительство собственной обсерватории и в работу по обнаружению «Планеты Икс». Положение на небе этой предполагаемой планеты было предвычислено еще Уильямом Генри Пикерингом в 1909 году, но вплоть до самой смерти Персиваля Лоуэлла в 1916-м ничего похожего на далекую планету обнаружено не было, а тотчас, как спонсор проекта умер, его вдова решила продать обсерваторию и 10 лет длилась судебная тяжба в итоге которой скорбящая Констанция Лоуэлл так ничего и не получила. Обсерватория возобновила свою работу лишь в 1929 году, и тут на удачу рядом оказался молодой лаборант — Клайд Томбо, который как и Лоуэлл бредил «Планетой Икс». Именно ему и поручил всю эту рутинную работу новый директор обсерватории Весто Слайфер. Клайду предстояло всякую ясную ночь фотографировать на фотопластинки области неба предложенные Пикерингом, повторять фотографирование тех же областей через 2 недели дав предполагаемой планете немного сместиться среди звезд , после чего — заниматься тщательным сравнением изображений. Лаборант усугубил и без того кропотливую и трудную задачу — он расширил границы поисков, чтобы уж наверняка обнаружить «Планету Икс», и начал фотографические поиски с самых дальних от предполагаемого района областей.
Примерно через год, разобравшись с окраинами и добравшись до рекомендованного района неба, в непосредственной близости от расчетной точки Клайд Томбо обнаружил звездоподобный объект с похожими характеристиками — подходящей яркостью, ожидаемой скоростью смещения. Дальнейшие измерения показали, что объект движется по близкой к расчетной орбите и таким образом открытие 9-й планеты Солнечной системы подтвердилось. Правда, никак не было понятно — это ли тело производило гравитационные возмущения в движении Урана и Нептуна? Это и невозможно было понять, пока не стала известна масса планеты уже получившей название Плутон в честь римского бога подземного царства аналогичного греческому Аиду и очень символично-удачно сочетающееся с положением самой дальней из известных планет — на краю Солнечных владений. К этому времени астрономам удалось открыть несколько подобных Плутону объектов на задворках Солнечной системы и все они двигались по схожим с Плутоном орбитам, а Плутон был среди них лишь самым крупным ведь все относительно, и крохотный Плутон тоже может быть больше некоторых астероидов и известным объектом так называемого Пояса Койпера — еще одного пояса астероидов, но за пределами орбиты Нептуна. В 2003 году сотрудники Паломарской Обсерватории открыли в Поясе Койпера объект более крупный, чем Плутон на тот момент открытое тело считалось крупнее Плутона. Планетку назвали Эрида, и какое-то время она считалась 10-й планетой Солнечной системы.
Но — не долго, потому, что накопившиеся противоречия в астрономической номенклатуре привели к пересмотру понятия «Планета», и в 2006 году на собрании Международного Астрономического Союза и Плутон и Эрида были торжественно изгнаны из класса планет. Для подобных объектов был утвержден новый класс — карликовая планета или Плутоид. К этому классу ныне относят Плутон, Эриду и Цереру — первый из открытых астероидов если еще помните. А все, что еще мельче их — по прежнему относится к астероидам. Таким образом за последние годы количество больших планет в Солнечной системе не прибавилось, а даже убавилось и теперь их только 8! Ну, а как же — спросите Вы — те самые гравитационные возмущения, что претерпевали Уран и Нептун со стороны неизвестного массивного тела? Безусловно, астрономы не раз предпринимали попытки найти то самое виновное в отклонениях массивное тело а, скажу я Вам, очень многим из них Плутон давным-давно казался крайне несостоятельным по этой части.
Но, ничего не нашли подходящего. В процессе подобных поисков и исследований были открыты множество астероидов, комет, переменных звезд, но что-то претендующее на гордое звание «Большая Планета Солнечной системы» так и не нашлось. Это при том, что все наше многозвездное небо было обфотографированно самыми светосильным камерами вдоль и поперек многократно и внимательно. С другой стороны, за эти же последние годы были немного пересмотрены методики расчета положений планет с учетом гравитационных возмущений друг на друга. И оказалось, что вроде бы все в порядке, и нет уже более никаких неучтенных возмущений — и Уран, и Нептун двигаются теперь по своим расчетным орбитам без опозданий и опережений. А раз так, то вся эта история с Плутоном — чистой воды недоразумение, и мы долгих 75 лет величали космическую каменюгу планетой по ошибке в расчетах… Что ж… бывает… Но планеты, это еще далеко не все, что населяет Солнечную систему. Я уже упоминал об открытии Галилео Галилеем 4-х спутников планеты Юпитер 1608 год при помощи своего первого в истории телескопа.
Подобные открытия вскоре стали систематическими, и у Марса были открыты 2 спутника кстати говоря, они — Фобос и Деймос — были в значительной степени предугаданы учеными — по принципу: «раз у Земли спутник один Луна , а у Юпитера четыре, то у Марса просто обязаны найтись два спутника.
Продолжительность жизни Солнца Солнцу 4,6 миллиарда лет, и астрономы считают, что оно находится лишь на половине своего жизненного пути. Очевидно, что мы не можем заглянуть в будущее, поэтому как ученые оценивают, сколько времени будет существовать Солнце? На самом деле этот процесс довольно прост, и для этого нужно знать, сколько топлива есть у Солнца и с какой скоростью оно его расходует. Как и любая другая звезда во Вселенной, Солнце питается за счет ядерного синтеза ядер водорода в своем ядре. При слиянии водорода образуется гелий и огромное количество энергии, которая питает звезду. Пока в ядре поддерживается ядерный синтез, Солнце будет оставаться звездой главной последовательности. Однако в конце концов топливо закончится, и когда это произойдет, Солнце вступит в последние стадии жизни.
Зная количество топлива, которым располагает Солнце, и скорость, с которой оно его использует, астрономы предполагают, что Солнце будет продолжать синтез водорода в своем ядре еще как минимум 4-5 миллиардов лет.
Другими словами, общее количество материи в наблюдаемой Вселенной в 66 септиллионов 66000 миллиардов миллиардов раз больше массы Солнца, сообщил AFP ведущий автор исследования астрофизик из Калифорнийского университета в Риверсайде Мохамед Абдулла. Новое измерение близко к оценкам, сделанным другими группами астрофизиков с помощью иных космологических методов. Команда исследователей использовала технику 90-летней давности, которая заключается в наблюдении орбит галактик внутри скоплений галактик эти скопления могут содержать сотни или тысячи галактик. Можно вычислить гравитационную силу каждого кластера, что позволяет определить их массу.
Измерение массы темного вещества в гало вокруг близлежащих галактик — сложная задача.
А измерение темной материи вокруг более отдаленных и, следовательно, ранних галактик еще сложнее. Свет, исходящий от этих галактик, очень слабый. Художественная иллюстрация ореола темной материи. Rodd, Benjamin R. Safdi, Zosia Rostomian Berkeley Lab , based on data from the Fermi Large Area Telescope Тем не менее, ученым удалось впервые измерить типичную массу гало темной материи, окружающей активную черную дыру во Вселенной, около 13 миллиардов лет назад, сообщает Space. Масса гало темной материи квазаров довольно постоянна и примерно в 10 триллионов раз превышает массу Солнца.
Свету, исходящему от этих древних квазаров, потребовалось до 13 миллиардов лет, чтобы пересечь космос и достичь телескопов.
Что мы знаем о космосе?
В настоящее время считается, что причиной возникновения Солнца и Солнечной системы послужил взрыв одной или нескольких сверхновых звёзд. Не менее удивителен и тот факт, что вокруг всех четырех солнц у новооткрытой планеты уже сформирована стабильная орбита. Сколько галактик существует в обозримой Вселенной?
Астрономы обнаружили самое массивное сверхскопление: 26 квадриллионов Солнц
Поэтому мы ограничимся только вопросом, сколько галактик в той части Вселенной, которую мы можем наблюдать — это так называемая видимая часть Вселенной. Согласно их данным, следующий пик солнечной активности наступит в июле 2025 года и будет таким же слабым, как и в апреле 2014 года. Теперь они произвели новые расчеты и оценили количество галактик во Вселенной, которые светятся слишком слабо, чтобы мы могли их обнаружить. Сколько всего Солнц во всей Вселенной и что происходит после того как Солнце полностью погибло с его остатками?
СКОЛЬКО ВСЕЛЕННЫХ ВО ВСЕЛЕННОЙ?
Да и не всякая планета, как мы знаем, пригодна для жизни. Необходимы определенные условия: довольно узкий интервал температур, состав воздуха, пригодный для дыхания, вода... В Солнечной системе в таком "поясе жизни" оказалась Земля. А наше Солнце, вероятно, расположено в "поясе жизни" Галактики на определенном расстоянии от ее центра.
Таким образом сфотографировано много чрезвычайно слабых по блеску и далеких галактик. У наиболее ярких из них удалось рассмотреть некоторые подробности: структуру, особенности строения. Блеск самых слабых из получившихся на снимке галактик - 27,5m, а точечные объекты звезды еще слабее до 28,1m!
Напомним, что невооруженным глазом люди с хорошим зрением и при самых благоприятных условиях наблюдения видят звезды примерно 6m это в 250 миллионов раз более яркие объекты, чем те, у которых блеск 27m. Создаваемые ныне подобные наземные телескопы по своим возможностям уже сравнимы с возможностями космического телескопа Хаббла, а в чем-то даже превосходят их. А какие условия нужны для того, чтобы возникли звезды и планеты?
Прежде всего, это связано с такими фундаментальными физическими константами, как постоянная тяготения и константы других физических взаимодействий слабого, электромагнитного и сильного. Численные значения этих констант физикам хорошо известны. Даже школьники, изучая закон всемирного тяготения, знакомятся с константой постоянной тяготения.
Студенты из курса общей физики узнают и о константах трех других видов физического взаимодействия. Сравнительно недавно астрофизики и специалисты в области космологии осознали, что именно существующие значения констант физических взаимодействий необходимы, чтобы Вселенная была такой, какая она есть. При других физических константах Вселенная была бы совершенно иной.
Например, время жизни Солнца могло быть всего 50 миллионов лет этого слишком мало для возникновения и развития жизни на планетах. Или, скажем, если бы Вселенная состояла только из водорода или только из гелия - это тоже сделало бы ее совершенно безжизненной. Варианты Вселенной с иными массами протонов, нейтронов, электронов никак не подходят для жизни в том виде, в каком мы ее знаем.
Расчеты убеждают: элементарные частицы нам нужны именно такие, какие они есть! И размерность пространства имеет фундаментальное значение для существования как планетных систем, так и отдельных атомов с движущимися вокруг ядер электронами. Мы живем в трехмерном мире и не могли бы жить в мире с большим или меньшим числом измерений.
Получается, что во Вселенной все будто "подогнано" так, чтобы жизнь в ней могла появиться и развиваться! Мы, конечно, нарисовали очень упрощенную картину, потому что в возникновении и развитии жизни огромную роль играют не только физика, но и химия, и биология. Впрочем, при иной физике иными могли бы стать и химия, и биология...
Все эти рассуждения приводят к тому, что в философии называют антропным принципом. Это попытка рассматривать Вселенную в "человекомерном" измерении, то есть с точки зрения его существования. Сам по себе антропный принцип не может объяснить, почему Вселенная такова, какой мы ее наблюдаем.
Но он в какой-то степени помогает исследователям формулировать новые задачи. Например, удивительную "подгонку" фундаментальных свойств нашей Вселенной можно рассматривать как обстоятельство, свидетельствующее об уникальности нашей Вселенной. А отсюда, похоже, один шаг до гипотезы о существовании совершенно других вселенных, миров, абсолютно не похожих на наш.
И их число в принципе может быть неограниченно огромным.
Архив Астрофизики впервые точно измерили количество материи во Вселенной Группа астрофизиков установила наиболее точные из когда-либо полученных данные о количестве материи во Вселенной. Данные об итогах исследования опубликованы в научном журнале The Astrophysical Journal. О ее существовании было заявлено в 1990-х годах, однако подтвердить ее существование экспериментально пока не удалось. Другими словами, общее количество материи в наблюдаемой Вселенной в 66 септиллионов 66000 миллиардов миллиардов раз больше массы Солнца, сообщил AFP ведущий автор исследования астрофизик из Калифорнийского университета в Риверсайде Мохамед Абдулла.
Эти гиганты теряют свою спиральную форму посредством множественных взаимоотношений между большими галактиками. Они находятся в самом «ядре» кластера больших галактик. Самая большая из этих галактик, когда либо обнаруженная, находится в кластере Абелль 2009 Abell 2029 и содержит 100 триллионов звезд. Только подумайте, существует 100 миллиардов галактик в доступной нам для обзора Вселенной. Когда Вы суммируете все данные, то получите 1024 звезд во всей Вселенной, 1 с 24 нулями.
Думаю, самое время оставить Вас наедине с этими цифрами для раздумий….
Млечный Путь - продукт прошлых слияний, и через миллиарды лет Млечный Путь сольется с галактикой Андромеды, образовав в итоге одну большую галактику. Изучая данные, полученные с помощью космического телескопа Gaia Global Astrometric Interferometer for Astrophysics Европейского космического агентства, ученые обнаружили, что в Млечном Пути существует два различных набора звезд. Один набор состоит из "более красных звезд", которые, как считается, сформировались в более крупной, богатой металлами галактике "металл" и "металличность" в астрофизике означает любые химические элементы тяжелее водорода или гелия , а другой набор - из "более голубых звезд", которые могли возникнуть в меньшей, бедной металлами галактике. Эти данные позволяют предположить, что нынешний Млечный Путь сформировался, когда он поглотил меньшую галактику, называемую Гайя-Энцелад. Даже в настоящее время Млечный Путь притягивает звезды из карликовой сфероидальной галактики Канис Майор и карликовой сфероидальной галактики Стрелец, которые являются ближайшей и второй ближайшей галактиками к Млечному Пути соответственно. Следующими "на обед" попадут Большое и Малое Магеллановы облака.
Наша галактика состоит из загадочных космических пузырей "Пузырь Ферми", обнаруженный в центре Млечного Пути. В 2010 году наблюдения с помощью телескопа помогли обнаружить ранее неизвестные гигантские сферические структуры из газа и магнитных полей, выходящие из центра Млечного Пути. Эти структуры протянулись на 25 000 световых лет выше и ниже плоскости галактики и были названы "пузырями Ферми". Астрономы предполагают, что возраст нашей Вселенной составляет 14 миллиардов лет, тогда как Млечный Путь существует уже около 13,6 миллиарда лет, что делает его одной из самых древних галактик нашей Вселенной. Млечный Путь, в котором находятся миллиарды звезд и планет, также постоянно находится в движении, перемещаясь со скоростью около 130 миль в секунду 210 километров в секунду. Однако, несмотря на его огромные размеры и множество загадок, наше понимание его происхождения и природы постоянно расширяется.
Сегодня произойдёт полное солнечное затмение, но россияне смогут увидеть его лишь на YouTube
Одна пара звезд образована двумя карликами с массой 1,5 и 0,4 масс Солнца, периодически затмевающих свет друг друга. Любопытно, что в четырехкратном гравитационном поле планету PH1 «не съела» гравитация ни одной из звезд. Существует версия, что вновь открытая планета расположена в идеальном положении, которое позволяет ей находиться под действием гравитации всех четырех звезд одновременно. Не менее удивителен и тот факт, что вокруг всех четырех солнц у новооткрытой планеты уже сформирована стабильная орбита. Системы, где есть две звезды, для астрономов не в новинку.
Предположительно она состоит из газов, плавно переходящих в металлическое состояние по мере приближения к ядру. Считается, что ядро Юпитера каменное. Сильнейшее в системе магнитное поле Юпитера воздействует на частицы в миллионах километрах вокруг и даже достигает орбиты Сатурна. Это одна из причин огромного числа спутников у планеты. В наше время известно 79 объектов, вращающихся вокруг планеты. Некоторые из них напоминают Луну, другие выглядят как большие астероиды. Особый интерес представляет Ио — планета с мощнейшими в системе вулканами. Более мелкие частицы образуют вокруг Юпитера кольца, хотя они не так заметны, как у соседнего Сатурна. Сатурн Шестая планета от Солнца. На сегодняшний день эта планета остаётся одной из наименее изученных. Облака в его атмосфере тоже образуют полосы и пятна гигантских вихрей, хоть и менее заметные, чем на Юпитере. О происходящем за атмосферным слоем планеты известно мало. Предположительно, в центре находится металлосиликатное ядро, окружённое спрессованными до состояния металла газами, плотность которых уменьшается по мере удаления от ядра. Планета находится в 9,5 раз дальше от Солнца, чем Земля, и делает оборот вокруг звезды за 29,5 земных лет. Наклон оси Сатурна напоминает земной. По скорости вращения вокруг своей оси Сатурн уступает только Юпитеру. Как и у других газовых гигантов, скорость вращения на разных широтах у планеты разная. Это происходит потому, что поверхность Сатурна текучая, а не твёрдая. Плотность Сатурна так мала, что он мог бы плавать на поверхности воды. Главная особенность Сатурна — впечатляющая система из семи колец. Они состоят из миллиардов ледяных осколков, которые отлично отражают свет, а потому хорошо заметны. Радиус колец огромен — 73 000 километров, а толщина — всего 1 километр. Считается, что эти кольца — осколки спутника, разрушенного гравитацией планеты. Недавние исследования показали, что вокруг Сатурна вращаются 82 спутника — на данный момент это рекорд солнечной системы до 2016 года лидером считался Юпитер. Все спутники покрыты льдом. Крупнейший, Титан, имеет плотную азотистую атмосферу и озёра жидкого метана на поверхности. На другом спутнике, Энцеладе, обнаружена жидкая вода, выталкиваемая на поверхность гейзерами. Это делает его крайне интересным объектом для изучения. Сатурн назван именем древнеримского бога времени, отца Юпитера. Уран Седьмая планета от Солнца. Уран был открыт сравнительно недавно — в 1781 году. В 1986 году его достиг единственный космический аппарат — «Вояджер-2». Атмосфера планеты окрашена в однородный сине-зелёный цвет. Учёные предполагают, что такой её делает метан. Ядра Урана и Нептуна предположительно состоят изо льдов, поэтому их называют «ледяными гигантами». Солнечный свет летит до Урана чуть менее трёх часов, а год на планете равен 84 земным. Как и Сатурн, Уран окружён кольцами. В результате половину уранианского года на южном полушарии длится день, а на южном — ночь. А следующие полгода — наоборот. Подобно Венере, Уран вращается вокруг своей оси по часовой стрелке. На настоящий момент известно 23 спутника Урана, все покрыты льдом. Уран назван именем древнегреческого бога неба, отца Сатурна, и продолжает «семейную» линию. Нептун Нептун находится так далеко, что его нельзя увидеть с Земли невооружённым глазом. Он был открыт в 1846 году, когда астрономы искали планету, вызывающую орбитальные отклонения Урана.
При этом, он будет сильнее предыдущих. Число солнечных пятен увеличится в два раза, а вспышки и выбросы плазмы станут больше. Все это, в итоге, грозит негативными последствиями для земных технологий. Повышенная активность Солнца приводит к возникновению геомагнитных бурь на планете, которые могут повлиять на электромагнитные системы — сотовую связь, спутники и электрические сети.
Во время путешествия этот свет потерял энергию, а его длины волн растянулись, сместив их за красный конец спектра видимого света и превратив их в длины волн инфракрасного света — процесс, который астрономы называют «красным смещением». В 2016 году ученые начали собирать инфракрасные данные из ряда астрономических исследований, проведенных с помощью различных инструментов, в первую очередь телескопа Subaru на вершине Маунакеа на Гавайях. Это позволило увидеть, как свет отдаленных квазаров проходит через пространство, находящееся рядом с галактиками. Темная материя, которая также имеет массу, искривляет пространство и тем самым изменяет путь света. Это явление называется гравитационным линзированием. Ученые измерили степень искривления света и сравнили его с ожидаемым искривлением, вызванным видимой материей в галактиках, такой как газ, пыль и звезды. Это сравнение и позволяет определить массу скрытой темной материи. Природа темной материи является актуальной проблемой для науки.
Сколько солнечных систем в Галактике
Дуцентдуомилианонгентновемдециллион - 10308760 нулей. Десять в степени числа, которое равно десять в степени 100 - гуголплекс. Можете представить себе такое количество чего-либо? И это правильно! Людей на Земле сейчас около 8 умноженных на 1 000 000 000. Всего 9 нулей 10 в девятой степени. Молекул в стакане воды 6,7 умноженные на 10 в 24-й степени. Атомов в солнечной системе порядка 3 умноженных на 10 в 57-й степени. Атомов в нашей галактике примерно 1 на 10 в 69-й степени.
Атомов во всей наблюдаемой вселенной порядка 1 на 10 в 80-й степени. То есть всего лишь 80 нулей после единицы!
Фотосфера имеет толщину от десятков до сотен километров и немного менее прозрачна, чем земной воздух. Поскольку внешняя часть этого слоя холоднее внутренней, изображения Солнца в центре кажутся ярче, чем на краях солнечного диска. Части Солнца над фотосферой в совокупности называются солнечной атмосферой. Их можно наблюдать в телескопы, и они делятся на 5 основных зон: температурный минимум, хромосфера , переходный слой, корона и гелиосфера [14]. Солнце — магнитоактивная звезда. Он поддерживает сильное магнитное поле , которое меняется из года в год и меняет свое направление каждые 11 лет вокруг солнечного максимума. Магнитное поле Солнца управляет многими процессами, в совокупности называемыми солнечной активностью, в том числе солнечными пятнами на поверхности звезды, солнечными вспышками и изменениями в солнечном ветре, переносящем материю через Солнечную систему. Процессы, возникающие в результате солнечной активности на Земле, включают полярные сияния и нарушение радиосвязи [14].
Жизненный цикл Солнце — звезда, намного меньшая, чем голубые гиганты. Образовалось 4,6 млрд лет назад по ядерной космохронологии ; ожидается, что типичная звезда G2 будет существовать около 10 миллиардов лет. Солнце недостаточно массивно, чтобы взорваться как сверхновая. Вместо этого ещё через 4-5 миллиардов лет оно станет красным гигантом , истощив запасы водорода в своем ядре. Высокая температура вызовет «вздутие» внешних конвекционных слоев Солнца, возможно, достигнув орбиты Земли. Однако недавние исследования предполагают, что в результате интенсивной потери массы Солнцем во время инфляции Земля переместится на более высокую орбиту. Плотность внешних слоев Солнца как красного гиганта будет меньше нынешней плотности атмосферы Земли, но при значительно более высокой температуре около 2000 — 3000 К. Истощая гелий в своем ядре, Солнце будет подвергаться тепловым пульсациям — сжатиям и расширениям с возрастающей амплитудой — с каждым последующим циклом, теряя некоторые из своих внешних слоев, пока, наконец, не станет белым карликом [15]. В отличие от более массивных звёзд, таких как Сириус и Бетельгейзе , Солнце не может преобразовать значительное количество углерода в более тяжелые элементы, и по этой причине белый карлик будет состоять в основном из углерода [16]. История изучения Человечество начало проявлять интерес к небесному светилу более 20 000 лет назад.
Когда у Галилея появились более совершенные телескопы, он посмотрел на Сатурн еще раз. И ничего не увидел. Но не потому что это был какой-то дефект, а потому что кольца повернулись ребром. И Галилей не стал расшифровывать свое раннее сообщение. А кольца были открыты позже уже Гюйгенсом спустя несколько десятилетий. Их называют ледяными гигантами, поскольку основная масса этих планет связана с веществом, которое могут образовывать льды. Это и просто вода, и метан, аммиак, углекислый газ.
В планетной физике их традиционно относят ко льдам, потому что при низких температурах они могут в него превращаться. Уран и Нептун — плохо изученные планеты, потому что они находятся далеко от Земли. До сих пор не было создано никакого специализированного аппарата, который исследовал хотя бы одну из этих планет. А это очень интересно, в том числе с точки зрения истории формирования Солнечной системы. И есть, по крайней мере, один очень понятный аргумент. Юпитер массивней Сатурна, Сатурн массивней Урана, а вот Уран легче Нептуна — получается, что планеты стоят «не по росту». Предполагается, что они следовали общему тренду на падение массы.
Но в процессе ранней эволюции Нептун и Уран поменялся местами. Вообще в образовании Солнечной системы есть еще много белых пятен. Но любопытно, что разобраться в этом, скорей всего, можно, изучая не планеты, не Солнце, не спутники, а астероиды. Уран Фото: NASA Астероиды — хранители истории Астероиды — это небольшие тела, самые крупные из которых имеют диаметр в несколько сотен километров. Пояс астероидов, так называемый «главный пояс», располагается между Марсом и Юпитером.
Кристиан Вольф сотрудник Австралийского национального университета Почему квазары — самые яркие объекты Вселенной Черную дыру в центре квазара окружает так называемый аккреционный диск — это нагретое на миллионы градусов пространство, которое возникает в результате постоянного трения частиц газа, пыли и так далее. Аккреционный диск испускает радиоволны, обычный свет, рентгеновское и ультрафиолетовое излучения. Поэтому свет от квазаров такой яркий. Из-за этого ученые на сегодняшний день могут рассмотреть только центр квазара — черную дыру. Физики сравнивают этот эффект с проезжающей вдалеке ночью машиной: увидеть можно только свет фар автомобиля, а вот марку и цвет рассмотреть невозможно.
Фото: M. Тогда рассмотреть квазары ученые могли только с помощью радиотелескопов, поэтому и дали этим астрономическим объектам такое название: термин «квазар» происходит от двух английских слов — quasi-stellar «квазизвездный», «похожий на звезду» и radio source «радиоисточник». С развитием технологий астрономы все чаще находили квазары. К 2005 году ученые знали о существовании 195 тыс. Этот квазар существовал , когда Вселенной было всего 780 млн лет. По оценкам ученых, возраст Вселенной на сегодняшний день составляет 13,8 млрд лет.
Остатки самых первых звезд Вселенной обнаружены в далеком космосе
Космический телескоп «Джэймс Уэбб» открыл гигантскую красную планету за пределами Солнечной системы. Солнечная система — пост пикабушника klimkovsky. Теперь они произвели новые расчеты и оценили количество галактик во Вселенной, которые светятся слишком слабо, чтобы мы могли их обнаружить. Таким образом за последние годы количество больших планет в Солнечной системе не прибавилось, а даже убавилось и теперь их только 8! Сколько лет планете Солнце и какова ее дальнейшая судьба.
У Земли было два Солнца. Неожиданное открытие астрофизиков
Международная группа учёных под руководством астрономов Тартуской обсерватории Тартуского университета обнаружила множество сверхскоплений во Вселенной. так ее именуют астрономы - теперь самая гигантская звезда во Вселенной. Средняя звезда немного меньше Солнца и содержит около 1033 граммов вещества, в основном водорода.
«Сколько нам осталось?»: учеными доказано, что Вселенная испаряется
А что происходит - зависит от начальной массы звезды. Если это карлик как наше Солнце , то она потом, когда выгорит весь водород, перейдёт на углеродный цикл, потом станет красным гигантом сброс газовой оболочки и из него превратится в белый карлик.
К такому выводу их привел анализ химического состава трех газовых облаков, возраст которых может достигать 13,5 миллиарда лет. Отыскать их удалось при помощи телескопа VLT, расположенного в Чили. Команда исследователей подсчитала, что эти облака образовались, когда возраст Вселенной составлял всего 10-15 процентов от ее нынешнего возраста. На то, что в их составе находятся остатки самых ранних звезд Вселенной, указали так называемые химические отпечатки. В распоряжении ученых имеются прогнозы - результаты компьютерных моделирований, которые, по сути, предсказали химический состав древнейших звезд.
Ученым оставалось лишь на практике найти такие следы, что до последнего времени было крайне сложной задачей.
Подсчитано, что каждые сутки квазар J0529-4351 поглощает объем вещества, равный нашему Солнцу. Откуда он его берет — крайне интригующий вопрос. Поскольку черная дыра расположена невероятно далеко, мы видим лишь следы ее активности, которая имела место много миллиардов лет назад. Что и сколько она успела натворить за это время — все еще остается загадкой.
Да только это не все, есть еще много интересного в этой системе, но прежде затронем другой аспект — аспект постижения всего этого человечеством. Существуют два класса гипотез о происхождении Солнечной системы. Основное их различие в том, что одни постулируют одновременное происхождение Солнца и протопланетного диска — из единого прото-облака. Другие — в частности долгое время находящаяся в авангарде популярности и признания гипотеза Отто Юльевича Шмидта — предполагают отдельное формирование Солнца с последующим захватом им некой туманности — остатка вспышки сверхновой звезды. Обсуждение этих гипотез выходит за рамки статьи, хотя и представляет интерес. С тех пор, как раскаленные поверхности каменных шаров остыли, прошло еще 4 или 5 миллиардов лет и на одном из таких шаров случилось нечто необычное, не совсем привычное для небесных тел явление — там завелись существа, считающие себя разумными — о-как замахнулись! Но как бы то ни было, и кто бы кем себя не считал, а примерно 50 тысяч лет назад человеки уже со знанием дела всматривались в небосвод, и их немного начинали волновать те из светящихся точек, что упорно не хотели оставаться на своих местах и кочевали от созвездия Мамонта к созвездию Кабана.
Около 10 тысяч лет назад, и практически повсеместно — в Египте и Элладе, Вавилоне и Персии, в Индии и Китае возможно и на Американском континенте этому начали находить объяснение. Люди сходились во мнении — это Боги, бессмертные Боги, а кто же еще может позволить себе перемещаться среди неподвижных звезд? Так думали почти все, но была в каждой из перечисленных стран, особая разновидность жителей — жрецы — эти никогда просто так не делились своими истинными представлениями о строении Мироздания с простым малограмотным людом, да и со знатью — царями, военачальниками — тоже не делились. Они с легкостью предсказывали как положение на небе всех известных тогда блуждающих светил, так и солнечные, лунные затмения, что давало им реальную власть над теми же царями и военачальниками — жрецов слушались все. А кто не слушался — тот отправлялся на небеса слушаться великих Богов, блуждающих по созвездиям. Каким образом, на основании каких теорий, и базируясь на какой картине мира древние жрецы делали свои вычисления, так и осталось тайной, которую они унесли к своим богам, но где-то за 500 лет до нашей эры у жрецов появился достойный конкурент — класс ученых — философы, математики и метафизики — все они пытались разгадать конструкцию небесных механизмов опираясь на наблюдения и логику, и к началу нашей эры в мире — опять же во многих странах почти синхронно — зародилась, ожила догадка о безграничном пространстве, мегаскоплениях галактик, в одной из которых среди миллиардов и миллиардов подобных светил с огромной скоростью летит том, что наше дневное светило окружено спутниками-планетами, обращающимися вокруг оного по круговым орбитам, и среди них одна — Гея — наш космический дом — с нее и взираем мы в бескрайнюю даль, пытаясь разгадать ее назначение… И это окрыляло, поднимало человека ввысь, ближе к Богам — поняв это человек становился Богом… Были и другие точки зрения. При этом конструкция из деферентов и эпициклов уже не давала требуемой точности и приходилось, для компенсации расхождения вычисленных и реальных положений блуждающих светил вводить все новые рычаги и колеса, и к XVI веку в небесной канцелярии накопилось до семи десятков самых разных шестеренок.
Управляться с такой сложной машиной становилось немыслимо трудно — система мира рушилась, но не сдавалась по идеологическим мотивам. Спасать положение начал польский астроном и математик Николай Коперник. Он не сам это придумал, но изучив многочисленные работы учеников Пифагорейской школы он пришел к выводу, что все эти сложные механизмы из десятков колес и покачивающихся перекладин — безбожное заблуждение, и доработав теории учеников Пифагора выдвинул 1503 год свою гипотезу — в центре мира сияет Солнце, вокруг него по круговым орбитам, не опираясь ни на что движутся планеты, в их числе наша Земля. И только одно светило послушно обращается вокруг Земли — Луна — наш единственный спутник. Думаете, все эти заржавевшие и грохочущие шестерни разом рухнули в бездну? Еще более столетия в ходу были и деференты, и эпициклы, и остальные небесно-механические запчасти. И не только по причине того, что наукой тогда занималась церковь, но и потому, что даже реалистичная конструкция Коперника давала значительные ошибки.
Их исправил во многом только Иоганн Кеплер определив орбиты планет не кругами, а эллипсами. Своими тремя законами он описал характер движения планет по орбитам. Но это произошло лишь в 1618 году и с тех пор наше базовое представление о строении Солнечной системы не менялось, а лишь дополнялось новыми пунктами и деталями. Что же мы имели к началу XVII века? Примерно то же самое, что и на протяжении всех предшествующих веков и тысячелетий: Солнце — ярчайшее небесное светило, обходящее небосвод ровно за год собственно, так и появился в нашем летоисчислении год , Луна — второе по яркости и меняющее свой лик ото дня ко дню светило, оно замыкает свой небесный круг за месяц, и именно благодаря Луне мы имеем в своей календарной системе такую временную единицу. Далее — пять ярких и блуждающих светил, оказавшихся огромными шарами, светящимися отраженным как и Луна солнечным светом, медленно совершали свои движения с разной скоростью: Меркурий — Бог торговли и обмана — этот был, как и положено, шустрее всех; Венера — богиня Любви и Красоты и это чистая правда — оторвать взор от сияния в сумеречных небесах «Вечерней Звезды» очень трудно, невозможно — она хоть и отстает от Меркурия, но тоже очень быстра; Марс — Бог Войны — отличается заметной кровавой, вызывающей окраской, и движется уже медленно, и слава богу — очевидно, что у древних, придумавших эти параллели, быстрее зажигались чувства любви, чем месть и обида. Две последних из известных тогда планет — Юпитер и Сатурн — откровенно едва ползут и за жизнь человеческую делают лишь несколько оборотов.
В XVII веке к этому хороводу небесных объектов добавилась лишь Земля, но для человечества это было очень важным событием в процессе осмысления своего положения во Вселенной — это положение стало рядовым, ничем не выделенным, Впрочем, как я не раз говорил уже сегодня, ничего в мире не случается в один день, и мирилась общественность с потерей своего центрально-космического положения довольно долго. В самом начале XVII века произошло еще одно важно событие в астрономии — итальянец Галилео Галилей создал первый в истории телескоп и применил его в наблюдениях. Результаты были революционны — действительно, планеты оказались подобны Земле — на Луне обнаружились горы, Венера меняла фазы, а Юпитер оказался окруженным свитой из 4-х спутников, что свидетельствовало об относительности любого из предполагаемых центров во Вселенной. Таким образом в составе Солнечной системы начали прибавляться новые небесные жители, в данном случае таковыми оказались спутники Юпитера Ио, Европа, Ганимед, Каллисто , но главное — человечество стало зорче, и это открыло новые возможности в изучении окружающего мира, а в частности, с помощью точных оптических приборов стало возможным измерение параллаксов и получение представления о расстояниях до планет — далеко ли они от нас находятся — раньше об этом можно было только догадываться. Будет не лишним упомянуть о размерах планетных орбит. С момента вселения Земли на третий уровень в порядке исчисления от Солнца, в астрономии появилась очень важная и удобная единица измерения расстояний — одна астрономическая единица — среднее расстояние от Земли до Солнца 150 миллионов километров, приблизительно. Радиусы других планетных орбит различались очень значительно, например Меркурий в среднем был ближе к Солнцу чем Земля в два с половиной раза, а Сатурн — в 10 раз дальше.
И по этому поводу просто необходимо вспомнить об одном интересном математическом наблюдении. С древнейших времен человечество пыталось не только получить информацию об окружающем мире, не только узнать что и как, но понять почему — осознать, разобраться в причинах и закономерностях. Так же и с размерами планетных орбит — многие астрономы не только пытались измерить параметры орбит, но и понять, по какому закону и подчиняясь каким правилам они сложились именно такими. Суть наблюдения вот в чем: Давайте выпишем в ряд такие числа: 0, 3, 6, 12, 24, 48, 96 это если не брать во внимание первое число — обычная геометрическая прогрессия с первым членом равным тройке и коэффициентом равным двум каждый следующий член прогрессии, после этой тройки, в два раза больше предыдущего. Теперь прибавим к каждому члену нашей прогрессии число 4. Получим: 4, 7, 10, 16, 28, 52, 100 далее правило Тициуса-Боде его назвали в честь этих двух астрономов-математиков предлагает поделить каждый член прогрессии на 10, но и без этого уже видно, что получившийся ряд чисел кратен радиусам планетных орбит. Посмотрите сами: 4 0,4 — радиус орбиты Меркурия 7 0,7 — радиус орбиты Венеры 10 1,0 — радиус орбиты Земли 16 1,6 — радиус орбиты Марса 28 2,8 —...
А раз так, и правило оказалось не абсолютным, ему в свое время 1766-1772 не придали большого значения. В 1781 году английский музыкант по профессии и астроном по увлечению Уильям Гершель исследовал небо в самодельный телескоп и обнаружил, как ему показалось, доселе неизвестную туманность — слабое, чуть зеленоватое пятно маячило где-то среди звезд созвездия Тельца. От ночи к ночи оно немного смещалось и Гершель принял его за комету, о чем и сообщил в Английское Королевское Общество. Вскоре, по результатам наблюдений других астрономов и вычислению орбиты вновь открытого небесного тела, оказалось, что Гершель обнаружил планету, далекую и огромную — сравнимую по размерам с Сатурном или даже Юпитером. Это было сенсационное открытие, ведь за последние несколько тысяч лет в числе известных планет увеличения не происходило если, конечно, не считать провозглашения планетой самой Земли! Тут-то астрономы вспомнили о казавшемся им сомнительным правиле Тициуса-Боде и решили продолжить ряд: 0, 3, 6, 12, 24, 48, 96, 192 4, 7, 10, 16, 28, 52, 100, 196 — Уран так назвали новую планету оказался точно на орбите предсказанной правилом 19,22 а. Это обстоятельство заставило астрономов отнестись к правилу Тициуса-Боде серьезнее и задуматься теперь и о пустующей орбите с радиусом в 2,8 астрономической единицы.
И действительно, совсем скоро была обнаружена малая планета Церера 1801 г. Тициус и Боде получили заслуженное признание, а астрономы, наоборот, потеряли комплекс ощущения того, что все планеты в Солнечной системе давно открыты.