Умирающая звезда-гигант кормит белый карлик своим веществом, сбрасывая свой внешний водородный слой. 5 млрд лет Солнце превратится в мертвую звезду — белый карлик. Вега звезда белый карлик. Остывшие белые карлики. Поскольку белый карлик — крошечная мишень, маленькие тела не врезаются в звезду, а разрываются на части гравитацией, образуя диски из камней, которые превращаются в пыль, когда они вращаются очень близко к белому карлику. Белый карлик при формировании очень горячий, но поскольку у него нет источника энергии, он остывает, излучая энергию, и некоторые такие звёзды могут постепенно затвердевать и кристаллизоваться.
Другие новости
- Астрофизики обнаружили супертяжелую звезду величиной с Луну
- Белый карлик взрывается в атмосфере красного гиганта
- Что такое белый карлик: звезда или фантом?
- Рядом с Землей нашли звезду, которая медленно превращается в алмаз
Астрономы впервые видят, как белый карлик «включается и выключается»
БЕЛЫЙ КАРЛИК - последняя звезда во Вселенной | Пикабу | Звезда, которая заканчивает свою жизнь в одной из этих планетарных туманностей, оставляет после себя ядро, известное как белый карлик. |
НАСА показало «глаз» белого карлика // Новости НТВ | звёзды главной последовательности: оранжевые и жёлтые карлики, желто-белые и белые звёзды, бело-голубые гиганты, голубые сверхгиганты и гипергиганты. |
Обнаружена самая быстрая звезда за всю историю наблюдения Млечного Пути - Телеканал «Моя Планета» | Белые карлики – коллапсировавшие ядра мертвых звезд массой около 8 масс Солнца. |
БЕЛЫЙ КАРЛИК - последняя звезда во Вселенной | Пикабу | Есть такие двойные звезды, которые состоят из белого карлика (плотного остатка от отжившей свой век звезды) и красного гиганта, раздувшегося настолько, что часть его вещества перетекает на уже мертвую, но такую близкую к нему спутницу. |
БЕЛЫЙ КАРЛИК - последняя звезда во Вселенной | Пикабу | «Эта звезда уникальна, потому что у нее есть все ключевые характеристики белого карлика. |
Сверхмассивный белый карлик появился в процессе слияния двух звезд
Вспышка звезды происходит из-за того, что сила тяготения белого карлика переносит на него горячий газ из внешней оболочки красного гиганта, продолжил ученый. Астрономы обнаружили уникальную звезду-белого карлика, которая пульсирует 1. Звезда при этом превратилась в белый карлик, оставив после себя небольшую точку в центре туманности. В таком случае, если белый карлик втягивает (аккрецирует) вещество из звезды-компаньона, масса, а также его плотность будут увеличиваться и вызывать реакцию слияния в ядре. Ранее было известно, что она содержит три "обычные" звезды главной последовательности, однако теперь стало ясно, что тут же вращается и белый карлик, который гравитационно связан с ними. Вспышка звезды происходит из-за того, что сила тяготения белого карлика переносит на него горячий газ из внешней оболочки красного гиганта, продолжил ученый.
Белый карлик звезда (56 фото)
Обнаружена звезда, пережившая взрыв уникальной сверхновой - Ин-Спейс | После того как белый карлик избавится от всего накопленного материала красной звезды, на несколько десятилетий T CrB вновь погрузится в безвестность. |
Чрезвычайно массивный белый карлик смог покинуть звёздное скопление Гиады | Если бы не белые карлики, у нас не было бы ни малейших шансов узнать хоть что-нибудь о первых звездах Вселенной". |
Обнаружена звезда, пережившая взрыв уникальной сверхновой - Ин-Спейс | Что такое белый карлик: звезда или фантом? |
Рядом с Землей нашли звезду, которая медленно превращается в алмаз | Смотрите видео онлайн «Белые карлики: стандартные свечи Вселенной» на канале «"Радио России"» в хорошем качестве и бесплатно, опубликованное 10 июня 2021 года в 15:21, длительностью 00:47:21, на видеохостинге RUTUBE. |
Белый карлик взрывается в атмосфере красного гиганта - CNews | это звезды, у которых закончилось их основное топливо: водород. |
Астрономы впервые видят, как белый карлик «включается и выключается»
Накопленный на поверхности карлика водород разогревается до такой степени, что в этом слое начинаются термоядерные реакции, после чего при еще большем нагревании происходит резкий сброс оболочки, который мы и наблюдаем в виде короткой вспышки. Затем водородная бомба становится на подзарядку. Такие звезды называются новыми - в момент их вспышки. Звезда при этом не уничтожается, просто взрывается вещество на поверхности. Третий взрыв произойдет спустя 80 лет Фото: Владимир Наумов - Но как ученые узнали, что взрыв ожидается так скоро и в такой весьма точный промежуток времени? Периодичность неточная, но вот процессы, предшествовавшие вспышке, наблюдаются теперь и сейчас. Потому ученые и сделали вывод о том, что звезда может вспыхнуть уже в ближайшие месяцы. Если этот взрыв произойдет и сейчас, то гипотеза о явлениях, которые ему предшествуют, вновь подтвердится.
Превращаясь в белых карликов, звезды продолжают излучать тепло, переходя в состояние черных. Науке неизвестен этот процесс «превращения» — он занимает много времени, возможно, до сотен миллиардов и триллионов лет. Однако австралийские ученые обнаружили признаки такого перехода у умирающей звезды недалеко от Земли. Остывание белого карлика сопровождается кристаллизацией: атомы углерода и кислорода выкладываются в упорядоченную решетку, что дополнительно замедляет охлаждение белого карлика.
В результате его температура не соответствует реальному возрасту.
Это связано с их низкой светимостью и малыми размерами. Однако ученые полагают, что общее их количество в нашей галактике может достигать 10 миллиардов, то есть около 5 процентов всех звезд Млечного Пути. Впрочем, Сильвия Каталан и ее коллеги заняты поиском самых холодных, а значит, самых старых белых карликов, что дополнительно усложняет задачу, ведь самые холодные - значит, самые тусклые. Пока подходящих объектов изучения набралось всего около полусотни, но тем они важнее для науки.
Нужны новые телескопы Правда, заглянуть в далекое прошлое Вселенной астрономы пытаются и иным путем: с помощью все более мощных телескопов они высматривают в глубинах космоса самые далекие, а значит, и самые старые галактики. Ведь если галактика удалена от нас, скажем, на 12 миллиардов световых лет, то это означает, что мы видим ее такой, какой она была 12 миллиардов лет назад. Проблема лишь в том, что эти пусть гигантские и яркие, но чрезвычайно далекие звездные скопления так же трудно поддаются наблюдению, как и несравненно более близкие, зато очень тусклые и крайне малые белые карлики. Предстоящее в ближайшие годы сооружение ряда новых, еще более мощных телескопов придаст мощный импульс обоим направлениям исследований.
Иногда белый карлик не теряет всю собранную материю во время взрыва новой, поэтому с каждым циклом он набирает массу. Это в конечном итоге сделает его нестабильным, и белый карлик может породить сверхновую типа 1а, которая является одним из самых ярких событий во Вселенной. Каждая сверхновая типа 1a достигает одинакового уровня яркости, поэтому они известны как стандартные свечи.
Соавтор профессор Чарльз Вудворд из Университета Миннесоты сказал: «Стандартные свечи настолько яркие, что мы можем видеть их на больших расстояниях по всей Вселенной. Это одна из интересных причин, по которой мы изучаем некоторые из этих систем». Кроме того, новые звезды могут рассказать нам больше о том, как звезды в двойных системах эволюционируют до своей смерти, а этот процесс еще недостаточно изучен.
Они также действуют как живые лаборатории, где ученые могут увидеть ядерную физику в действии и проверить теоретические концепции. Наблюдаемая новая сейчас слишком тусклая для других типов телескопов, но ее все еще можно наблюдать с помощью Большого бинокулярного телескопа благодаря его широкой апертуре и современным сканерам. Профессор Старрфилд и его коллеги теперь планируют исследовать причину, процессы, которые привели к этому, причину его рекордного снижения, силы, стоящие за наблюдаемым ветром, и пульсирующую яркость.
Звезды формируются из плотных молекулярных облаков из пыли и газа в областях межзвездного пространства, известных как звездные ясли. Одно молекулярное облако, в основном содержащее атомы водорода, может в тысячи раз превышать массу Солнца. Они подвергаются турбулентному движению с газом и пылью, перемещающимися с течением времени, воздействуя на атомы и молекулы, в результате чего в некоторых областях больше материи, чем в других частях.
Если достаточное количество газа и пыли собирается вместе в одной области, то она начинает разрушаться под тяжестью собственной гравитации. Когда он начинает разрушаться, он медленно нагревается и расширяется наружу, поглощая больше окружающего газа и пыли. В этот момент, когда область составляет около 900 миллиардов миль в поперечнике, она становится дозвездным ядром и начинается процесс превращения в звезду.
Затем в течение следующих 50 000 лет он сократится на 92 миллиарда миль в поперечнике и станет внутренним ядром звезды.
Звезда-зомби питалась энергией соседа: астрономы впервые обнаружили редкое явление
Следует иметь в виду, что спектральная классификация звезд характеризует температуру их поверхности, поскольку от температуры зависит цвет звезды: по мере убывания температуры он плавно меняется от голубого к белому, от белого к желтому, от желтого к оранжевому и от оранжевого к красному. Таким образом, по горизонтальной оси диаграммы Герцшпрунга-Рассела отсчитывается наблюдаемая температура поверхности звезды. Ископаемые звезды Оказалось, что звезды заполняют площадь диаграммы отнюдь не равномерно. Они группируются в довольно узкие полосы, которые принято именовать последовательностями. Большинство звезд во Вселенной, включая и наше Солнце, относятся к так называемой главной последовательности. Светимость и размеры этих звезд в значительной мере определяются их массой, а источником энергии служит реакция термоядерного синтеза гелия из водорода. Однако существуют и другие последовательности звезд. В частности, это красные гиганты и сверхгиганты, то есть звезды, по массе сравнимые с Солнцем, но по размеру превосходящие его во многие сотни раз; а еще одну группу образуют белые карлики.
В старинном немецком университетском городе Тюбингене прошла международная научная конференция, посвященная актуальным проблемам изучения этих весьма необычных звезд.
Первый был определен более семидесяти лет назад. Белый карлик — это звезда, которая сожгла все свое топливо и сбросила свои внешние слои, а теперь переживает процесс сжатия и охлаждения в течение миллионов лет. Она размером с Землю, но по крайней мере в 200000 раз массивнее нашей планеты. Белый карлик является частью двойной звездной системы, и его огромная гравитация вытягивает плазму из более крупной звезды-компаньона.
Что это за явление такое? Накопленный на поверхности карлика водород разогревается до такой степени, что в этом слое начинаются термоядерные реакции, после чего при еще большем нагревании происходит резкий сброс оболочки, который мы и наблюдаем в виде короткой вспышки. Затем водородная бомба становится на подзарядку. Такие звезды называются новыми - в момент их вспышки. Звезда при этом не уничтожается, просто взрывается вещество на поверхности. Третий взрыв произойдет спустя 80 лет Фото: Владимир Наумов - Но как ученые узнали, что взрыв ожидается так скоро и в такой весьма точный промежуток времени? Периодичность неточная, но вот процессы, предшествовавшие вспышке, наблюдаются теперь и сейчас. Потому ученые и сделали вывод о том, что звезда может вспыхнуть уже в ближайшие месяцы.
Что привело к такому разделению белого карлика, который назвали Янус в честь древнеримского бога, ученые точно не знают. По одной из версий, астрономы стали свидетелями редкой фазы эволюции белого карлика. Известно, что после образования белых карликов тяжелые элементы в их составе опускаются вглубь, легкие, в том числе водород и гелий — поднимаются. Однако в некоторых случаях, по мере остывания, эти элементы смешиваются. В случае Януса разделение на водородную и гелиевую часть может быть связано с действием магнитного поля.
Белый карлик взрывается в атмосфере красного гиганта
Вплоть до предела Чандрасекара, около 1,4 солнечной массы, то, что называется давлением вырождения электронов, удерживает белый карлик от дальнейшего коллапса под действием собственной гравитации. При определенном уровне давления электроны отделяются от своих атомных ядер — и, поскольку идентичные электроны не могут занимать одно и то же пространство, эти электроны обеспечивают внешнее давление, которое не дает звезде коллапсировать. Однако множество белых карликов существует в двойных системах. Это означает, что они заперты в орбитальном танце с другой звездой. Если две звезды расположены достаточно близко, белый карлик будет откачивать материал из своего двойного компаньона, процесс, который может опрокинуть мертвую звезду за предел Чандрасекара, часто вызывая взрыв сверхновой типа Ia. Согласно анализу команды, белый карлик является продуктом слияния двух меньших белых карликов; вместе они были недостаточно массивны, чтобы достичь предела Чандрасекара и создать сверхновую типа Ia.
Вспышки настолько энергичны и регулярны, что сверхмассивная черная дыра, должно быть, съедает массу планеты Меркурий три раза в день.
Так что же кормит эту черную дыру таким огромным обедом? В марте 2020 года ученые нашли ответ - несчастная звезда в конце своей жизни забрела в зону смерти черной дыры. Но самое интересное, что это не простая звезда. Звезды, которые слишком близко подходят к черной дыре - разрываются на части. Но каким-то образом одна из звезд переживает сближение со сверхмассивной черной дырой снова и снова. Дальнейшее исследование показало, что это небольшая компактная звезда - белый карлик.
Так что же делает эту крошечную звезду почти неразрушимой? Ответ заключается в том, как формируется белый карлик. Есть два способа как это может произойти: Маленькие звезды, еще называемые "красными карликами", о которых мы расскажем в одном из следующих наших видео, выгорают на протяжении триллионов лет, пока постепенно не превратятся в белых карликов. Звезды среднего размера, как наше солнце - более интересный случай. Представьте Солнце как огромную скороварку которая превращает водород в гелий внутри себя при помощи гравитации. Слияние элементов высвобождает огромное количество энергии, которая выталкивается наружу и стабилизирует звезду в хрупком равновесии.
Когда звезда стареет, водород в ядре заканчивается и она начинает сжигать гелий, создавая более тяжелые элементы в ее центре. Делая это, звезда теряет свой внешний слой. Она расширяется примерно в 100 раз по сравнению с её первоначальным размером. Спустя время желтая звезда становится красным гигантом. И в конце концов красный гигант сбрасывает свои внешние слои. И более чем половина массы звезды будет выброшена в пространство, в виде захватывающей планетарной туманности, диаметром в миллионы километров.
Звезда, которая заканчивает свою жизнь в одной из этих планетарных туманностей, оставляет после себя ядро, известное как белый карлик. Бывший ранее в 100 раз больше в диаметре, сейчас он примерно такой же по размерам как и Земля, и имеет половину от изначальной массы. Это означает, что он чрезвычайно плотный.
Для вырожденных ядер таких звезд существует верхний предел массы, в противном случае небесное тело становится физически неустойчивым и может наступить коллапс. Вырождение ядра красного гиганта Объяснить столь высокую плотность, которую имеют белые карлики с точки зрения физических законов практически невозможно.
Происходящие процессы стали понятны, только благодаря квантовой механике, которая позволила изучить состояние электронного газа звездного вещества. В отличие от обычной звезды, где для изучения состояния газа используется стандартная модель, в белых карликах ученые имеют дело с давлением релятивистского вырожденного электронного газа. Говоря понятным языком, наблюдается следующее. При огромном сжатии в 100 и более раз, звездное вещество становится похоже на один большой атом, в котором все атомные связи и цепочки сливаются воедино. В таком состоянии электроны образуют вырожденный электронный газ, новое квантовое образование которого может противостоять силам гравитации.
Этот газ образует плотное ядро, лишенное оболочки. При детальном изучении белых карликов с помощью радиотелескопов и рентгеновской оптики оказалось, что эти небесные объекты не такие простые и скучные, как может показаться на первый взгляд. Учитывая отсутствие внутри таких звезд термоядерных реакций, невольно возникает вопрос — откуда берется огромное давление, сумевшее уравновесить силы гравитации и силы внутреннего притяжения. Модель белого карлика В результате исследований ученых физиков в области квантовой механики, была создана модель белого карлика. Под действием сил гравитации, звездное вещество сжимается до такой степени, что электронные оболочки атомов разрушаются, электроны начинают свое собственное хаотичное движение, переходя из одного состояния в другое.
Ядра атомов в отсутствие электронов образуют систему, образуя между собой прочную и устойчивую связь. Электронов в звездном веществе настолько много, что образуется много состояний, соответственно скорость электронов сохраняется. Большая скорость элементарных частиц создает колоссальное внутренне давление электронного вырожденного газа, который в состоянии противостоять силам гравитации. Посмотрите также Читать Когда стали известны белые карлики? Несмотря на то, что первым белым карликом, открытым астрофизиками, считается Сириус В, имеются сторонники версии более раннего знакомства научного сообщества со звездными объектами этого класса.
Еще в 1785 году астроном Гершель впервые включил в звездный каталог тройную звездную систему в созвездии Эридана, разделив все звезды по отдельности. Только спустя 125 лет астрономы выявили аномально низкую светимость 40 Эридана В при высокой цветовой температуре, что послужило поводом для выделения таких объектов в отдельный класс. Эти параметры противоречили теории внутреннего строения звезд, где светимость, радиус и температура поверхности звезды являлись ключевыми параметрами определения класса звезды. Маленький диаметр, низкая светимость с точки зрения физических процессов не соответствовали высокой цветовой температуре. Такое несоответствие вызывало много вопросов.
Аналогичным образом выглядела ситуация с другим белым карликом — Сирусом В. Для сравнения, вещество этого небесного светила количеством со спичечный коробок весило бы на нашей планете более миллиона тонн. Температура этого карлика в 2,5 раза выше главной звезды системы Сириус. Сириус Последние научные выводы Небесные светила, с которыми мы имеем дело, представляют собой естественный природный полигон, благодаря которому человек может изучить строение звезд, этапы их эволюции.
Что происходит в небе? Фото: Владимир Наумов Кстати, Владимир Наумов месяц назад открыл теплый сезон астрономических наблюдений! Теплый потому, что вечером устанавливаются слабоположительные температуры, а не потому, что не холодно. В середине апреля на Комсомольской площади хабаровчане наблюдали за Солнцем. Ну а вскоре астроном планирует показать и вечернюю Луну - с кратерами и морями, как полагается.
Ну и вдруг получится увидеть тот мощный взрыв, который впервые в 1866 году обнаружил ирландский эрудит Джон Бирмингем. Присоединиться к астрономическому движу может каждый, главное - следите за анонсами и помните, что мир вокруг нас гораздо интереснее, важно его замечать! Читайте также:.
Что такое белый карлик и зачем он уничтожает планеты?
Белые карлики Вселенной - пережитки далекого прошлого - Новости - Госкорпорация «Роскосмос» | Согласно выводам команды, белый карлик, вероятнее всего, является остатком сверхновой, которая «взорвалась» между 5 и 50 миллионами лет назад. |
Как и когда погибнет Солнечная система — Нож | Звезда является белым карликом, сверхплотным ядром погибшего светила. |
Белый карлик звезда (56 фото) - 56 фото | Астрономы говорят, что найденный крошечный белый карлик, названный ZTF J1901+1458, родился как раз из пары двух "постаревших" звезд. |
Обнаружен белый карлик с постоянно расширяющейся орбитой
На орбите мертвой звезды, белого карлика, обнаружили планету с размерами Нептуна. Звезда-предшественник белого карлика перед своей гибелью была обязана превратиться в так называемый асимптотический красный гигант, раздувшийся примерно до размеров земной орбиты. В таком случае, если белый карлик втягивает (аккрецирует) вещество из звезды-компаньона, масса, а также его плотность будут увеличиваться и вызывать реакцию слияния в ядре.
Астрономы впервые увидели весь процесс перехода белого карлика в нову
Если компаньоном является другой белый карлик, а не активная звезда, то два «звездных мертвеца» сольются в одну звезду. Умирающая звезда-гигант кормит белый карлик своим веществом, сбрасывая свой внешний водородный слой. В этом случае белый карлик начинает отбирать водород у звезды, вокруг которой он вращается по спирали. «Эта звезда уникальна, потому что у нее есть все ключевые характеристики белого карлика. Белые карлики — звёзды, состоящие из электронно-ядерной плазмы, лишённые источников термоядерной энергии и светящиеся благодаря своей тепловой энергии, постепенно остывая в течение миллиардов лет. Магнитное поле появляется, когда кристаллизующийся белый карлик отъедает материю звезды-компаньона и, как следствие, начинает быстро вращаться.
Чрезвычайно массивный белый карлик смог покинуть звёздное скопление Гиады
Процесс производит так много энергии на поверхности белого карлика, что это запускает ядерный синтез в оболочке звезды, посылая ударную волну глубоко в ее ядро, что приводит к детонации. Наша галактика, вероятно, запустила в межгалактическое пространство более 10 млн таких звезд, предполагают исследователи. Несмотря на изобилие этих мощных сверхновых, доказательства того, что они «выстреливают» белыми карликами словно пулями, по-прежнему трудно найти. Астрономы все-таки выяснили, что белые карлики, почти полностью состоящие из кислорода и углерода, стали продуктами взрыва, лишившего их гелия и водорода. По оценкам ученых, сверхновые D6 могут составлять половину всех сверхновых типа Ia, но, чтобы знать это наверняка, придется поискать побольше звезд, проносящихся через космос, пишет Live Science.
Такая сверхновая нормального типа классифицируется как Ia. Такие сверхновые обозначают Iax, но до сих пор они никогда не наблюдались. В новой работе, опубликованной в журнале Science, группа описывает белого карлика, который имеет все признаки остатка сверхновой типа Iax. Белый карлик LP 40-365 был впервые открыт в 2013 году.
Однако что привело к такому явлению, точно неизвестно. По предположению Каяццо, астрономам удалось застать остывающую звезду в редкой фазе — процессе перехода от преобладания водорода к гелию на поверхности объекта. Не исключено, что четкое разделение на два элемента связано с действием магнитного поля. Магнитное поле может препятствовать смешиванию материалов. Поэтому, если магнитное поле на одной стороне сильнее, там смешивание будет идти хуже и будет больше водорода», — объяснила автор исследования.
Этот уникальный объект получил имя «Янус» Janus в честь древнеримского бога с двумя лицами, обращёнными одновременно в прошлое и будущее. Новое открытие ставит под сомнение представления астрофизиков о строении звёзд и открывает новые горизонты для астрономических исследований. Источник изображения: K. Одним из первых обнаруженных белых карликов был 40 Эридан B 40 Eridani B , плотность которого превышала плотность Солнца в 25 000 раз, при этом его размеры были сопоставимы с размерами Земли. Это наблюдение казалось астрономам невозможным. Второй обнаруженный белый карлик, Сириус B Sirius B , оказался ещё более плотным — примерно в 200 000 раз плотнее Земли. Такая экстремальная плотность обусловлена необычным механизмом, обеспечивающим внутреннее давление звезды, необходимое для противостояния силе гравитации. В обычных звёздах энергия высвобождается за счёт ядерного синтеза, но в белых карликах этот процесс уже остановлен. В результате гравитация сжимает всю массу звезды настолько сильно, что электроны в ней сближаются, образуя вещество с электронной дегенерацией.