Бывшие сотрудники компании Blue Origin создали стартап, который планирует заниматься добычей гелия-3 на Луне. основы безуглеродной энергетики. Гелий-3 есть и на Земле, но в крайне незначительных количествах.
Луна . Гелий-3: новый источник энергии для космических путешествий .
По данным американских источников, возможно, через 15 - 20 лет, если на этом будут сфокусированы усилия общества и соответствующие инвестиции. Вероятно, решение нужно искать на пути синтеза с инерционным удержанием плазмы, а не с магнитным, которое используют в токамаках и заложено в основу проекта ИТЭР. Как уже упоминалось, в июне нынешнего года гостем нашего института был профессор Джералд Калсински - один из пионеров в исследовании проблемы термоядерного синтеза на 3He. На семинаре с участием российских экспертов ученый рассказал о состоянии исследований этой проблемы в США, в частности, об экспериментах на установках с инерционным электростатическим синтезом или инерционным электростатическим удержанием плазмы. Суть процесса состоит в том, что между двумя концентрическими сферическими сетками прилагается сверхвысокое напряжение порядка 100 кВ. Под действием разности потенциалов ионы устремляются от периферии к центру и сталкиваются с энергией, достаточной для возбуждения термоядерной реакции.
Построены опытные установки нескольких типов. Выход термоядерной энергии при этом еще очень мал по сравнению с подводимой для зажигания. В случае описанных Калсински экспериментов Q составляет пока ничтожную величину порядка 10-5. Правда, как считает исследователь, нет фундаментальных трудностей для решения проблемы. Они в основном носят инженерный характер, причем разрешение их в рамках последовательных проектов вплоть до построения реактора, дающего полезную энергию, потребует не столь значительных средств.
Речь идет о 10 - 15 годах и 6 - 8 млрд. А в проекте ИТЭР предполагают получить уже полезный выход энергии. Ведь реактор типа токамак в рамках ИТЭР представляет собой весьма массивное сооружение, а выделяющийся поток нейтронов довольно быстро приведет к разрушению материалов, образующих внутреннюю часть конструкции. При эксплуатации возникнет не только необходимость захоронения радиоактивных отходов, но и проведения громоздких, дорогостоящих и неизбежно частых каждые несколько лет восстановительных работ. Впрочем, с такими утверждениями не все согласятся.
Безусловно, этой категоричной точке зрения можно противопоставить контраргументы. Многие известные физики, с которыми я затрагивал эту тему, проявляют изрядный скептицизм в отношении термоядерной энергетики на 3He. Вместе с тем нельзя не учитывать, что научная карьера большинства крупнейших специалистов в области термоядерного синтеза связана с исследованием процессов магнитного удержания плазмы и традиционными установками типа токамак. Да и в изысканиях, связанных с термоядерным оружием, вопрос о 3He не был актуален, поскольку решались другие задачи. Здесь нужно, по-видимому, прежде всего серьезное внимание к проблеме и адекватное наращивание экспериментальных и теоретических работ.
Глобальная энергетика, основанная на 3He, возможна только при доставке его с Луны. Но акцентирую: для экспериментов и даже для достаточно мощного опытного термоядерного генератора гелий оттуда не потребуется. На Земле накоплены значительные количества этого элемента, используемого в термоядерном оружии. Только за счет естественного распада запасенного трития образуется 15 - 20 кг 3He в год. В распоряжении России и США в общей сложности имеется несколько сот килограммов искусственно полученного 3He.
Кстати, мы продаем его американцам по 1000 дол. Нам он не нужен, а они почему-то покупают. Лунный гелий-3 потребуется не раньше, чем через 20 лет. Но еще до первой его доставки предстоит проделать грандиозную работу. Начать нужно с геологоразведки.
Она включает картирование лунной поверхности, выявление и оконтуривание участков с максимальным содержанием полезных компонентов, оценку удобства их эксплуатации. Работа должна сопровождаться исследованием геологического строения Луны, выявлением ресурсов для развития локального производства. В этой связи большое значение имеет ответ на вопрос о наличии там воды. В замороженном состоянии она может присутствовать в затененных кратерах на полюсах. Свидетельства тому есть.
Необходима организация экспедиций и исследование образцов с соответствующих участков. Следующий шаг - проведение экспериментальных вскрышных работ и по десорбции летучих компонентов из реголита в условиях Луны. Далее - обустройство базы. Проектирование и испытание устройств, предназначенных для производства гелия-3. Чтобы обеспечить хотя бы подготовительную стадию всех работ, понадобится доставить на Луну сотни тонн машин и материалов.
Полное обеспечение потребностей землян в энергии потребовало бы порядка 20 млрд. Конечно, эти объемы представляются фантастическими. Однако сравнивать следует с теми, что проводятся в интересах энергетики на Земле. Сегодня тут добывают около 5 млрд. Объемы вскрышных работ на порядок больше.
Выходит, это сопоставимо с гипотетическим масштабом на Луне. А ведь энергетическая, экологическая и экономическая эффективность сходных по масштабу работ в итоге окажется там гораздо выше. Их организация - вполне в пределах современных экономических и технических возможностей человека. Но поскольку потребуются десятки лет целенаправленного труда, начинать нужно сейчас. Интенсивность полетов по трассе Земля-Луна должна уже составлять несколько в год.
А сегодня у нас в программе только один запуск аппарата "Луна-Глоб", запланированный на 2012 г.
Их захоронение уже ныне представляет грозную опасность. Массовое развитие атомной энергетики, основанное на делении тяжелых ядер, неизбежно имело бы катастрофические последствия для экологии.
Поэтому такой вариант не может рассматриваться как окончательный или даже долговременный. Сегодня промышленная атомная энергия вырабатывается только за счет реакции деления ядер урана. С термоядерной же энергией человечество знакомо пока только по водородной бомбе.
Установок, осуществляющих управляемый синтез, до сих пор нет, хотя над решением проблемы наука бьется более полувека. В настоящее время удалось почти вплотную приблизиться к цели. Полагают, она будет достигнута в ближайшие годы при реализации проекта Международного экспериментального термоядерного реактора ИТЭР.
Это будет ядерная реакция дейтерия D - тяжелого стабильного изотопа водорода с тритием T - тяжелым радиоактивным изотопом водорода. Реакция дейтерия с гелием-3 требует более жестких условий, то есть очень высоких температур. А самое удивительное: синтез, основанный на использовании изотопа 3He, может быть экологически чистым.
Кажется фантастическим, что существует термоядерный процесс, практически не несущий радиоактивность. Но это - факт. Они легко проникают внутрь любых материалов, взаимодействуют с химическими элементами и делают их радиоактивными.
В итоге возникающих повреждений материалы быстро становятся непригодными к дальнейшему употреблению, требуют изъятия и захоронения в виде радиоактивных отходов. Именно в этом ее уникальность, обеспечивающая ряд замечательных преимуществ. Во-первых, протоны - заряженные частицы - не проникают в глубь материалов.
Поэтому в отличие от нейтронов они не делают их радиоактивными. В-третьих, поскольку протоны - заряженные частицы, а электрический ток - поток заряженных частиц, становится реальным прямое преобразование термоядерной энергии в электрическую, минуя тепловую. Это позволит в случае 3He применить гораздо более эффективные инженерные решения для отбора энергии и в целом почти вдвое поднять КПД указанного процесса преобразования.
И наконец, в-четвертых, практическое отсутствие радиоактивности и взрывоопасности делает установки термоядерного синтеза на He совершенно безопасными в аварийных условиях, в том числе при природных катастрофах, террористических актах и т. Но с увеличением температуры и при избытке 3He в смеси гелия-3 с дейтерием влияние этого побочного "фона" сводится к минимуму. Это - вопрос более отдаленного будущего.
Итак, экологическая чистота и энергетическая эффективность делают термоядерный синтез на гелии-3 непревзойденным источником энергии. Правда, на пути к достижению конечной цели - две фундаментальные трудности. Первая: такого изотопа гелия на Земле практически нет.
Он есть на Луне. Но можно ли там организовать его добычу с последующей доставкой на нашу планету? Насколько это экономически целесообразно?
Вторая трудность в том, что пока отсутствует технология управляемого термоядерного синтеза. Задача не решена, несмотря на многолетние усилия даже для более простой реакции синтеза на дейтерии и тритии. Впрочем, прежде всего нужно оценить, насколько реальна добыча и доставка гелия-3 с Луны в необходимых количествах и каковы в действительности его запасы там?
Этот поток, называемый солнечным ветром, попадает на поверхность Луны. В отсутствие активных геологических процессов и круговорота веществ пылевидный материал, называемый реголитом, миллиарды лет накапливает приносимые частицы, в том числе гелия. В среднем содержание 3He в поверхностном слое мощностью 3 m составляет около 4 ppb частей на миллиард.
В районах развития высокотитанистых базальтов "лунных морей" концентрация изотопа может достигать 20 ppb и более. Концентрация гелия в реголите зависит от многих факторов. Очень важен возраст материала: чем дольше облучается поверхность, тем больше накапливается в нем внедрившихся частиц солнечного ветра.
Имеет значение и размер зерен реголита. У слишком крупных относительно малая поверхность, а очень мелкие - не удерживают гелий. Оптимальный размер - 20 - 50 мкм.
Существен и минеральный состав самих зерен. Лучше всего гелий накапливается в ильмените - минерале, содержащем титан FeTiO3. Луна им богата.
На каждый атом 3He приходится 3000 атомов обычного 4He, и второй от первого нужно отделить. Заметим: 1 т реголита, перспективного для разработки, содержит в среднем около 20 мг 3He 10 ppb. Недавно мы в ГЕОХИ совместно с Петербургским физико-техническим институтом доктор физико-математических наук Георгий Ануфриев перемерили содержание 3He в колонке реголита, доставленного советским космическим аппаратом "Луна-24" в 1976 г.
По всей длине колонки длиной 2 м не обнаружено направленного изменения содержания 3He. Кстати, грунт был взят в районе развития низкотитанистых базальтов, в котором содержание 3He ближе к минимальной границе, составляющей, как показал анализ, около 1 ppb. Чтобы добыть 1 т гелия-3, нужно переработать 100 млн.
Зато энергетическая эффективность 3He огромна: 1 т гарантирует работу агрегатов мощностью 10 ГВт в течение года. Напомню: суммарная мощность электростанций России составляет 215 ГВт.
Главная проблема тут — бортовая энергоустановка. К нынешнему моменту накоплен огромный положительный опыт создания и эксплуатации реакторов наземных АЭС с мощностью 4 млн. Что касается размеров запускаемого беспилотного аппарата 450 тонн, в том числе 200 тонн топлива , то он по порядку величины соответствует массе МКС а в окончательном проекте масса МКС планируется еще большей ; суммарный же годовой грузопоток на орбиту 1900 тонн меньше, чем планируемый для стандартных программ космическая связь, телевещание и т. Подавляющее большинство элементов такого орбитального гелиево-водородного завода существует уже сегодня и благополучно действует в криогенной промышленности». Автор говорит, что даже при сегодняшнем уровне развития техники такой проект был бы вполне экономически рентабельным: «Отпускная цена электроэнергии в мире составляет от 5 до 10 центов за кВт. Из простейшей арифметики видно, что доставка с Урана гелия-3 будет оставаться рентабельной даже при цене 1 тонны в 10 млрд. Цена же выведения на орбиту одного подобного завода составляет 10 млн.
Стали уже привычными слова, что наукоемкие отрасли ядерная, космическая и др. Случай с гелием-3 - тот самый случай. Этот способ, который позволит решить энергетическую проблему на достаточно длительное время, в случае, если найдутся возможности изыскать средства для его реализации, сможет стать шансом на прогресс российских наукоемких отраслей: как космонавтики что является предметом для отдельного разговора , так и термоядерной техники. В настоящий момент есть два магистральных направления в термоядерном синтезе: токамаки и лазерный синтез. Первый из этих вариантов сейчас реализуется в проекте международного экспериментального термоядерного реактора ИТЭР. Принцип действия токамака таков: в плазменном сгустке создавается электрический ток, и при этом, как у всякого тока, у него появляется собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. И тогда с помощью внешнего магнитного поля определенной конфигурации подвешивали плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками. В газе всегда есть свободные ионы и электроны, которые начинают двигаться в камере по кругу. Этот ток нагревает газ, количество ионизированных атомов растет, одновременно увеличивается сила тока и повышается температура плазмы.
А значит, количество водородных ядер, слившихся в ядро гелия и выделивших энергию, становится все больше. Однако эксперименты, начатые почти пятьдесят лет назад в московском Институте атомной энергии, показали, что плазма, подвешенная в магнитном поле, оказалась неустойчивой — сгусток плазмы очень быстро «распадался» и вываливался на стенки камеры. Оказалось, что к неустойчивости приводит комбинация целого ряда сложных физических процессов. Кроме того, оказалось, что время устойчивого удержания плазмы возрастает с увеличением размеров установки. А несколько лет назад специалисты пришли к выводу, что оставшиеся нерешенные проблемы нужно исследовать на установке, максимально приближенной к реальному энергетическому термоядерному реактору. Это понимание и привело к работам по созданию ИТэРа. От всех других установок и методов этот вариант проведения управляемой термоядерной реакции отличается прежде всего тем, что он в основном уже вышел из сферы сомнений и поисков. Благодаря накопленной за пятьдесят лет исследований обширной базе физических и инженерно-технических данных он вплотную подошел к стадии экспериментального реактора. Это, видимо, и вдохновило международное сообщество на создание ИТЭРа — ученые решили, что даже богатой стране нет никакого смысла делать термоядерный реактор в одиночку - результатом будут знания и опыт, которые все равно станут общим достоянием и в национальную экономику сразу ничего не внесут.
В то же время, объединив усилия, можно резко ускорить продвижение к своему работающему термояду и снизить собственные затраты. А его концептуальное проектирование по инициативе нашей страны началось на четыре года раньше. Другое направление на пути к управляемой термоядерной реакции — это лазерный термоядерный синтез ЛТС. Он заключается в том, что мишень из "сырья" для термоядерной реакции облучается со всех сторон лазерными лучами, и таким образом там создаются условия, достаточные для осуществления термоядерной реакции.
В настоящее время гелий-3 не добывается из природных источников, а создаётся при распаде искусственно полученного трития. Изотоп в основном используют в лабораториях, им наполняют детекторы ионизирующего излучения. С помощью таких детекторов можно вычислить незаконно перевозимые радиоактивные вещества.
Гелий-3 также обладает большим энергетическим потенциалом. Его рассматривают в качестве альтернативного источника энергии.
Вы точно человек?
Стартап Interlune возглавляют опытные представители космической индустрии. Ее гендиректор — экс-президент Blue Origin Роб Мейерсон. Основали Interlune примерно три года назад, но только сейчас стало известно, чем он занимается. Конкуренцию Interlune в добыче гелия-3 может составить Китай, который уже имеет первые успехи в этой сфере. В 2020 году аппарат «Чанъэ-5» доставил на Землю образцы лунного грунта, где была обнаружена большая концентрация ценного изотопа. Ученые поняли, как в дальнейшем извлекать этот материал из лунной породы, и будут продолжать работать в этом направлении в ближайшие годы.
И вероятно лишь тела без сильного магнитного поля могут стать ловушками солнечного ветра. Таким образом, выбор стоит между получением солнечного или реликтового изотопов гелия-3. Однако то, что планеты гиганты способны удержать реликтовый гелий, делает задачу его добычи там проблематичной из-за высоких космических скоростей, к тому же очень велико еще и расстояние от них до Земли. Вторая космическая скорость для Юпитера, Сатурна, Урана и Нептуна — соответственно: 60. Время полета по гомановским траекториям в годах : 2.
Соответственно, объём одного грамма гелия-3 при н. Линия внутри области твёрдой фазы разделяет спинупорядоченные и спинразупорядоченные структуры Часть фазовой диаграммы гелия-3 при температурах 0—0,003 К. При температуре ниже 2,6 мК и отсутствии магнитного поля существуют две сверхтекучие жидкости А и В. ОЦК — объёмно-центрированная кубическая кристаллическая структура.
Квантовая жидкость , существенно отличающаяся по свойствам от жидкого гелия-4. Жидкий гелий-3 удалось получить только в 1948 году.
Еще предстоит научиться использовать местные материалы для постройки жилищ.
Но не исключено, что их придется бурить в грунте кратеров или обустроиться в лавовых трубках — к примеру, из-за отсутствия атмосферы здесь очень жарко на солнце и жутко холодно в тени. И придется бороться с радиацией: только в фильмах можно бродить днями на другой планете под палящим Солнцем, а также бомбардировкой метеоритами. Для защиты сойдет реголит, а несколько лет назад компания TeamIndus предложила для защиты электромагнитный щит впрочем, с тех пор от индийского стартапа ничего не слышно.
Существуют концепты и надувных модулей еще в 1954 году идею озвучил фантаст Артур Кларк. Проект носит название Moon Village. Его участники описывают базу, состоящую из надувных блоков, в которых разместятся рабочие зоны, жилье, лаборатории, производство и так далее.
Модули предлагают защитить панцирями, созданными роботами по принципу 3D-печати как раз из лунной породы. Тем не менее специалисты лелеют концепцию получения всего необходимого именно in situ лат. А еще остаются воздух и энергия для обеспечения жизни колоний и отправки кораблей.
Добыча и использование лунного гелия-3 еще долго будут фантастикой, а из-за длинных ночей солнечные батареи придется размещать в строго отведенных местах небесного тела. Гелий-3 еще считают немного перспективным, но все чаще озвучивается теория, согласно которой эффективнее будет добывать воду — она также понадобится для выпуска топлива непосредственно на Луне для полетов еще дальше. Так художник представляет грузовой транспорт для перевозки лунного грунта.
На самом деле, чтобы добыть достаточное количество гелия-3, придется перелопатить не один миллион тонн местного «чернозема», и лопатами тут не обойтись.
Китай проанализировал количество гелия-3 на Луне
Radia Windrunner который вскоре станет самым большим грузовым самолётом в мире и Стартап Interlune который собирается добывать безумно дорогой гелий-3 на Луне. Профессор Индийской организации космических исследований (ISRO) Сиватхан Пиллаи заявил агентству IANS о намерении Индии начать добычу гелия-3 на Луне к 2030 году. Добытый на Луне гелий-3 предполагается использовать для проведения квантовых вычислений, медицинской визуализации, а также, возможно, в качестве топлива для термоядерных реакторов.
Космонавтика
В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром. Высказанная среди прочих предложений задача создания обитаемой станции на Луне отчасти основывается на заманчивой идее использовать уникальные лунные запасы гелия-3 для получения энергии на Земле. Гелий-3, которого на Луне во много раз больше, чем на Земле, считается наиболее перспективным компонентом термоядерных реакторов будущего – основы безуглеродной энергетики. На Луне же, где нет атмосферы, гелий-3 из солнечного ветра и межпланетной среды попадает на поверхность и сохраняется в реголите.
Космонавтика
Гелий-3, которого на Луне во много раз больше, чем на Земле, считается наиболее перспективным компонентом термоядерных реакторов будущего – основы безуглеродной энергетики. Просмотр в реальном времени Новости космоса и астрономии Россия будет добывать гелий-3 на Луне. "Ученые посчитали, что 1 тонна гелия-3 в термоядерном реакторе даст столько энергии, сколько сжигание 15 миллионов тонн нефти.
Зачем американцы собрались присвоить Луну
С учетом всех особенностей технология добычи гелия-3 должна включать следующие процессы: 1. Добыча реголита. Специальные «комбайны» будут собирать реголит с поверхностного слоя толщиною около 2 м и доставлять его на пункты переработки или перерабатывать непосредственно в процессе добычи. Выделение гелия из реголита. При нагреве реголита до 600? С — почти весь гелий. Нагрев пыли предлагается вести в специальных печах, фокусируя солнечный свет либо пластмассовыми линзами, либо зеркалами.
Доставка на Землю космическими кораблями многоразового использования. При добыче гелия-3 из реголита извлекаются также многочисленные вещества: водород, вода, азот, углекислый газ, азот, метан, угарный газ, — которые могут быть полезны для поддержания лунного промышленного комплекса. Проект первого лунного комбайна, предназначенного для переработки реголита и выделения из него изотопа гелия-3, был предложен еще группой Дж. В настоящее время частные американские компании разрабатывают несколько прототипов, которые, видимо, будут представлены на конкурс после того, как НАСА определится с чертами будущей экспедиции на Луну. Понятно, что, кроме доставки комбайнов на Луну, там придется возвести хранилища, обитаемую базу для обслуживания всего комплекса оборудования , космодром и многое другое. Считается, тем не менее, что высокие затраты на создание развитой инфраструктуры на Луне окупятся сторицей в плане того, что грядет глобальный энергетический кризис, когда от традиционных видов энергоносителей уголь, нефть, природный газ придется отказаться.
Главная технологическая проблема На пути к созданию энергетики на основе гелия-3 есть одна немаловажная проблема. Дело в том, что реакцию дейтерий-гелий-3 осуществить гораздо сложнее, чем реакцию дейтерий-тритий. В первую очередь, необычайно трудно поджечь смесь этих изотопов. Расчетная температура, при которой пойдет термоядерная реакция в дейтерий-тритиевой смеси, — 100-200 миллионов градусов. При использовании гелия-3 требуемая температура на два порядка выше. Фактически мы должны зажечь на Земле маленькое солнце.
Однако история развития ядерной энергетики последние полвека демонстрирует увеличение генерируемых температур на порядок в течение 10 лет.
Копирование, распространение, иное использование опубликованных на сайте видеоматериалов без предварительного согласия правообладателя не допускается. Мнение авторов может не совпадать с позицией редакции. Позиция редакции может быть озвучена только главным редактором или лицом, которое главный редактор специально уполномочил. Не каждая позиция главного редактора является официальной позицией редакции.
Даже небольшое количество этого элемента позволяет получить огромное количество энергии из реакции синтеза — 0,02 грамма гелия-3 содержит количество энергии, равное одному баррелю нефти. По оценкам газеты Mail Online, всего 40 тонн гелия-3 обеспечат Соединенные Штаты энергией на целый год. На Луне находится около 10 миллионов тонн этого топлива. Китай не сообщил, когда он планирует начать добычу гелия-3 на Луне. Американские исследователи, в свою очередь, пытаются посчитать, во сколько обойдется такая затея.
При нагреве реголита до 600? С — почти весь гелий.
Нагрев пыли предлагается вести в специальных печах, фокусируя солнечный свет либо пластмассовыми линзами, либо зеркалами. Доставка на Землю космическими кораблями многоразового использования. При добыче гелия-3 из реголита извлекаются также многочисленные вещества: водород, вода, азот, углекислый газ, азот, метан, угарный газ, — которые могут быть полезны для поддержания лунного промышленного комплекса. Проект первого лунного комбайна, предназначенного для переработки реголита и выделения из него изотопа гелия-3, был предложен еще группой Дж. В настоящее время частные американские компании разрабатывают несколько прототипов, которые, видимо, будут представлены на конкурс после того, как НАСА определится с чертами будущей экспедиции на Луну. Понятно, что, кроме доставки комбайнов на Луну, там придется возвести хранилища, обитаемую базу для обслуживания всего комплекса оборудования , космодром и многое другое. Считается, тем не менее, что высокие затраты на создание развитой инфраструктуры на Луне окупятся сторицей в плане того, что грядет глобальный энергетический кризис, когда от традиционных видов энергоносителей уголь, нефть, природный газ придется отказаться.
Главная технологическая проблема На пути к созданию энергетики на основе гелия-3 есть одна немаловажная проблема. Дело в том, что реакцию дейтерий-гелий-3 осуществить гораздо сложнее, чем реакцию дейтерий-тритий. В первую очередь, необычайно трудно поджечь смесь этих изотопов. Расчетная температура, при которой пойдет термоядерная реакция в дейтерий-тритиевой смеси, — 100-200 миллионов градусов. При использовании гелия-3 требуемая температура на два порядка выше. Фактически мы должны зажечь на Земле маленькое солнце. Однако история развития ядерной энергетики последние полвека демонстрирует увеличение генерируемых температур на порядок в течение 10 лет.
В 1990 году на европейском токамаке JET уже жгли гелий-3, при этом полученная мощность составила 140 кВт. Примерно тогда же на американском токамаке TFTR была достигнута температура, необходимая для начала реакции в дейтерий-гелиевой смеси. Впрочем, зажечь смесь еще полдела. Минус термоядерной энергетики — сложность получения практической отдачи, ведь рабочим телом является нагретая до многих миллионов градусов плазма, которую приходится удерживать в магнитном поле.
Луна на очереди: в Китае хотят добывать гелий-3 с поверхности спутника Земли
Один из стартапов планирует добычу гелия-3 на Луне | В реголите Луны содержатся повышенные концентрации изотопа гелия-3. |
Американский стартап Interlune намерен запустить добычу гелия-3 на Луне к 2030 году | Добыча гелия-3 на Луне имеет пару серьезных проблем, решением которых и занимаются ученые. |
СМИ: Россия планирует добывать полезные ископаемые на Луне | Стартап Interlune, основанный экс-сотрудниками Blue Origin, рассчитывает в ближайшие годы запустить на Луне добычу гелия-3. |
Сколько стоит Луна: гелий-3 и перспектива его добычи - Star Mission | Нельзя не упомянуть, что затраты на строительство добывающей гелий-3 шахты на Луне будут поистине астрономическими. |
Луна . Гелий-3: новый источник энергии для космических путешествий .
Добыча гелия-3 потребовала бы астрономические суммы для организации на Луне горнодобывающей и перерабатывающей промышленности. Сообщается, что из образцов ученые смогли узнать, в какой концентрации в грунте Луны содержится гелий-3. По словам учёных, «имеющиеся на Луне запасы гелия-3 могут обеспечить землян энергией, как минимум, на пять тысяч лет вперёд» (цитата по РИА Новости). пишет Times, со ссылкой на китайского ученого. Избирательное обогащение лунного реголита солнечным гелием в зависимости от минерального состава приводит к неоднородному региональному распределению месторождений изотопов гелия на Луне. Добыча гелия-3 на Луне может стать решающим фактором в развитии термоядерной энергетики.
Вы точно человек?
В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром. Амбициозные планы добычи гелия-3 на Луне, на полном серьезе рассматриваемые не только космическими лидерами (Россия и США), но и новичками (Китай и Индия), связаны с надеждами, которые возлагают на этот изотоп энергетики. Запасов же гелия-3 на Луне около 1 млн. т. Таким образом, их хватит более чем на тысячу лет. Гелий-3 является побочным продуктом реакций, протекающих на Солнце.