Самая высокая степень социального неравенства по коэффициенту Джини отмечена в странах Африки, Латинской Америки, Азии.
Коэффициент джини в России
Коэффициент или индекс Джини позволяют оценить данное неравенство в конкретной стране или в мире в целом. Социологи и экономисты оценивают реальные доходы людей в стране, а потом сравнивают их с «идеальным» миром, в котором коэффициент Джини равен нулю. Коэффициент Джини стран мира ежегодно с 1967 по 2020 годы в виде рейтинга и визуализации. В 2023 году коэффициент Джини (индекс концентрации доходов) составил 0,403, сообщил Росстат. Показатели коэффициента Джини в России за все время измерения (1991—2018).
Quality of Life Index by Country 2024
Quality of Life Index by Country 2024 | World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even. |
Как измеряют социальное неравенство: arcver — LiveJournal | В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. |
Список стран по равенству доходов | Коэффициент Джини равен отношению площади фигуры, ограниченной прямой абсолютного равенства и кривой Лоренца, к площади всего треугольника под кривой Лоренца. |
Human Development Insights
Countries in Sub-Saharan Africa and South America, such as Brazil and Botswana, feature prominently among the nations with the highest wealth and income inequality. Conversely, several European nations, like Slovenia, Czech Republic, and Belarus, exemplified lower Gini coefficients, implying a more equitable distribution of wealth and income. Iceland had a Gini coefficient as low as 26. These insights equip us with a clearer understanding of financial inequality on a global scale, drawing attention to areas where action is needed to reduce economic disparities and foster more equitable growth.
With lower values indicating equal wealth distribution and higher values suggesting greater wealth disparities.
Pooling the data available from different kinds of survey data is unavoidable if we want to get a global picture of poverty or inequality. The two concepts are nevertheless closely related: the income of a household equals their consumption plus any saving, or minus any borrowing or spending out of savings. One important difference is that, while zero consumption is not a feasible value — people must consume something to survive — a zero income is a feasible value. A common example here is retired people who are using their savings: they may have a very low, or even zero, income, but still have a high level of consumption. Conversely, at the top end of the distribution, consumption is typically lower than income.
The gap rises with income, with households generally saving a higher share of their income the richer they are.
COVID-19, вероятно, окажет дальнейшее негативное влияние на равенство доходов. По данным Всемирного банка ,. Экономисты считают, что COVID-19 вызвал ежегодное увеличение коэффициента Джини на 1,2—1,9 процентных пункта в 2020 и 2021 годах.
Джини внутри стран Ниже приведены коэффициенты Джини по доходам для каждой страны, для которой CIA World Factbook предоставляет данные: Некоторые из беднейших стран мира имеют одни из самых высоких в мире коэффициентов Джини, в то время как многие из самых низких коэффициентов Джини встречаются в более богатых европейских странах. Однако взаимосвязь между неравенством доходов и ВВП на душу населения не является идеальной отрицательной корреляцией, и со временем эта взаимосвязь менялась. Майкл Моатсос из Утрехтского университета и Джори Батен из Тюбингенского университета показывают, что с 1820 по 1929 год неравенство немного росло, а затем уменьшалось по мере роста ВВП на душу населения. С 1950 по 1970 год неравенство имело тенденцию снижаться по мере того, как ВВП на душу населения превышал определенный порог.
С 1980 по 2000 год неравенство снижалось с ростом ВВП на душу населения, а затем резко возрастало. Ограничения индекса Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от надежных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране.
Неформальная экономическая деятельность, как правило, представляет большую часть реального экономического производства в развивающихся странах и находится в нижней части распределения доходов внутри стран. В обоих случаях это означает, что индекс Джини измеренных доходов будет завышать истинное неравенство доходов. Точные данные о богатстве получить еще труднее из-за популярности налоговых убежищ.
Экономика Экономика Что такое индекс Джини? Индекс Джини или коэффициент Джини измеряет распределение доходов среди населения. Разработанный итальянским статистиком Коррадо Джини в 1912 году, он часто служит индикатором экономического неравенства ,.
Значения выше 1 теоретически возможны из-за отрицательного дохода или богатства. Понимание индекса Джини Страна, в которой все жители имеют одинаковый доход, будет иметь коэффициент Джини дохода, равный 0. И наоборот, страна, в которой один житель получает весь доход, а все остальные ничего не зарабатывают, будет иметь коэффициент Джини дохода, равный 1. Тот же анализ можно применить к распределению богатства «коэффициент Джини богатства» , но поскольку богатство измерить труднее, чем доход, коэффициенты Джини обычно относятся к доходу и появляются просто как «коэффициент Джини» или «индекс Джини», без указав, что они относятся к доходам. Коэффициент Джини для богатства, как правило, намного выше, чем для дохода. Коэффициент Джини является важным инструментом для анализа распределения дохода или богатства в стране или регионе, но его не следует путать с абсолютным измерением дохода или богатства.
Страна с высоким доходом и страна с низким доходом могут иметь одинаковый коэффициент Джини, если доходы распределяются одинаково внутри каждой из них: например, в Турции и США коэффициент Джини дохода составляет около 0,39—0,40, согласно Организация экономического сотрудничества и развития ОЭСР ,. Графическое представление индекса Джини Индекс Джини часто представляется графически в виде кривой Лоренца ,. Коэффициент Джини равен площади под линией совершенного равенства 0,5 по определению минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Другими словами, это удвоенная площадь между кривой Лоренца и линией идеального равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2.
Минфин пообещал больше не повышать налоги на богатых
Ученые выяснили, почему начал таять ледник Туэйтса «ледник Судного дня». Этот процесс связали с феноменом Эль-Ниньо: повышение температуры поверхностного слоя воды на востоке Тихого океана. Когда ледник полностью растает, уровень моря поднимется на 0,6 метра, а в перспективе и на 3 метра. Это может дестабилизировать всю западную часть Антарктического ледяного щита. Депутаты Госдумы от фракций ЛДПР, КПРФ и «Справедливая Россия — За правду» внесли законопроект, разрешающий использовать средства материнского капитала на получение платных медицинских услуг или покупку лекарств для ребенка. Миссия ООН покинула Судан. В апреле 2023 года между армией Судана и силами быстрого реагирования начались столкновения.
Генеральный секретарь ООН Антониу Гутерриш призвал воюющие стороны сложить оружие и приступить к мирным переговорам. Читайте нас в соцсетях:.
Распределение доходов может сильно отличаться от распределения богатства в стране см.
Список стран по распределению богатства. Доход от черный рынок экономическая деятельность не включается и является предметом текущих экономических исследований.
Чтобы предупредить возможные сомнения, отмечу, что это абсолютно мейнстримный экономист, много лет проработавший во Всемирном банке. Рассчитав глобальные коэффициенты Джини по доходам в четырех альтернативных версиях, Миланович приходит к выводу, что все они после 2000 г. Ни один не демонстрировал признаков роста: все дружно катились вниз. Более того, я бы даже рискнул утверждать, что за последние десятилетия глобальное неравенство не просто несколько сократилось, но сократилось абсолютно радикально. Мы бы наверняка увидели это, будь у нас данные по неравенству в пожизненных доходах. Потому что развивающиеся страны резко уменьшили отставание от развитых по ожидаемой продолжительности жизни. С 1970 по 2010 г.
Нет сомнений, что это должно было драматически сократить разрыв в доходах, получаемых на протяжении всей жизни, между их жителями. Но даже если ограничиться только официальными оценками, то оказывается, что выросло оно почти исключительно в англосаксонских странах, тогда как в большинстве остальных почти не изменилось. Но даже с англосаксонскими странами не так все просто. Откуда данные Существует два основных источника данных, откуда можно черпать сведения о неравенстве. Оба имеют множество недостатков и ограничений каждый — свои. Первый — это выборочные обследования домохозяйств. Их «врожденные» дефекты давно и хорошо известны. Главный из них связан с тем, что они не схватывают «правого хвоста» распределения из-за невозможности для интервьюеров проникать в дома богатых людей. Поэтому, чтобы реконструировать полную картину, к опросным данным приходится приклеивать «правый хвост» — исходя из каких-то априорных предположений либо используя какие-то альтернативные данные.
Другой источник — административная налоговая статистика. Она успешно решает проблему «правого хвоста» поскольку богатые тоже платят налоги , но с ней другая беда. В этом случае не охваченным остается гигантский сегмент получателей нулевых, низких и средних доходов. Это те, кто либо вообще ничего не зарабатывает на рынке, либо получает доходы, полностью или частично выведенные из-под налогообложения.
Если у вас завалялась десятирублевка «Чеченская республика» из серии «Российская Федерация», считайте, что бюджет пополнился на 10 тыс. Как банки хитрят со вкладами Вклад считается надёжным способом сохранить и преумножить свои накопления. По многим продуктам доходность перекрывает инфляцию.
Кроме того, вложения застрахованы. Но не всегда вкладчик получает те условия, на которые рассчитывал. Зачастую банки всеми способами пытаются обхитрить клиента.
Как измеряют социальное неравенство
К 00-ым страна была освоена и поделена, и те, кто "заработал" на уничтожении промышленности, сельского хозяйства начали строить свой бизнес, осваивая уже людской ресурс. Что сделал Путин? Вопрос можно поставить иначе... Что он сделал полезного?
Напомним, что кривая Лоренца — это график, демонстрирующий степень неравенства в распределении дохода или богатства в обществе. В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2]. И на её основании можно вывести коэффициент Джинни. Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство.
Так, индекс Джини может быть использован как для анализа различных статистических данных, так и для улучшения экономических показателей конкретной страны.
Он был введен как метод расчета данных в 1912 году итальянским демографом и статистиком Коррадо Джини. Посредством данного расчета можно сравнивать не только неравенство доходов населения в одном государстве, но и выходить на глобальные показатели различий между странами. Индекс используется по всему миру в различных целях, начиная от демографических оценок, заканчивая развитием торговых потоков в государстве. Изобретенный Коррадо Джини индекс варьируется от 0, что представляет собой идеальное равенство, до 1 или 100, в зависимости от масштаба, что указывает на идеальное неравенство. На протяжении 20 века глобальный коэффициент Джини неуклонно рос за счет увеличивающегося разрыва между группами населения, распространения коррупции и развития неофициального заработка: в 1920 году мировой индекс составлял 0,50, а в 1980 и 1992 годах вырос до 0,657. Однако, как и любой другой статистический показатель, коэффициент Джини не лишен погрешности. Несмотря на то, что данный индекс является полезным инструментом для анализа распределения богатства или доходов в стране, он не отражает общих данных. Происходит это потому, что абсолютного значения в доходах страны достичь невозможно, необходимо выбрать отдельные сферы или слои населения.
Если, например, статистикам необходимо выявить уровень разрыва доходов экономических субъектов, то, сузив выборку до малых предприятий и гигантов на рынке в одной области, результат будет наиболее достоверным, нежели при сравнении различных сфер друг с другом. Главный минус индекса Джини заключается в том, что невозможно определить точные доходы населения. Так, если показатель равен 0, это значит, что все доходы населения распределены равномерно.
И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче.
Quality of Life Index by Country 2024
Gini Coefficient | Индекс Джини по Странам Мира 2024 Таблица • 7-е место исландия. |
Коэффициент Джини | | Высокий коэффициент Джини в Москве объясняется вполне понятными факторами, которые уже указывались ранее. |
Gini inequality index by country, around the world | | Коэффициент Джини снизился до 0,391 в 2014 году, и его текущее значение означает худший показатель с 2009 года, уточняет Turkish Minute. |
Quality of Life Index by Country 2024 | расскажем в подробностях про Коэффициент Джини — статистический показатель степени расслоения общества данной страны или. |
Список стран по равенству доходов
Коэффициент Джини | | Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3. |
Индекс Джини в странах мира | 28 фев в 21:49. Пожаловаться. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. |
Карта: Уровень экономического неравенства в мире | MAXIM | Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. |
Gini Coefficient By Country | (Для педантов – между «индексом» и «коэффициентом» есть небольшое отличие, индекс Джини считается в процентах, а коэффициент Джини – в дробных числах от нуля до единицы. |
Индекс Джини по Странам Мира 2024 Таблица • 7-е место исландия
Индекс Джини по странам: коэффициент концентрации доходов. Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения. Индекс Джини измеряет площадь между Кривой Лоренца и гипотетической линией абсолютного равенства, выраженной как процент от максимальной площади под Кривой. Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. Распределенный за весь период существования России, как самостоятельного государства, коэффициент Джини выглядит следующим образом.
Как измеряют социальное неравенство
Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. По итогам 2023 года коэффициент Джини в России вырос до 0,403, что говорит об увеличении концентрации доходов в стране по сравнению с предыдущим годом. В РФ, по данным конца 2014 года, коэффициент Джини по доходам был равен 0,42, а по имуществу – 0,921, что свидетельствует о высоком уровне общественного неравенства. По коэффициенту Джини (статистический показатель степени экономического неравенства в обществе) Россия уступает лишь Бразилии.
Индекс Джини
В первом случае государству нужно подсчитать, сколько требуется заложить в бюджет на социальные выплаты например, пособия малоимущим и субсидии на оплату ЖКХ и пенсии. Во втором — посмотреть динамику потребления и сделать экономические прогнозы. Величина прожиточного минимума зависит от региона и даже социальной принадлежности получателя. Всего есть три социально-демографические группы, для которых определяется прожиточный минимум: трудоспособное население, пенсионеры и дети. Отдельно он рассчитывается «в расчёте на душу населения». Последнее название напоминает нам, что прожиточный минимум — это статистическая величина, выполняющая конкретную роль при составлении бюджета. В России государство использует абсолютный подход к бедности.
Точные данные о богатстве получить еще труднее из-за популярности налоговых убежищ. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается свести двумерную область разрыв между кривой Лоренца и линией равенства к одному числу, он скрывает информацию о «форме» неравенства.
В бытовом плане это было бы похоже на описание содержимого фотографии исключительно ее длиной по одному краю или простым средним значением яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам. В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини.
Например, большое количество пенсионеров повышает индекс Джини. В какой стране самый высокий индекс Джини? Южная Африка с коэффициентом Джини 63,0 в настоящее время признана страной с самым высоким неравенством доходов.
World Population Review объясняет это массовое неравенство расовой, гендерной и географической дискриминацией, поскольку белые мужчины и городские рабочие в Южной Африке получают гораздо более высокие зарплаты, чем все остальные. Что означает индекс Джини, равный 50? Джини в 50 — это половина пути, и в целом его можно воспринимать как место, где доходы распределяются несправедливо: только в 15 странах мира индекс Джини составляет 50 и более.
Коэффициент Джини в США высокий или низкий? В США коэффициент Джини равен 41,1, что является высоким показателем для такой развитой экономики.
В то время как неравенство между странами в последние десятилетия снизилось, неравенство внутри стран возросло. Коэффициент Джини для стран мира Ниже приведены коэффициенты Джини дохода для каждой страны, данные по которой представлены Всемирным Банком: Некоторые из беднейших стран мира Центральноафриканская Республика имеют одни из самых высоких в мире коэффициентов Джини 61,3 , в то время как многие из самых богатых Дания имеют одни из самых низких 28,8. Однако взаимосвязь между неравенством доходов и ВВП на душу населения не является идеальной отрицательной корреляцией, и эта взаимосвязь менялась с течением времени. Михаил Моатсос из Утрехтского университета и Джоэри Батен из Тюбингенского университета показывают, что с 1820 по 1929 год неравенство несколько увеличивалось, а затем постепенно уменьшалось по мере увеличения ВВП на душу населения. С 1950 по 1970 год неравенство имело тенденцию к снижению, поскольку ВВП на душу населения превышал определенный порог.
С 1980 по 2000 год неравенство снизилось с ростом ВВП на душу населения , а затем резко сократилось. Три графика, показывающие поведение ВВП в три разных момента времени. Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени. Источник: Моатсос и Батен. Недостатки коэффициента Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране.
Неформальная экономическая деятельность, как правило, составляет большую часть реального экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов.
Чем дальше кривая Лоренца отклоняется от идеально равной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем меньше равноправия в обществе.
В приведенном выше примере Гаити более неравное, чем Боливия. Коэффициент Джини в мире Глобальный Джини По оценкам Кристофа Лакнера из Всемирного банка и Бранко Милановича из Городского университета Нью-Йорка, коэффициент Джини для глобального дохода составлял 0,705 в 2008 году по сравнению с 0,722 в 1988 году. Однако цифры значительно различаются.
Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Книга Лакнера и Милановича показывает снижение неравенства примерно в начале 21 века, как и книга Бургиньона 2015 года: Источник: Всемирный банк. Экономический рост в Латинской Америке, Азии и Восточной Европе во многом стал причиной недавнего снижения неравенства доходов.
В то время как неравенство между странами в последние десятилетия снизилось, неравенство внутри стран возросло. Коэффициент Джини для стран мира Ниже приведены коэффициенты Джини дохода для каждой страны, данные по которой представлены Всемирным Банком: Некоторые из беднейших стран мира Центральноафриканская Республика имеют одни из самых высоких в мире коэффициентов Джини 61,3 , в то время как многие из самых богатых Дания имеют одни из самых низких 28,8. Однако взаимосвязь между неравенством доходов и ВВП на душу населения не является идеальной отрицательной корреляцией, и эта взаимосвязь менялась с течением времени.
Михаил Моатсос из Утрехтского университета и Джоэри Батен из Тюбингенского университета показывают, что с 1820 по 1929 год неравенство несколько увеличивалось, а затем постепенно уменьшалось по мере увеличения ВВП на душу населения. С 1950 по 1970 год неравенство имело тенденцию к снижению, поскольку ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снизилось с ростом ВВП на душу населения , а затем резко сократилось.
Три графика, показывающие поведение ВВП в три разных момента времени.