Холодный ядерный синтез или ХЯС специалисты определяют как реакцию слияния1 атомных ядер в холодном водороде, например, мюонный катализ. Но больше всего меня интересовал холодный ядерный синтез, так как он может стать великим научным открытием, в том числе и для промышленности.
Термоядерный синтез: ещё один шаг | Hi-Tech
В Китае на несколько часов запустили реактор термоядерного синтеза, или так называемую установку токамак. Главная» Новости» Холодный ядерный синтез новости последние. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. Холодный ядерный синтез: истории из жизни, советы, новости. Однако, при всей невероятности и даже сомнительности холодного термоядерного синтеза, нельзя прятать голову в песок. Эта установка дает надежду на светлое будущее – термоядерный синтез может обеспечить человечество чистой энергией на тысячелетия вперед. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра.
Термоядерный синтез вышел на новый уровень: подробности
Другими словами, превышение этой плотности чревато разрушением стенок реактора. Команда вводила дейтерий, чтобы замедлить термоядерную реакцию и контролировать ее поведение. Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке. Исследователи использовали метрику под названием H98 y, 2 для оценки эффективности, с которой реактор токамака удерживает плазму. Как объясняют ученые, если значение H98 y, 2 больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте. Повторение эксперимента на более крупном реакторе После такого успеха ученые хотят экстраполировать результаты на более крупные установки.
В частности, они думают об ИТЭР, экспериментальном токамаке нового поколения, который сейчас строится во Франции.
На практике американские учёные стреляют гранулами, содержащими водородное топливо, в пучок из почти 200 лазеров, создавая серию чрезвычайно быстрых повторяющихся взрывов со скоростью 50 раз в секунду. Энергия, полученная от нейтронов и альфа-частиц, извлекается в виде тепла, и это тепло является ключом к производству энергии. В данном случае речь идёт о выработке минимального количества энергии, очень далёкого от промышленных масштабов. Если точнее, этой энергии хватило бы на то, чтобы вскипятить 10 чайников воды.
Грэнхольм Jennifer M. Её также поддержал директор LLNL доктор Ким Будил Kim Budil : «Термоядерное воспламенение в лаборатории — одна из самых значительных научных задач, когда-либо решаемых человечеством, и ее достижение — это триумф науки, техники и, прежде всего, людей». Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
Материалы по теме.
Это было моей мечтой.
За последние 40 лет я провёл множество исследований, большинство из них по ядерной астрофизике, начиная с низкоэнергетических ядерных реакций. Мы делали это для того, чтобы понять теорию энергии звёзд. Только в девяностых годах 20-го века мы поняли, что эти ядерные реакции могли быть значительно усовершенствованы тремя электронами, которые защищают ячейки между вступающими в реакцию положительно заряженными ядрами атома.
Это очень важное открытие для того, чтобы понять, что происходит внутри звёзд, внутри плазмы. В течение многих лет мы проводили эксперименты — астрофизические, медико-физические, плазма-физические, по практической физике. Но больше всего меня интересовал холодный ядерный синтез, так как он может стать великим научным открытием, в том числе и для промышленности.
Мы собрали большую группу учёных из различных университетов, представителей коммерческих компаний. Наша цель — не только наука, не только понимание происходящих процессов, но создание нового источника энергии — чистого, безопасного и дешевого. Он должен быть основан на термоядерной энергии, но не быть радиоактивным.
Проект очень рискованный, но его результат может быть ошеломляющим для общества и промышленности. Мы считаем, что существует термоядерная реакция, которая ответственна за выработку энергии. И вот, представьте себе водород или биогаз, который помещается в ёмкость — газовый реактор, где находится порошок или слиток из металлического сплава.
Газ помещается в металл, затем вы повышаете температуру, и термоядерная реакция, производящая новое тепло, начинается. Результатом этой реакции будет тепло, которое может быть трансформировано в электричество. По форме это может быть компактный маленький реактор, маленький по размерам источник энергии, который может быть помещен в автомобиль, в дом или на фабрику.
В этот проект вовлечены крупные компании, которые хотят нам помочь. Экология, проблемы климата, энергетическая политика ставят вопрос: сколько будет стоить энергия? В нашем случае будет более низкая цена — это хорошо, особенно для бедных людей.
Нас ждёт сенсационная технологическая революция, связанная с появлением нового вида энергетических ресурсов — лучшего, более эффективного, легко контролируемого. Аппарат холодного синтеза в Центре систем космической и морской войны в Сан-Диего Жан-Поль Биберян, профессор кафедры физики Университета Экс-Марсель Франция : Когда в 1989 году Мартин Флейшман и Стенли Понс обнаружили холодный синтез, я сразу заинтересовался этим и воодушевился. Но их научные открытия находились в разделе электрохимии, а я вовсе не специалист в этом направлении.
В 1993-м я работал с твердотельными электролитами. И с этого года я стал фанатом холодного синтеза. Когда мы, учёные, узнали об программе CleanHME, для нас это стало грандиозной новостью, так как до этого момента каждый из нас работал поодиночке, каждый в своём углу, безо всякой координации.
И вот появилась возможность работать вместе — разрабатывать теорию, ставить эксперименты, изготавливать материалы. Так что дело теперь пойдет быстрее! В настоящее время между странами существует огромная разница.
Некоторые страны сидят на нефти, и они богатые, люди там мало работают, они получают и тратят деньги. Некоторые страны бедные, у них нет почти никакой энергии — ни нефти, ни газа, ничего. Но с новой технологией холодного синтеза каждая страна встанет на почти одинаковый уровень, потому что к этой энергии будет доступ у каждого.
И это сильно изменит мир. Это похоже на то, как появилсяинтернет 30 лет назад. Никто себе даже не мог представить то, что мы имеем сейчас, например, телевизор в маленьком смартфоне.
Поэтому мы не знаем, куда нас приведет холодный синтез. Но я уверен, что грядут сильные изменения.
Что не так с «японским ученым» и его холодным термоядом
Генератор холодного термоядерного синтеза может обеспечить целый поселок энергией, а также очистить озеро, на берегу которого будет расположен. «Холодный термоядерный синтез» пользуется у физиков той же репутацией, что и вечный двигатель, машина времени и прочие экспериментально недоказанные или недоказуемые, гипотетические приспособления, которые идут вразрез с законами физики и химии. Хорошие новости продолжают поступать в области исследований ядерного синтеза. Холодный термоядерный синтез признали официально. Холодный ядерный синтез. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции.
Термоядерный синтез: ещё один шаг | Hi-Tech
Между холодным термоядерным синтезом и респектабельной наукой практически нет никакой связи вообще. Министерство энергетики США (DOE) 13 декабря отметило важную веху в освоении энергии термоядерного синтеза, рассказав о том, как ученые впервые смогли произвести больше энергии, чем необходимо для его запуска. Холодный термоядерный синтез признали официально. Однако, при всей невероятности и даже сомнительности холодного термоядерного синтеза, нельзя прятать голову в песок. На протяжении десятков лет холодный синтез проявлял поразительную капризность и упорно продолжал мучить своих исследователей неповторяемостью экспериментов. теоретически возможный способ простого и дешёвого получения огромных количеств экологически чистой энергии.
Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип
Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов вполне определенной энергии около 2,45 МэВ. Их нетрудно обнаружить либо непосредственно с помощью нейтронных детекторов , либо косвенно поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации. В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры. Флейшман использовал связи на родине и убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет генерации нейтронов. Харуэлл располагал сверхчувствительными детекторами этих частиц, но они не показали ничего! Поиск гамма-лучей соответствующей энергии тоже обернулся неудачей. К такому же заключению пришли и физики из Университета Юты.
Сотрудники Массачусетского технологического института попытались воспроизвести эксперименты Флейшмана и Понса, но опять же безрезультатно. Поэтому не стоит удивляться, что заявка на великое открытие подверглась сокрушительному разгрому на конференции Американского физического общества АФО , которая состоялась в Балтиморе 1 мая того же года. В газете New York Times появилась разгромная статья, а к концу мая научное сообщество пришло к выводу, что претензии химиков из Юты — либо проявление крайней некомпетентности, либо элементарное жульничество. Но имелись и диссиденты, даже среди научной элиты. Эксцентричный нобелевский лауреат Джулиан Швингер, один из создателей квантовой электродинамики, настолько уверовал в открытие химиков из Солт-Лейк-Сити, что в знак протеста аннулировал свое членство в АФО. Тем не менее академическая карьера Флейшмана и Понса завершилась — быстро и бесславно.
Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы. Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5—10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению. Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т.
И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс. Криостат гарантирует глубокий вакуум и ультрахолодную температуру для камеры токамака и сверхпроводящих магнитов, которые охлаждаются жидким гелием до температуры —269 градусов по Цельсию. Одна третья часть основания криостата. Всего этот «термос» будет состоять из 54 элементов А так выглядит криостат на рендере. Его производство поручено Индии. Внутри «термоса» соберут реактор Криостат уже собирают. Тут, например, вы можете видеть окошко, через которое в реактор будут забрасывать частицы для нагрева плазмы Производство всего этого оборудования разделено между странами-участницами.
Например, над частью бланкетов работают в России, над корпусом криостата — в Индии, над сегментами вакуумной камеры — в Европе и Корее. Но это отнюдь не быстрый процесс. К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах например, под воздействием плазменных пушек, как дивертор , улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент. Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую — в Корее 18 гигантских магнитов D-образной формы, расставленные по кругу так, чтобы образовать непроницаемую магнитную стену.
Внутри каждого из них заключены 134 витка сверхпроводящего кабеля Каждая такая катушка весит примерно 310 тонн Но одно дело собрать. И совсем другое — все это обслуживать. Из-за высокого уровня радиации доступ к реактору заказан. Для его обслуживания разработано целое семейство роботизированных систем. Часть будет менять бланкеты и кассеты дивертора весом под 10 тонн , часть — управляться удаленно для устранения аварий, часть — базироваться в карманах вакуумной камеры с HD-камерами и лазерными сканерами для быстрой инспекции. И все это необходимо делать в вакууме, в узком пространстве, с высокой точностью и в четком взаимодействии со всеми системами. Задачка посложнее ремонта МКС.
Причем это только часть оборудования самого реактора. Добавьте сюда здание криокомбината, где будут вырабатывать жидкий азот и гелий, здание выпрямителей магнитной системы с трансформаторами, трубопроводы системы охлаждения диаметром по 2 метра , систему сброса тепла с 10 вентиляторными градирнями и многое-многое другое. На все это и идут миллиарды. Токамак ITER станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем необходимо для нагрева самой плазмы.
Однако в 2002 году эта тема снова всплыла в научных дискуссиях и прессе.
Lahey, Jr. Они заявили, что смогли добиться необходимого для реакции сближения ядер, используя не палладий, а эффект кавитации. Кавитацией называют образование в жидкости полостей, или пузырьков, заполненных газом. Образование пузырьков может быть, в частности, спровоцировано прохождением через жидкость звуковых волн. При определенных условиях пузырьки лопаются, выделяя большое количество энергии.
Как пузырьки могут помочь в ядерном синтезе? Очень просто: в момент "взрыва" температура внутри пузырька достигает десяти миллионов градусов по Цельсию — что сравнимо с температурой на Солнце, где свободно происходит ядерный синтез. Талейархан и Лейхи пропускали звуковые волны через ацетон, в котором легкий изотоп водорода протий был заменен на дейтерий. Им удалось зарегистрировать поток нейтронов высокой энергии, а также образование гелия и трития — еще одного продукта ядерного синтеза. Несмотря на красоту и логичность экспериментальной схемы, научная общественность восприняла заявления физиков более чем прохладно.
На ученых обрушилось огромное количество критики, касающейся постановки эксперимента и регистрации потока нейтронов. Талейархан и Лейхи переставили опыт с учетом полученных замечаний — и снова получили тот же результат. Тем не менее, авторитетный научный журнал Nature в 2006 году опубликовал статью , в которой высказывались сомнения в достоверности результатов. Фактически, ученых обвинили в фальсификации. В Университете Пердью, куда перешли работать Талейархан и Лейхи, было проведено независимое расследование.
По его итогам был вынесен вердикт: эксперимент поставлен верно, ошибки или фальсификации не обнаружено. Несмотря на это, пока в Nature не появилось опровержения статьи, а вопрос о признании кавитационного ядерного синтеза научным фактом повис в воздухе. Новая надежда Но вернемся к японским физикам. В своей работе они использовали уже знакомый палладий. Точнее, смесь палладия с оксидом циркония.
Дерягиным был разработан проект государственной программы по исследованию холодного синтеза, которая не была реализована из-за распада СССР. Кстати, Мартин Флейшман и Стэнли Понс признавали приоритет группы Бориса Дерягина в получении реакций холодного ядерного синтеза, полученных при раскалывании дейтерированного льда в 1986 году. Но обо всём по порядку. Для начала попробуем разобраться, почему же «группе Google» не удалось запустить холодный ядерный синтез при использовании трёх, казалось бы, классических способов, которые были неоднократно воспроизведены за прошедшие 30 лет и основные условия воспроизводимости результатов для которых были давно установлены. За разъяснением причин этого мы обратились к известному российскому исследователю холодного ядерного синтеза ведущему технологу Института геологии и минералогии СО РАН имени академика В. Соболева, доктору геолого-минералогических наук, член-корреспонденту РАЕН Виталию Алексеевичу Киркинскому о результатах собственных многолетних исследований В. Этот метод можно использовать, если интенсивность ядерных реакций — высокая, на несколько порядков выше, чем при обнаружении продуктов синтеза. Достижение такой интенсивности — значительно более сложная задача. Мартин Флейшман и Стэнли Понс и большинство их последователей при калориметрических измерениях не всегда получали положительные результаты.
Выход избыточной энергии происходил спорадически и зависел, в частности, от используемого палладия, поставляемого разными фирмами. Как было выяснено позже, положительное влияние на выход тепла оказывает присутствие некоторых примесей, например бора, и ряд других факторов. Даже при благоприятных условиях при работе с катодами малой площади интегральный коэффициент преобразования энергии был мал, что требовало высокой точности измерений. В ряде экспериментов, проведенных квалифицированными электрохимиками, в растворах на основе тяжелой воды наблюдались всплески нейтронного излучения и выделение избыточной энергии мощностью до нескольких ватт, в то время как в совершенно аналогичных условиях при использовании растворов с обычной водой никакого дополнительного тепловыделения не происходило. Ни в одном из проверочных опытов в статье в Nature не определялся гелий и его изотопный состав — непосредственный продукт ядерного синтеза.
Холодный синтез: миф и реальность
Флейшман и Понс якобы обнаружили, что температура электролита периодически возрастала на десятки градусов, а иногда и больше, хотя источник питания давал стабильную мощность. Они объяснили это поступлением внутриядерной энергии, выделяющейся при слиянии ядер дейтерия. Флейшман и Понс уверовали, что внутри кристаллической решетки этого металла атомы дейтерия столь сильно сближаются, что их ядра сливаются в ядра основного изотопа гелия. Этот процесс идет с выделением энергии, которая, согласно их гипотезе, нагревала электролит. Объяснение подкупало простотой и вполне убеждало политиков, журналистов и даже химиков. Они-то прекрасно знали, что два дейтрона в принципе могут дать начало ядру гелия-4 и высокоэнергичному гамма-кванту, но шансы подобного исхода крайне малы.
Даже если дейтроны вступают в ядерную реакцию, она почти наверняка завершается рождением ядра трития и протона или же возникновением нейтрона и ядра гелия-3, причем вероятности этих превращений примерно одинаковы. Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов вполне определенной энергии около 2,45 МэВ. Их нетрудно обнаружить либо непосредственно с помощью нейтронных детекторов , либо косвенно поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации. В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры. Флейшман использовал связи на родине и убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет генерации нейтронов.
Харуэлл располагал сверхчувствительными детекторами этих частиц, но они не показали ничего! Поиск гамма-лучей соответствующей энергии тоже обернулся неудачей.
Мировой рынок квантовые технологии харвестеры энергии ХИТ Солнечная энергетика Новости Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Ученые в США во время эксперимента получили больше энергии, чем ожидалось, из-за чего пострадало оборудование. Ученые в США приблизились к получению полностью экологически чистой энергии, впервые добившись чистого прироста энергии в реакции термоядерного синтеза с инерционным удержанием.
Управляемый термоядерный синтез УТС. В термоядерном синтезе используется обратный принцип: вместо расщепления тяжелых элементов соединяются синтезируются легкие — водород и гелий. Точно такие же процессы протекают в центре звезд. Синтез сопровождается выделением огромного количества энергии, но чтобы он осуществился, требуются уникальные условия. Почему же ученые так упорно ищут подходы к УТС, когда у них уже есть атомная энергетика? Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Ключевая сложность — условия , которые требуется создать, чтобы атомы водорода соединились друг с другом. В ядре Солнца они подвергаются колоссальному давлению вкупе с огромной температурой. Создать такую гравитацию в лабораторных условиях невозможно, поэтому приходится разогревать среду еще сильнее. Так, если в центре нашего светила температура составляет около 15 млн градусов Цельсия, то в термоядерном реакторе — около 150 млн. Разумеется, никакое вещество не способно выдержать подобного жара, поэтому основная задача, над которой сегодня бьются ученые — удержание плазмы как можно дальше от стенок реактора, чтобы они не расплавились. Насколько это опасно Эксперты Курчатовского института замечают , что термоядерный синтез не является цепной реакцией.
Для сравнения, сила магнитного поля Земли колеблется от 30 до 60 миллионных долей тесла. Предварительная схема ITER. В семи новых исследованиях ученые описали результаты расчетов и моделирований суперкомпьютеров, лежащих в основе конструкции SPARC. Ожидается, что этот термоядерный реактор будет генерировать как минимум в два, а то и в 10 раз больше энергии, чем потребляет, как показали исследования. Однако все еще ITER будет как минимум в 5 раз мощнее. А дальше принцип работы схож с текущими атомными электростанциями: тепло от термоядерного реактора будет превращать воду в пар. Он, в свою очередь, будет приводить в действие турбину и электрический генератор, после чего конденсироваться и снова нагреваться у реактора, завершая цикл. Однако в отличие от ядерных реакторов не нужно будет строить несколько контуров, на которых сильно теряется КПД, дабы избежать радиации — «снимать энергию» можно будет сразу же с первого контура. Напротив, по его словам, электростанции, использующие возобновляемые источники энергии, такие как солнечный свет или ветер, «плохо приспособлены к нынешним электрическим сетям». Исследователи в конечном итоге надеются, что компактные термоядерные электростанции, вдохновленные SPARC, смогут вырабатывать от 250 до 1000 мегаватт каждая.
Холодный ядерный синтез. L E N R
FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв | Термоядерный синтез заработал в плюс: американские учёные смогли запустить реакцию с положительным КПД. |
Холодный ядерный синтез | Хорошие новости продолжают поступать в области исследований ядерного синтеза. |
Термоядерный синтез вышел на новый уровень: подробности
Холодный термоядерный синтез в обыкновенной кружке. в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Американские ученые повторили прорыв в области термоядерного синтеза. Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза. Стандартная реакция термоядерного синтеза T + D ---> He 4 + n+ 17.6 МэВ.
Что не так с «японским ученым» и его холодным термоядом
За последние два года физики, работающие с NIF, смогли в несколько раз повысить энергетическую эффективность "быстрого" термоядерного синтеза. AngryDude666, Термоядерный синтез, это реакция синтеза, а не расщепления. О том, что значит переход к термоядерному синтезу для всего человечества, и что еще Россия готова сделать для того, чтобы новый реактор заработал как можно скорее? Термоядерный синтез заработал в плюс: американские учёные смогли запустить реакцию с положительным КПД. На протяжении десятков лет холодный синтез проявлял поразительную капризность и упорно продолжал мучить своих исследователей неповторяемостью экспериментов.
В защиту холодного ядерного синтеза (ХЯС)
Инженер-атомщик Владимир Спиридонов в беседе с Лайфом отметил, что кроме использования нового типа топлива и потенциально огромного количества энергии могут сильно уменьшиться и размеры электростанций. Реактор ITER — это лишь первый шаг. Его размеры велики, но по мере развития технологии такая станция станет меньше. Возможно, со временем размеры всего комплекса уменьшат до размеров офисного здания Владимир Спиридонов Особенность термоядерного синтеза заключается в том, что за сутки таких импульсов может быть десять, а при должном умении — сто и даже более тысячи. После перемножения импульсов на мегаватты выработанной энергии получится, что самая маленькая термоядерная электростанция в разы производительнее атомной. К тому же дейтерий и тритий, используемые в качестве топлива, существенно экологичнее изотопов урана и плутония, да и термоядерный реактор в теории почти не надо "перезаряжать". По сути, термоядерная электроэнергетика — "святой Грааль" человечества.
Она способна решить все энергетические проблемы на ближайшие несколько столетий вперёд. Во-первых, после появления термоядерной энергии исчезнет проблема радиационной опасности объектов. Проще говоря, никакого "второго Чернобыля" или "Фукусимы" и близко произойти не сможет. Во-вторых, развитие термоядерного синтеза позволит ликвидировать энергетический голод человечества. Стремительный рост населения спровоцировал и дефицит энергии. Сейчас, по прогнозам специалистов, потребность человечества в электроэнергии оценивается в 10 ТВт — почти в пять раз больше, чем наука и промышленность могут предложить.
В-третьих, термоядерный синтез почти сразу станет причиной освоения... Дело в том, что, несмотря на достаточное количество дейтерия и трития, идеальным топливом для термоядерных реакторов будущего является гелий-3 — самый лёгкий изотоп гелия. Его практически нет в чистом виде на Земле — для его наработки специальным образом обрабатывают тритий, а процесс этот стоит так дорого, что промышленное производство гелия-3 крайне невыгодно и потому лишено смысла.
Если верить специалистам в области энергетики, лунных запасов гелия-3, необходимого для термоядерного синтеза, будет достаточно для обогрева и освещения Земли в течение следующих шести-семи тысяч лет. Правда, есть одна проблема. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. К китайскому опыту в этом направлении стоит приглядеться чуть внимательнее, поскольку физики из Поднебесной тестировали свой импульсный термоядерный реактор и повторяли опыты советских физиков. Однако российские учёные тем временем придумали, как из экспериментальной конструкции сделать пригодный к опытно-промышленному применению термоядерный реактор. На токамаке реакторе, в котором разогретую плазму удерживают магнитные катушки Т-15МД российские учёные будут отрабатывать все процессы.
Затем их масштабируют на реакторе ITER. Этот термоядерный реактор, строящийся сейчас на территории Франции, без опыта российских исследователей просто не запустится. Это значит, что без преувеличения жизни миллионов землян будущего зависят от российских физиков. Уже известно, что над проектом токамака Т-15МД трудятся лучшие специалисты Курчатовского института и Научно-исследовательского института электрофизической аппаратуры имени Ефремова, и, по сути, российские специалисты — единственные в своём роде: ни в одной другой стране мира попытки совладать с термоядерным синтезом не дошли до строительства реакторов подобного масштаба и типа, как в России. Инженер-атомщик Владимир Спиридонов в беседе с Лайфом отметил, что ни в США, ни в Европе, ни в Китае к разгадке секрета термоядерного синтеза пока не приблизились. Проблема та же, что и 30, и 40 лет назад. Нормальный источник возбуждения реакции не найден, механизм удержания — тоже. Теоретически, у того, кто первым освоит термоядерный синтез, будет монополия на всё, что связано с электричеством. Энергия, выработанная термоядерными реакторами, даже по самым скромным подсчётам, должна стать дешевле атомной минимум в двадцать, а максимум в сто раз.
Если всё произойдёт именно так, как это себе представляют учёные, то дорогая электроэнергия исчезнет как таковая, а вслед за ней буквально всё — от производства продуктов питания до лекарств — должно упасть в цене.
О первых успехах учёные отчитались в 2014-м, однако производимая тогда реакцией энергия была крохотной — примерно столько потребляет 60-ваттная лампочка за пять минут. На коммерциализацию и широкое распространение данной технологии могут уйти десятилетия — так сказала Кимберли Будил, директор Ливерморской национальной лаборатории. Технология развивается, и при нужных усилиях и соответствующих инвестициях мы через несколько десятилетий исследований сможем построить электростанцию.
И организовал встречу Вона с лидером Китая Си Цзиньпином. А мы-то думали, что Обама на саммите только антиникотиновую жвачку жевал! Стороны пришли к решению о создании специальной зоны в китайском Баодине для промышленного выпуска этих генераторов по лицензии США.
В ближайшие годы в Китае начнется массовое производство генераторов Росси. Спрашивается, и зачем ему тогда будут нужны российские нефть и газ? Этим шагом Обама отрезает у России рынки сбыта углеводородов. Разве что нефть будет нужна для переработки пластмасс и смазочных материалов, но не для получения бензина и топочного мазута… На мировой арене президент США Барак Обама стал самым большим победителем. Благодаря этому изобретению он может включить и выключить свет для всего мира. Это, как вы понимаете, не желтая пресса, а серьезное американское агентство. Однако настораживает ряд обстоятельств. Ни в одном другом новостном источнике, освещавшем тот саммит, информация про генератор Росси не появилась.
Многочисленные хайтековские порталы и издания в США, Европе, Японии, охочие до всего нового, не перепечатали и не прокомментировали эту новость. Как правило, в случае, если источник подтвержден, и у них есть собственная информация, такие перепечатки обязательно имеют место. Тем более, про изобретение, которое кардинально меняет судьбу планеты. Более того, само агентство снабдило нашумевшую статью о пекинском саммите на своем сайте предупреждающей надписью «notverifiedbyCNN». Не проверено CNN. Автор — не штатный сотрудник агентства, а журналист со стороны, Джо Ши, несколько лет уже пишущий в американских СМИ о холодном ядерном синтезе. Это уже добавили в Рунете. Понятно, что появление сенсации с пекинского саммита о наличии дешевого источника энергии порождает в умах инвесторов и спекулянтов стремление как можно скорее «сбросить» свои нефтяные активы, не дожидаясь, когда энергии станет много и почти даром.
Характерно, что весной, когда была начата атака на «черное золото» через манипуляции с «бумажной нефтью», американская компания Локхид и американские же ученые из университета в Сиэтле заявили, что они — привет Росси! Так что, по всей видимости, мы имеем дело с информационным элементом финансовой войны против России. Большинство статей на сайтах принадлежат одному автору, украинскому журналисту. Лейтмотив - генератор Росси покончит вот-вот с нефтью и газом, развалит экономику России. И многие поверили, судя по откликам, перепостам! Однако я бы поостереглась назвать тему холодного ядерного синтеза и даже генератора Росси чистой воды блефом. Холодным он называется потому, что предусматривает выделение огромной энергии при низких температурах. Однако, как показывает история науки, сами по себе теории — лишь человеческие суждения, которые делаются исходя из ограниченного набора различного рода экспериментов и сведений об окружающем мире.
Объем сведений увеличивается.