Новости из чего состоит водородная бомба

Иллюстрация взрыва водородной бомбы После взрыва в Хиросиме и Нагасаки, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. 55 лет назад Никита Хрущев объявил о создании в СССР водородной бомбы. Пресловутая американская бомба В61 является термоядерной, или как их еще не совсем правильно, но часто, называют – водородной.

Что произойдет после взрыва ядерной бомбы?

На малых расстояниях ядерные силы между двумя протонами сильнее кулоновских сил, расталкивающих одноимённо заряженные частицы; однако ядерные силы убывают с ростом расстояния значительно быстрее кулоновских сил. В результате зависимость суммарного потенциала взаимодействия ядер от расстояния имеет максимум вершину кулоновского барьера на некотором расстоянии. Слайд 5 Мюонный катализ Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов. Мюон — элементарная частица, образующаяся в космическом излучении на высоте 300км над поверхностью земли. Слайд 8 Общее описание Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия , так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях — газ при плюсовых температурах, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, Li-6 — единственный промышленный источник получения трития : Слайд 9 В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотопе лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Слайд 10 Триггер Триггер — это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн.

Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой. Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва. Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки.

Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. Взрыв произошел в 1961 году. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре.

Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Современные опасности использования водородной бомбы Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа. По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы.

Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду. Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра.

При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь. Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней.

Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория.

Однако для осуществления такого слияния нужно сжать вещество так, чтобы ядра его атомов буквально «вошли» друг в друга. В водородных бомбах для этого используются ядерные заряды. В момент взрыва они сжимают и нагревают находящийся в сердечнике бомбы дейтерий так, чтобы произошла реакция синтеза. Благодаря этому мощность взрыва термоядерного оружия более чем в пять раз выше, чем у атомной бомбы, а площадь распространения радиоактивных осадков увеличивается в 5-10 раз. Сам, вероятно, не знает 0 Николай Николаев 03 Декабря 2021, 03:16 Каков механизм получения из реакции ядерного синтеза энергии большей, чем затрачивается на этот синтез?

Если в реакции ядерного распада используются свертяжёлые неустойчивые ядра, уже созданные природой, то есть, природа уже затратила энергию на создание критического состояния, то лёгкие ядра очень устойчивы и чтобы заставить их вступить в синтез, необходимо затратить энергии больше, чем может быть получено из этого синтеза. В любом советском учебнике по гражданской обороне написано гораздо понятнее и правильнее 1 Nicolay1 30 Апреля 2021, 16:43 При взрыве водородной бомбы основная энергия выделяется в виде выделения нейтронов при слиянии двух изотопов водорода из которых образуется один атом гелия. Автор именно эту подробность скрыл. Во сколько раз дейтерид лития сжимается,?

Последовательность процессов, происходящих при взрыве водородной бомбы: Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Слайд 7 Описание слайда: Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе.

Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Слайд 8 Слайд 9 Описание слайда: Последствия взрыва. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер.

Водородная против атомной. Что нужно знать о ядерном оружии

Остров Элугелаб был полностью разрушен. Грибовидное облако поднялось на 41 километр. В историю американцы вошли как первые создатели водородной бомбы чем они, несомненно, очень гордятся , но это была не победа, а проигрыш. Русские оказались умнее. Всё дело в том, Ivy Mike был бесполезен с практической точки зрения. Он весил слишком много по разным источникам, 82 или 62 тонны , а поэтому не годился для транспортировки.

Советский Союз последовал их примеру и в 1953 году испытал свою первую водородную бомбу, положив начало новой эре гонки ядерных вооружений между двумя сверхдержавами. К счастью, водородные бомбы до сих пор не применялись в боевых действиях, и их разрушительный потенциал остается серьезной угрозой глобальной безопасности. Нейтронные бомбы, также известные как усиленное радиационное оружие, представляют собой тип ядерного оружия, предназначенного для высвобождения большого количества нейтронного излучения при минимальном взрывном и тепловом эффектах. Нейтроны — это нейтральные субатомные частицы, которые могут проникать сквозь твердые объекты и ионизовать атомы, вызывая повреждение биологических тканей и электронных цепей. Нейтронное излучение нейтронной бомбы может убить или вывести из строя людей и животных в радиусе нескольких сотен метров, оставив нетронутыми здания и инфраструктуру. Идея нейтронных бомб заключалась в том, чтобы разработать оружие, которое могло бы нейтрализовать солдат и танки противника, не вызывая массовых разрушений в городах или инфраструктуре. Соединенные Штаты испытали свою первую нейтронную бомбу в 1963 году, но это оружие так и не было развернуто в полевых условиях из-за политических и этических соображений. Однако, как сообщается, Советский Союз произвел и развернул небольшое количество нейтронных бомб во время холодной войны, и несколько других стран, таких как Франция и Китай, также заявили, что обладают ими. Таким образом, атомные бомбы, водородные бомбы и нейтронные бомбы — это все типы ядерного оружия, которые различаются по своей взрывной мощности, механизмe детонации и радиационному эффекту. Атомные бомбы основаны на делении ядер и выделяют огромное количество энергии в виде тепла, взрыва и излучения.

Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже. При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже. После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны. Водородная бомба Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза. Водородная бомба Принцип действия Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер. Аналогичный процесс происходит внутри звезды, где воздействие сверхвысоких температур вместе с гигантским давлением заставляют ядра водорода сталкиваться. На выходе образуются утяжелённые ядра гелия. В процессе часть массы водорода преображается в энергию исключительной силы. Именно поэтому звёзды являются постоянными источниками энергии. Физики переняли схему деления, заменив изотопы водорода таким элементами, как дейтерий и тритий. Однако изделию всё равно дали название водородная бомба на основании базовой схемы. В ранних разработках ещё использовались жидкие изотопы водорода. Но впоследствии основным компонентом стал твёрдый дейтерий лития-6. Дейтерий лития-6 уже содержит тритий. Но чтобы его выделить, требуется создать пиковую температуру и грандиозное давление. Для этого под термоядерное горючее конструируется оболочка из урана-238 и полистирола. По соседству устанавливается небольшой ядерный заряд мощностью несколько килотонн. Он служит триггером. При взрыве заряда оболочка урана переходит в плазменное состояние, создавая пиковую температуру и грандиозное давление. В процессе нейтроны плутония контактируют с литием-6, что позволяет выделяться тритию. Ядра дейтерия и лития коммуницируют, образуя термоядерный взрыв. Таков принцип действия водородной бомбы. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда.

Когда это происходит, случается взрыв — то есть выделяется большое количество энергии за короткое время. До активации бомбы эта энергия как бы хранится в «спящем состоянии». В обычных бомбах она запасена в виде связей между атомами молекул. В ядерной бомбе — в виде связей между частицами ядра, протонами и нейтронами. Связи между последними намного сильнее, поэтому и энергии, которая будет выделяться при активации бомбы, будет больше — при прочих равных — примерно в миллион раз. Чем отличаются атомная, ядерная и термоядерная бомбы? Понятия «атомная» и «ядерная бомба» чаще всего взаимозаменяемы и в нашем контексте означают одно и то же: для их взрыва используется реакция деления ядер тяжёлых элементов, таких как уран или плутоний. В термоядерных бомбах используется другой принцип — термоядерный синтез, при котором такие лёгкие элементы, как водород или литий, сливаются в более тяжёлые, за счёт чего выделяется энергия, необходимая для взрыва. По уровню энерговыделения термоядерные бомбы, в отличие от ядерных, можно сделать очень большими. Кратно наращивать мощность ядерного заряда довольно сложно, а нарастить мощность термоядерной бомбы — относительно легко. Ещё у термоядерных бомб нет такого поражающего фактора, как радиация. А вот при взрыве ядерной бомбы образуется много нестабильных элементов и происходит радиационное загрязнение местности. Однако зачастую в составе термоядерной бомбы есть ядерная бомба, которая и приводит к радиационному загрязнению, хоть и меньшему. Если подытожить: атомная и ядерная бомба — это одно и то же; в атомных бомбах используются реакции тяжёлых элементов, в термоядерных — лёгких; наращивать мощность термоядерных бомб легче, чем атомных; при ядерном и термоядерном взрыве одинаковой мощности меньшее радиационное загрязнение будет во втором случае. Как ядерное оружие активизируют и направляют к цели? В радиоактивном веществе, которое содержится внутри атомной бомбы, реакция деления идёт постоянно в тлеющем режиме. Однако энергии, выделяющейся при этом, недостаточно, чтобы произошёл большой взрыв. Сделать так, чтобы процесс пошёл активнее, можно. Для этого реакция деления должна быть цепной и самоподдерживающейся — то есть чтобы разрыв одной связи между частицами ядра провоцировал разрыв другой, и так далее по нарастающей. Тогда это лавинообразное воздействие за микродоли секунды приведёт к высвобождению большого количества энергии и, соответственно, взрыву. Существует такое понятие, как критическая масса — минимальная масса вещества, необходимая для начала цепной реакции деления. То есть, чтобы бомба взорвалась, необходимо превысить критическую массу. То есть если критическая масса равна 10 кг, а каждый брусок весит по 6 кг, то, соединив их, мы получим брусок весом 12 кг, что превысит критическую массу, и начнётся цепная ядерная реакция. Так, например, сделали создатели первой бомбы «Малыш», которую сбросили на Хиросиму. Шар, который имеет массу меньше критической, окружают взрывчаткой и создают направленный взрыв. Ударная волна сжимает этот шар, его плотность увеличивается. Масса для этой новой плотности становится выше критической, запускается реакция. Этот способ называется имплозивным, его применили для активации «Толстяка», сброшенного на Нагасаки, а также для «Гаджета» — самой первой бомбы, взорванной в пустыне США. В фильме «Оппенгеймер» показан этот момент.

Что произойдет после взрыва ядерной бомбы?

Пресловутая американская бомба В61 является термоядерной, или как их еще не совсем правильно, но часто, называют – водородной. Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как термоядерная бомба, иногда называемой водородной. Водородная бомба является гораздо более продвинутой и технологичной, чем атомная.

«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия

За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире — на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер. Работать над созданием водородной бомбы начали сразу после войны в конце 1945 года. Водородная бомба – это термоядерный боеприпас комбинированного действия, использующий оба указанных принципа ядерных реакций. Водородная бомба, известная также как Hydrogen Bomb или HB, — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Полностью же на использование твёрдого термоядерного горючего советские разработчики перешли только в водородной бомбе, взорванной в 1955 году.

Термоядерное оружие: Как устроена водородная бомба

Зрелище было ужасным", — рассказывал впоследствии участник испытания Юрий Лысенко. Последствия испытания "Царь-бомбы" Сейсмическая волна от взрыва три раза обогнула земной шар. Несмотря на густую облачность, вспышку света от взрыва можно было увидеть за тысячу километров. На острове Диксон в почти 800 километрах от эпицентра выбило стекла в окнах.

Из-за электромагнитного излучения на территории в сотни километров от полигона примерно на 50 минут пропала радиосвязь. Измеренная мощность взрыва 58,6 мегатонны заметно превысила проектную 51,5 мегатонны. Это в десять раз больше суммарной мощности всех взрывов за время Второй мировой войны, включая американскую атомную бомбардировку Хиросимы и Нагасаки.

Старшина сверхсрочной службы Талгат Аюпов наблюдал за взрывом термоядерной бомбы 30 октября 1961 года из поселка Белушья Губа в юго-западной части Южного острова — это крупнейший населенный пункт на всем архипелаге. Он запомнил огромный ядерный шар и громоподобные мощные звуки. Достигнутый паритет Испытание "Царь-бомбы" продемонстрировало, что Советский Союз успешно решил задачу достижения практически любого уровня мегатоннажа своего ядерного арсенала.

Разработчики и руководство СССР хорошо понимали, что подобная бомба не будет использована в военных целях. Ее создание преследовало одну цель — добиться ядерного паритета с США. После этого Соединенные Штаты прекратили наращивать свой ядерный мегатоннаж, а 5 августа 1963 года в Москве представители США, СССР и Великобритании подписали Договор о запрещении испытаний ядерного оружия в космическом пространстве, под водой и на поверхности Земли Московский договор.

Плодом переговорного процесса стал Договор об ограничении стратегических вооружений ОСВ-1.

Теллера распространяется термоядерная волна по дейтерию, инициированная атомным взрывом. Если устойчивое незатухающее горение возможно, то оно, вызванное относительно скромной энергией атомного взрыва, затем при распространении выделяет произвольно большую энергию. Захватывающая перспектива, не правда ли? В 1951 году, когда я после окончания Московского университета оказался в группе Я. Зельдовича в КБ amp;ndash;11 , там с большим энтузиазмом занимались сходной проблемой отставая , по-видимому, на год-два от Лос-Аламоса. Сейчас, когда узнаёшь у тех же Д. Например, для нас с самого начала представлялась очевидной невозможность разжигания чистого дейтерия — это могло осуществиться только через промежуточную область, насыщенную тритием.

Но трития требуется так много, что его производство вступает в острую конкуренцию с производством военного плутония на промышленных реакторах. Нет ответа и на главный принципиальный вопрос: осуществим ли стационарный режим горения? Дело в том, что при любой детонации существует некоторый минимальный размер радиус детонационного шнура , ниже которого устойчивого режима не существует. Вещество вследствие собственного энерговыделения разлетается быстрее, чем успевает сгореть. Особенностью же высокотемпературной термоядерной плазмы является наличие не только нижнего, но и верхнего радиуса. Всякое вещество, предоставленное самому себе, стремится к термодинамическому равновесию, выравниванию температуры между веществом и излучением. Нетрудно подсчитать, что при рассматриваемых параметрах плазмы подавляющая часть энергии приходится на излучение. Образуется, таким образом, паразитный сток энергии от вещества, то есть от горячих материальных частиц, вступающих в ядерную реакцию, в излучение.

Этим объясняется наличие двух радиусов — разлётного и радиационного, причём первый должен быть больше некоторого значения, а второй — меньше некоторого другого. Трудность задачи состояла в том, что радиусы эти оказались близкими. До сих пор осталось невыясненным, есть ли между ними щель, необходимая для существования устойчивого распространения. Это, скажем так, теоретическая сторона вопроса. А вот как развивались события в плоскости политической. В 1951 году президент США Г. Трумэн направил комиссии по атомной энергии директиву о возобновлении работы по созданию водородной бомбы. К аналогичному выводу в группе Я.

Зельдовича пришли к концу 1953 года. То, что вещество горит тем полней и быстрей, чем выше его плотность, следует из самых общих соображений. Задача состояла в том, чтобы понять, как достичь высокой степени сжатия. У него возникла идея о фокусировке на дейтерии механической энергии, высвобождаемой при взрыве обычной атомной бомбы. Чтобы осуществить такую фокусировку, необходимо надлежащим образом направить ударную волну по окружающему материалу. Этот способ сулил колоссальное сжатие дейтерия. Когда Улам сообщил Теллеру о своей схеме сжатия дейтерия, во время их исторической встречи в начале 1951 года, Теллер предложил вариант, согласно которому не ударные волны сжатия от взрыва атомного устройства, а радиация от этого первичного взрыва должна вызвать так называемую имплозию, приводящую к сильнейшему сжатию дейтерия. Как развивались события дальше?

В 1954 году США испытали боевую водородную бомбу, осуществив тем самым окончательный поворот к новой технологии, уцелевшей в основных чертах до наших дней. Но уже в ноябре 1955 года на Семипалатинском полигоне взорвали нашу водородную бомбу новейшего образца. Стало ясно, что в споре с американскими учёными русские сумели ликвидировать разрыв. Притом в столь короткие сроки, что это не поддавалось, с точки зрения американцев, какому-либо разумному объяснению, кроме одного — шпионаж. Было выдвинуто немало и других версий, так или иначе объясняющих успех советских учёных, но спор и по сей день не закончен. Виднейший теоретик Лос-Аламоса Г. Бете считает, что открытие Улама-Теллера имело случайный характер. И потому признать, что русский проект развивался по аналогичному пути без американского влияния, — значит уверовать в совершенно невероятное совпадение.

Однако вскоре разобрались, что Фукс был разоблачён и прекратил свою деятельность в пользу Советского Союза раньше, чем возникла идея Улама. В радиоактивных продуктах взрыва содержится определённая информация — это известно учёным. К примеру, количество трансурановых элементов, рождённых в результате взаимодействия ядерных и термоядерных нейтронов с тяжёлыми атомами, сильно зависит от того, насколько быстро протекают реакции. Скорость же реакции пропорциональна плотности вещества, и наличие далёких трансуранов может свидетельствовать о высокой степени сжатия.

Огненное облако взрыва РДС-6с ССО В этих обстоятельствах СССР была необходима своеобразная гарантия защиты: строительство ядерных баз, усовершенствование ядерных боеприпасов и разработка стратегических бомбардировщиков. Мощнейший арсенал, с которым Советский Союз вступил в новое десятилетие, стал сдерживающим фактором для Запада. Прорыв в науке, совершенный советскими учеными, которые создали первую в мире водородную бомбу, позволил избежать новых военных конфликтов. На основе исследований ученых разработка бомбы началась по двум направлениям. Первый — «слойка», представляющая собой атомный заряд, который окружен несколькими слоями легких и тяжелых элементов. Второй — «труба», в которой плутониевая бомба погружалась в жидкий лейтерий. Впоследствии именно первую модель выбрали для дальнейших испытаний. К моменту взрыва полигон быль тщательно подготовлен: 16 самолетов, 7 танков, орудий и минометов, 1300 измерительных, регистрирующих и киносъемочных приборов, 1700 различных индикаторов. Специально для аппаратуры, регистрирующей термоядерные процессы, в 5 м от места подрыва соорудили бункер.

Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва. Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. Взрыв произошел в 1961 году. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Современные опасности использования водородной бомбы Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа. По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду. Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра. При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь. Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней. Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца. Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете.

Как один солдат водородную бомбу изобрел

Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Водородная или термоядерная бомба является на сегодняшний день самым мощным оружием массового поражения.

Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы

Испускаемые плутониевым стержнем в результате деления ядер плутония нейтроны взаимодействуют с ядрами лития-6, в результате чего получается тритий, который далее взаимодействует с дейтерием. Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва. Подобным образом создается термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться еще другие слои дейтерида лития и слои урана-238 слойка. Подробнее об этом можно прочитать здесь. Кстати, в нашей стране во времена СССР было взорвано немало водородных бомб в качестве испытаний термоядерного оружия. Во время испытаний в радиусе 1000 километров от эпицентра взрыва не раз было зафиксировано нарушение радиосвязи. В пределах 100 км от взрыва здания были полностью уничтожены.

Ударная волна, создаваемая водородной бомбой, три раза проходила вокруг всего Земного шара, заставив весь мир содрогнуться, посеяв беспрецедентный страх. Ядерные бомбы идеальным образом уравновешивают мир на Земле. Также ядерное вооружение, которым владеют многие страны, позволяет избегать крупномасштабных военных действий между государствами. Хотя сила ядерного оружия чрезвычайно ужасна, нашей стране ядерное вооружение позволяет чувствовать себя в безопасности. Долгое время наличие ядерного арсенала России удерживало другие страны от соблазна напасть на наши территории. К сожалению, в последние годы некоторые страны как-то позабыли о нашем большом арсенале, считая, что многое вооружение устарело.

Но это не так.

Радиационное заражение Но самым опасным последствием взрыва станет, конечно же, радиационное заражение. Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли — она настолько легка, что попадая в атмосферу, может обогнуть земной шар два-три раза и только потом выпадет в виде осадков. Таким образом, один взрыв бомбы в 100 мегатонн может иметь последствия для всей планеты. Царь-бомба 58 мегатонн — вот, сколько весила самая крупная водородная бомба, взорванная на полигоне архипелага Новая Земля. Ударная волна три раза обогнула земной шар, заставив противников СССР лишний раз увериться в огромной разрушительной силе этого оружия.

Весельчак Хрущев на пленуме шутил, что бомбу не сделали больше только из опасений разбить стекла в Кремле.

Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха — туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.

Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное хотя и вторичное последствие взрыва — это радиоактивное заражение окружающей среды. Радиоактивные осадки. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу.

Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости.

Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях — газ при плюсовых температурах, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, Li-6 — единственный промышленный источник получения трития : Слайд 9 В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотопе лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше. Слайд 10 Триггер Триггер — это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера — создать необходимые условия для разжигания термоядерной реакции — высокую температуру и давление.

Слайд 11 Контейнер с термоядерным горючим Контейнер с термоядерным горючим — основной элемент бомбы. Внутри него находится термоядерное горючее — дейтерид лития-6 — и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Контейнер покрывается слоем нейтронного поглотителя соединений бора для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия. Слайд 12 A Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу.

Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?

Расчетно-теоретические оценки показали, что в заданных массогабаритных ограничениях РДС-6С при одноступенчатой схеме, на принципе химической имплозии кардинально повысить энерговыделение заряда практически невозможно. Это инициировало поиски новых идей. Решение было найдено при использовании принципа радиационной имплозии «третья идея», как назвал в своих воспоминаниях ее автор А. На этой основе была разработана двухступенчатая схема термоядерного заряда. Правильность данного выбора подтвердило успешное испытание двухступенчатого термоядерного заряда РДС-37, проведенное 22 ноября 1953 г. Проведение испытаний Разработчики заряда РДС-37 были настолько уверены в правильности его физической схемы и конструкции, что заряд сразу испытывался в составе авиационной бомбы корпус с некоторыми техническими доработками был позаимствован от серийной бомбы РДС-6С , сбрасываемой в штатном режиме с реактивного бомбардировщика среднего радиуса действия ТУ-16. Для обеспечения безопасности самолета-носителя и его экипажа в составе авиабомбы предусматривался тормозной парашют площадью 6 м2 , обеспечивающий запас по времени для ухода самолета на безопасное расстояние от эпицентра взрыва. Летные экипажи самолета-носителя и сопровождающего самолета-лаборатории, обслуживающий технический персонал, операторы измерительных средств и руководство полетами были из состава 71 полигона ВВС станция Багерово, Крымской области. Начальник полигона — генерал-майор Чернорез В.

Данный полигон обеспечивал баллистические испытания спецавиабомб, их парашютных систем, отработку систем автоматики подрыва заряда, радиотелеметрии и т. Начальником полигона в то время был генерал-лейтенант И. Подготовку бомбы к испытаниям проверки всех приборов автоматики с полной имитацией их срабатывания на траектории полета - так называемый «контрольный цикл» - комплексную проверку, сборку и снаряжение заряда, подвеску бомбы под самолет-носитель, проверку взаимодействия самолетного пульта управления штурмана с системой автоматики бомбы, снятие первой ступени предохранения бомбы в бомбоотсеке, расчет полетного задания для ввода в автоматику бомбы обеспечивала испытательная бригада КБ-11, состоящая из гражданских лиц и офицеров военно-сборочной бригады, прикомандированной к КБ. Руководил этой бригадой наш корифей-испытатель Буянов В. Все работы контролировались квалифицированными военпредами из 12 ГУ Министерства среднего машиностроения МСМ во главе с генерал-лейтенантом В. Административное руководство испытаниями осуществлял министр МСМ А. Научно-техническое руководство осуществляли академики И. Курчатов и Ю.

Группу физиков-теоретиков возглавлял автор заряда академик А. На испытаниях присутствовал пока только присматриваясь вновь назначенный директор КБ-11 герой Уралмаша и «Маяка», дважды Герой Социалистического труда Б. Требования по подготовке бомбы были необычайно строги: любые отклонения от документации так называемые ИОСы — инструкции по окончательной сборке немедленно докладывались Курчатову и Завенягину, которые находились в тамбуре здания по подготовке так называемом «ДАФе»:Духов, Алферов, Флеров , оперативно принимая технические решения. Работы проводились в условиях жесточайшего режима секретности: часовыми у здания «ДАФ», где готовилась бомба, были офицеры КГБ в чине не ниже капитана, а при вывозе бомбы на аэродром статус часовых поднимался до полковника. Относительно режима секретности показателен следующий эпизод. Начальник отдела КБ-11 по разработке специальной оснастки для сборки и снаряжения ядерного заряда И. Калашников, услышав по радио, что в СССР успешно проведены испытания водородной бомбы, находясь около аналогичной бомбы в здании «ДАФ», посетовал, что где-то еще проводятся более серьезные испытания, а мы и не знаем. На что зам.

Негин ответил: «А ты за что держишься? Общий хохот присутствующих обескуражил И. Наконец, бомбу «изделие РДС-37» подготовили, сброс был намечен на 20 ноября 1955 г.

Через несколько месяцев она же предсказала цепную реакцию. До постановки вопроса об атомной бомбе оставался один шаг. Нет ничего удивительного в том, что хорошее описание этих открытий запало в душу подростка. Несколько нетипичнее то, что этот заряд сохранился в ней во всех последующих передрягах. А потом была война. Олег Лаврентьев успел поучаствовать в ее завершающей стадии, в Прибалтике.

Затем перипетии службы забросили его на Сахалин. В части была относительно неплохая библиотека, а на свое денежное довольствие Лаврентьев, тогда уже сержант, выписал журнал «Успехи физических наук» , чем, видимо, произвел немалое впечатление на сослуживцев. Командование поддержало энтузиазм своего подчиненного. В 1948 году он читал лекции по ядерной физике офицерам части, а в следующем году получил аттестат зрелости, пройдя за год трехлетний курс в местной вечерней школе рабочей молодежи. Неизвестно, чему и как там на самом деле учили, но сомневаться в качестве образования младшего сержанта Лаврентьева не приходится — результат был нужен ему самому. Младший сержант О. Лаврентьев около 1950 года. В январе 1950 года Президент Трумэн, выступая перед Конгрессом, призвал к скорейшему созданию водородной бомбы. Это было ответом на первое советское ядерное испытание в августе предыдущего года.

Ну а для младшего сержанта Лаврентьева это было толчком к немедленным действиям: ведь он-то знал, как ему на тот момент думалось, как сделать эту бомбу и опередить потенциального противника. Первое письмо с описанием идеи, адресованное Сталину, осталось без ответа, и какие-либо его следы впоследствии найдены не были. Скорее всего, оно просто потерялось. В этот раз реакция была заинтересованной. Из Москвы через Сахалинский обком пришла команда выделить настойчивому солдату охраняемую комнату и все необходимое для подробного описания предложений. Спецработа На этом месте уместно прервать рассказ о датах и событиях и обратиться к содержанию сделанных высшей советской инстанции предложений. Как писал летом 1950 года сам автор, его работа состояла из четырех частей, а именно: Основные идеи. Опытная установка по преобразованию энергии литиево-водородных реакций в электрическую. Опытная установка по преобразованию энергии урановых и трансурановых реакций в электрическую.

Литиево-водородная бомба конструкция. Далее О. Лаврентьев пишет, что подготовить части 2 и 3 в подробном виде не успел и вынужден ограничиться кратким конспектом, часть 1 тоже сыровата «написана весьма поверхностно». По сути, в предложениях рассматриваются два устройства: бомба и реактор, при этом последняя, четвертая, часть — там, где предлагается бомба, — крайне лаконична, это всего несколько фраз, смысл которых сводится к тому, что все уже разобрано в первой части. В таком виде, «на 12 листах», предложения Ларионова в Москве попали на рецензию к А. Сахарову , тогда еще кандидату физматнаук, а главное, одному из тех людей, которые в СССР тех лет занимались вопросами термоядерной энергии, в основном подготовкой бомбы. Сахаров выделил в предложении два основных момента: осуществление термоядерной реакции лития с водородом их изотопов и конструкция реактора. В написанном, вполне благожелательном, отзыве о первом пункте говорилось кратко — это не подходит. Непростая бомба Чтобы ввести читателя в контекст, необходимо сделать краткий экскурс в реальное положение дел.

В современной а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития — твердое белое вещество, бурно реагирующее с водой с образованием гидроксида лития и водорода. Последнее свойство дает возможность широко применять гидрид там, где нужно временно связать водород. Хорошим примером является воздухоплавание, но им список, конечно, не исчерпывается. Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Вместо «обычного» водорода в его составе участвует дейтерий, а вместо «обычного» лития — его более легкий изотоп с тремя нейтронами. Получившийся дейтерид лития, 6LiD, содержит почти все необходимое для большой иллюминации. Чтобы инициировать процесс, достаточно всего-навсего взорвать расположенный поблизости например, вокруг или, наоборот, внутри ядерный заряд.

Что это Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Принцип действия HB основан на энергии, которая вырабатывается при термоядерном синтезе ядер водорода — точно такой же процесс происходит на Солнце. Чем водородная бомба отличается от атомной Термоядерный синтез — процесс, который происходит во время детонации водородной бомбы — самый мощный тип доступной человечеству энергии. В мирных целях его использовать мы еще не научились, зато приспособили к военным. Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее. Первое испытание И Советский Союз вновь опередил многих участников гонки холодной войны.

Иная судьба оказалась у проекта термоядерного реактора. Реактор Конструкция будущего реактора в 1950 году виделась его автору довольно простой. В рабочую камеру помешается два концентрических один в другом электрода. Внутренний выполняется в виде сетки, ее геометрия просчитывается таким образом, чтобы, насколько это возможно, минимизировать контакт с плазмой. На электроды подается постоянное напряжение порядка 0,5—1 мегавольт, причем внутренний электрод сетка является отрицательным полюсом, а внешний — положительным. Сама реакция идет в середине установки и вылетающие наружу, через сетку, положительно заряженные ионы преимущественно, продукты реакции , двигаясь дальше, преодолевают сопротивление электрического поля, которое в итоге разворачивает большую их часть обратно. Энергия, затраченная ими на преодоление поля, — это и есть наш выигрыш, который относительно несложно «снять» с установки. В качестве основного процесса опять предлагается реакция лития с водородом, которая опять не подходит по тем же причинам, но примечательно не это. Олег Лаврентьев оказался первым человеком, придумавшим изолировать плазму при помощи какого-нибудь поля. Даже то, что в его предложении эта роль, вообще говоря, второстепенна — главная функция электрического поля в том, чтобы получить энергию вылетающих из зоны реакции частиц, — ничуть не меняет значения этого факта. Схема термоядерной реакции. Рисунок О. Лаврентьева, 1950 г. Правда, Сахаров и его коллеги предпочли использовать другое поле — магнитное. Пока же он написал в рецензии, что предложенная конструкция скорее всего нереальна, ввиду невозможности сделать сетчатый электрод, который выдержал бы работу в таких условиях. А автора все равно надо поощрить за научную смелость. Особый студент Мы покинули автора предложений на Сахалине. Самое время вернуться к его судьбе. Вскоре после отсылки предложений Олег Лаврентьев демобилизуется из армии, отправляется в Москву и становится студентом первого курса физфака МГУ. Имеющиеся источники говорят с его слов , что сделал это он полностью самостоятельно, без протекции каких-либо инстанций. В сентябре Лаврентьев встречается с И. По его поручению он описывает свое видение проблемы еще раз, обстоятельнее. В самом начале следующего, 1951 года первокурсник Лаврентьев был вызван к министру измерительного приборостроения СССР Махневу , где познакомился с самим министром и своим рецензентом А. Надо заметить, что возглавляемое Махневым ведомство имело к измерительным приборам довольно отвлеченное отношение, его действительным назначением было обеспечение ядерной программы СССР. Сам Махнев был секретарем Специального комитета, председателем которого был всемогущий в ту пору Л. С ним наш студент познакомился через несколько дней. Сахаров снова присутствовал при встрече, но о его роли в ней практически ничего сказать нельзя. По воспоминаниям О. Лаврентьева, он готовился рассказывать сановному начальнику о бомбе и реакторе, но Берию это как будто не интересовало. Разговор велся о самом госте, его достижениях, планах и родственниках. По-видимому, мнение оказалось благоприятным». Следствием «смотрин» стали необычные для советского первокурсника поблажки. Олегу Лаврентьеву была установлена персональная стипендия, выделена для жилья отдельная комната правда, маленькая — 14 кв. Он был освобожден от платы за обучение. Наконец, была организована доставка необходимой литературы. Вскоре состоялось знакомство с техническими руководителями советской атомной программы Б. Ванниковым , Н. Павловым и И. Вчерашний сержант, за годы службы не видевший ни одного генерала даже издалека, теперь на равных беседовал сразу с двумя: Ванниковым и Павловым. Правда, вопросы задавал в основном Курчатов.

Похожие новости:

Оцените статью
Добавить комментарий