Онтонио Веселко. какими организмами являются бактерии с точки зрения эволюции. 3)Какими организмами являются бактерии с точки зрения эволюции (примитивные, высокоорганизованными)? Бактерии делятся бинарным делением клетки. В ходе бинарного деления бактерия делится на две дочерние клетки, являющиеся генетическими копиями материнской.
Последние новости
- Остались вопросы?
- какими организмами являются бактерии с точки зрения эволюции
- учитель биологии - Бактерии
- Связанных вопросов не найдено
- Популярные статьи:
- Остались вопросы?
Эволюция бактерий - Evolution of bacteria
Клетка археи, поглотившая бактерию и ставшая затем эукариотной клеткой, получила много преимуществ с точки зрения эффективности метаболизма, устойчивости, выживаемости. Запоминание стихов является стандартным заданием во многих школах. Вместе с тем плазмидные элементы придают бактериям ряд свойств, представляющх большой интерес, с точки зрения инфекционной патологии. С точки зрения биомассы и количества видов, прокариоты являются наиболее представительной формой жизни на Земле. Ответил 1 человек на вопрос: Какими организмами являются бактерии с точки зрения эволюции.
Основные аспекты теории эволюции микроорганизмов
Аммонифицирующие бактерии, многие актиномицеты, микроскопические грибы и другие микроорганизмы обусловливают минерализацию органического вещества в почве и высвобождение доступного растениям аммонийного азота. Нитрифицирующие бактерии превращают аммонийный азот в нитриты и нитраты. Значительна по составу и количеству микрофлора, использующая минеральный азот и превращающая его в органические формы процесс иммобилизации. Денитрифицирующие бактерии предопределяют невозвратимые потери газообразного азота. Такие виды, как Azotobacter az. Следовательно, трансформация азота самым тесным образом связана с почвенной микрофлорой, от деятельности которой зависит азотный режим почвы, т.
Микроорганизмы осуществляют круговорот веществ в почве, влияя на минерализацию органических остатков и превращая нерастворимые формы в доступные для растений соединения. При этих процессах происходит активное выделение метаболитов — продуктов, участвующих в синтезе гумуса.
После долгих лет молчания Миллер сам признал, что среда, которую он использовал в своем опыте, была не настоящей. Почему же Миллер в свое время настаивал на этой газовой смеси? Ответ прост: без аммиака синтез аминокислоты невозможен. Кевин Мак Кин в своей статье, помещенной в журнале «Discover», объясняет это следующим образом: «Миллер и Ури, смешав метан и аммиак, скопировали старую атмосферу Земли. Между тем, последние исследования показали, что начальный климат Земли характеризовался высокой температурой, и Земля состояла из сплава никеля и железа. Это означало, что атмосфера должна была состоять скорее всего из азота, двуокиси углерода и водяного пара, которые не столь благоприятны для образования органических молекул, сколько аммиак и метан.
Еще одна важная деталь, опровергающая опыт Миллера — в период, когда предположительно образовались аминокислоты, в атмосфере было достаточно кислорода для того, чтобы разрушить все аминокислоты. Этот факт, которым пренебрег Миллер, объясняется окисями железа и урана на камнях, возраст которых определен в 3,5 миллиарда лет. Самые последние источники эволюционистов опровергают опыт Миллера Стенли Миллер вместе с экспериментальным аппаратом. Опыт Миллера, который все еще преподносится эволюционистами как самое веское доказательство правоты теории эволюции, на самом деле полностью утерял всякую научную значимость даже среди самих сторонников теории. Одной из причин является признание геологов, что первичная атмосфера Земли состояла из двуокиси углерода и азота. Эти газы менее активны, чем те, которые были использованы в 1953 году в опыте Миллера. Допустим даже возникновение представленной Миллером атмосферы, но каким образом могли произойти химические реакции, способные превратить такие простые молекулы как аминокислоты в гораздо более сложные соединения - полимеры, такие как белок? Здесь даже Миллер разводит руками и, вздыхая, говорит: «Это проблема.
Как получить полимеры? Ведь это не так просто». В такой ситуации рвение, с которым эволюционисты ухватились за этот опыт, лучше всего демонстрирует их безысходность. А в марте 1998 года журнал «National Geographic» опубликовал статью под заголовком «Возникновение жизни на Земле», в которой говорилось: «Сегодня многие ученые догадываются, что первичная атмосфера была отличной от того состава, которую выдвигал Миллер и склоняются к мнению, что эта атмосфера, скорее всего, состояла из двуокиси углерода и азота, а не из водорода, метана и аммиака. Что является очень плохой новостью для химиков! При взаимодействии двуокиси углерода и азота количество получаемых органических соединений весьма незначительно. Их концентрацию можно сравнить с каплей пищевого красителя, добавленного в бассейн... Ученым трудно даже представить, как жизнь могла зародиться в таком ненасыщенном «бульоне»?
Одним словом, ни опыт Миллера, ни другие эволюционисты не в состоянии ответить на вопрос о происхождении жизни. Все исследования показали, что самовозникновение жизни невозможно, тем самым, подтверждая факт ее сотворения. Другие находки и исследования также показали, что в этот период количество кислорода было намного больше, чем предполагалось. Воздействие ультрафиолетовых лучей на поверхность Земли было в 10 тысяч раз больше, чем утверждалось эволюционистами. А плотные ультрафиолетовые лучи расщепляют водяной пар и двуокись углерода, образуя кислород. Этот случай делал опыт Миллера, упустившего из вида кислород, недействительным. Если бы в опыте был использован кислород, то метан превратился бы в двуокись углерода и воду, а аммиак — в азот и воду. С другой стороны, в среде, где отсутствует кислород из-за отсутствия озонового слоя , очевидно разрушение аминокислот под воздействием прямых ультрафиолетовых лучей.
В конечном счете, присутствие или же отсутствие кислорода в первичной атмосфере Земли является разрушительным фактором для аминокислот. В результате опыта Миллера одновременно образовались и органические кислоты, нарушающие целостность и функции живого организма. Если бы эти аминокислоты не были изолированы, то в результате химической реакции они были бы разрушены или превращены в другие соединения. Плюс ко всему, в результате опыта было получено множество D-аминокислот. Присутствие же этих аминокислот сокрушает теорию эволюции в самой основе. Потому что D-аминокислоты отсутствуют в структуре живого организма. И наконец, среда, в которой в ходе опыта образовались аминокислоты, состояла из смеси едких кислот, разрушающих возможные полезные молекулы, то есть эта среда неблагоприятна для появления в ней живого. Все это говорит только об одном — опыт Миллера не доказывает возможность происхождения жизни в первичных условиях Земли, а является лишь контролируемой и сознательной лабораторной работой, направленной на синтез аминокислот.
Виды и количество использованных газов были подобраны в самой идеальной для образования аминокислоты пропорции. То же самое касается и количества энергии, использованной для получения желаемой химической реакции. Прибор, использованный в опыте, был изолирован от всевозможных вредных, разрушающих структуру аминокислоты элементов, присутствие которых в первичной среде не исключено. Минералы, соединения и элементы, присутствующие в ранней атмосфере и способные изменить ход реакции, также не были использованы в опыте. Одним из таких элементов является кислород, который в результате окисления способствует разрушению аминокислот. В конце концов, даже в идеальных условиях лаборатории невозможно обойтись без механизма «холодного капкана», чтобы предовратить расщепление аминокислот уже под влиянием собственной среды. В результате, опытом Миллера эволюционисты собственными же руками загубили свою теорию. Потому что опыт доказал, что аминокислоту можно получить только в специальных лабораторных условиях при сознательном вмешательстве со стороны.
То есть сила, создавшая живое, — Творец, а не слепое совпадение. Но предубеждения эволюционистов, полностью противоречащие науке, не позволяют им признать очевидную истину. Гарольд Ури, организовавший этот опыт вместе со своим учеником Миллером, признается в следующем: «Все мы, исследовавшие возникновение жизни, сколько бы исследований ни проводили, всегда приходили к выводу: жизнь настолько комплексна, что не могла эволюционировать на каком-либо этапе своего развития. Но, следуя своим убеждениям, мы верим в то, что жизнь произошла из неживого. Однако эта комплексность настолько велика, что даже представить эволюцию для нас очень сложно. Даже сегодня они продолжают вводить в заблуждение людей, создавая вид, будто этим опытом вопрос давно уже разрешен. На второй стадии попыток разъяснения случайного возникновения жизни эволюционистов ждет проблема поважнее, чем аминокислоты — белки. То есть строительный материал жизни, образующийся путем последовательного соединения сотен различных аминокислот.
Утверждение относительно самообразования белка еще нелогичнее и фантастичнее, чем утверждение случайного образования аминокислот. Невозможность соединения аминокислот в определенном порядке для образования белка была вычислена математически на предыдущих страницах с помощью теории вероятностей. Однако самообразование белка в условиях первичной атмосферы Земли невозможно и с точки зрения химии. Синтез белка невозможен в воде Как уже упоминалось ранее, при синтезе белка между аминокислотами образуется пептидная связь. Во время этого процесса выделяется одна молекула воды. Эта ситуация коренным образом опровергает утверждения эволюционистов о возникновении жизни в океане. Потому что в химии, согласно принципу «Ле Шателье», реакция, которая образует воду реакция конденсации , не будет завершена в среде, состоящей из воды. Протекание этой реакции в водной среде характеризуется среди химических реакций, как «наименьшая вероятность».
Отсюда следует, что океаны, в которых якобы возникла жизнь, отнюдь не подходящая среда для образования аминокислоты и впоследствии — белка. С другой стороны, они не могут изменить свои суждения перед этими фактами и утверждать, что жизнь возникла на суше. Потому что аминокислоты, предположительно образовавшиеся в ранней атмосфере Земли, могут быть защищены от ультрафиолетовых лучей только в море и океане.
То есть бактерии могут служить диагностическими маркерами заболеваний или какого-то поведения. Таков размер самой крупной бактерии Thiomargarita namibiensis.
Большинство же бактерий имеют размер 0,5—5 мкм. Кстати, проанализировав геном, тоже почти ничего пока нельзя сказать. К сожалению, это сложно. Любой человек с точки зрения геномики — это, в общем, одна и та же книжка. Если вы возьмете «Войну и мир» и увеличите ее в тысячу раз, там будет три миллиарда букв.
Эти «опечатки» обеспечивают нашу индивидуальность и предрасположенность к болезням. Есть очень простые заболевания, как гемофилия у Романовых, причиной которой служит одна-единственная опечатка. Но на возникновение шизофрении или рака влияют десятки и сотни опечаток — пока вычленить все влияния не представляется возможным. С микробиомом то же самое. Получается, они разрушают всё наше уникальное сообщество бактерий?
Возможно, это связано с аппендиксом. Некоторые ученые утверждают, что аппендикс — это такой резервуар, маленький домик для нашей микрофлоры. Считается, что именно эта бактерия виновна в развитии язвы желудка О чем микробы говорят друг с другом [КШ] Почему разные страшные эпидемии обычно приходят из Африки? В Африке просто разнообразные условия и биоразнообразие очень большое. Это такая гигантская лаборатория, в которой можно обкатывать всякие новые варианты.
И одна из причин, почему Африку так тяжело было завоевать или покорить. Европейская цивилизация развивалась в схожих климатических условиях. А когда вы движетесь с севера на юг, возникают новые климатические зоны с новыми микробами. То же самое в вытянутой с севера на юг Америке: майя, инки, ацтеки почти не общались друг с другом, потому что не могли пройти этот барьер — в новых природных условиях их убивали непривычные для их организма микробы. Антибиотики ведь не люди изобрели — это вещества, с помощью которых микробы общаются друг с другом.
Ученые всегда изучали бактерий в чистой культуре определенного вида, но в природе такого не бывает: у любого места обитания свой микробиом, сообщество разных микробов, где все зависят друг от друга. У них сложные отношения, всё как у людей, хотя конечная цель каждого вида — победить, всё захватить. Но другие бактерии не дают — возникает какой-то баланс. Самая важная информация для бактерий — это есть ли еда, сколько вокруг других представителей твоего вида и других видов. Определяют они это с помощью механизма, который по-английски называется quorum sensing, — некоторые переводят это как «чувство локтя».
В небольшом объеме среды каждая бактерия выпускает наружу какое-то вещество, которое ее собратья могут почувствовать. Если бактерий много, то и вещества будет много — они поймут, что здесь тесно и, вместо того чтобы размножаться как бешеные, образуют споры или биопленку. Так, например, происходит в легких больного муковисцидозом — микробы говорят другу: «Нам здесь стало очень тесно» и образуют пленки, а больной при этом умирает. Для таких сообщений им и нужны антибиотики. В природе антибиотики, как правило, не достигают такой концентрации, при которой убивают.
А поскольку антибиотики были изобретены бактериями для общения между собой, то и гены устойчивости к антибиотикам возникли давным-давно, задолго до всяких врачей. Именно поэтому победить устойчивость к антибиотикам всё равно никогда не удастся. Гены устойчивости появились не потому, что злые бактерии вдруг решили наступить на горло нашей песне. Если вы возьмете образцы бактериальной ДНК из скважины, пробуренной в вечной мерзлоте, то, конечно, найдете гены устойчивости ко всем антибиотикам. Ведь бактерия, которая их производит, по определению к ним устойчива, то есть сама является источником антигенов.
Война с микробами: антибиотики и бактериофаги [КШ] Что-то в последние десятилетия ничего не слышно о новых антибиотиках. Во-первых, до недавнего времени антибиотики, которые были, и так работали хорошо. Во-вторых, новые найти очень непросто. Золотой век антибиотиков закончился. Вот я, например, работаю в Институте микробиологии Ваксмана [подразделение Университета Ратгерса — КШ] , а Ваксман — это человек, который получил Нобелевскую премию за стрептомицин, которым изначально лечили туберкулез.
Так вот, он отправлял своих друзей и сотрудников по городам и весям за образцами земли, потому что большинство антибиотиков производится почвенными бактериями: их там слишком много живет — вынуждены общаться. В институте, построенном на его Нобелевскую премию, эти почвенные бактерии до сих пор болтаются — работать там невозможно, потому что они всё перезаразили. Крупные фармкомпании тоже собирали образцы почвы по миру и потом из найденных в ней бактерий выделяли антибиотики. Выделяли-выделяли — так возникло большинство антибиотиков, но постепенно новые перестали появляться. Потому что количество культивируемых бактерий невелико.
Для того чтобы выделять новые антибиотики, по-видимому, будет использоваться та самая геномика, которая позволяет смотреть генетическую информацию «темной материи» неизвестных бактерий. Биоинформатика может выделить кластеры генов, которые потенциально могут кодировать антибиотики, потом генные инженеры будут создавать специальные штаммы-продуценты. Собственно, этим и я занимаюсь — мы делаем предсказания: мол, такая-то бактерия, такие-то гены могут быть ответственны за производство таких-то веществ. Потом мы это вещество должны получить, поймать, охарактеризовать, выявить его структуру, показать, что это вещество действует на клетку, понять, как именно действует, почему оно проходит в клетку, почему убивает клетки и при этом не убивает ту клетку, которая его производит, как вещество делается. Но мы изучаем их с точки зрения механизмов действия, а не с точки зрения практического применения.
Понимаете, найти какое-то вещество, которое убивает бактерию, несложно, таких веществ десятки тысяч. Проблема в том, что антибиотик не должен вызывать в клетках человека никаких разрушений. Еще вы должны будете доказать, что, если он попадет в кровь, то будет поглощаться и доставляться к источнику инфекции в требуемой концентрации. Он должен быть достаточно стабилен, его нужно произвести в больших количествах, и это должно быть экономически выгодно. С точки зрения промышленного производства всё это гораздо важнее, чем просто найти антибиотик.
При среднем поцелуе партнеры обмениваются примерно 80 миллионами бактерий.
Дарвиновская эволюция — это другой способ интерпретации, который дает возможность наиболее детально представить себе ход эволюции. Но тут дилетант столкнулся опять с недоумением от классических представлений, а точнее просто от отсутствия результатов.
Оппонентом мне было заявлено, что такое понятие как «древний» — плохое для биологии, так как на основании имеющихся методов оценить относительное время возникновения видов нельзя. Но мы все таки после уточнения ряда моментов согласились между собой о следующем: я: О степени консервативности видов можно говорить, как о совокупности наличия более близких к luca консервативных молекул. Вот видимо в чем разница у нас.
Интуитивно подозреваю, что полученная величина будет очень хорошо коррелировать с длиной каждой конкретной ветви от корня для каждого конкретного вида. Вот это то я и назвал — интерпретацией по дарвиновской эволюции. Но специально отмечу, что хотя этим то и должны заниматься все дарвинисты то есть классические таксономисты и филогенетики , они строят деревья используя меры, которые больше сходны для интерпретации «многовидового происхождения», и конечно им тогда сложно говорить о «древности вида» по определению такой интерпретации — как говорилось выше там нет направления эволюции и не может быть.
Но оппонент оказался не прав в своей оценке «я думаю, что большой разницы между разными видами не будет» — она есть и существенная, это и будет продемонстрировано далее — достаточно посмотреть полученное дерево эволюции. Метод восстановления направления эволюции Отсюда могут читать те, кто брезглив к пафосному тексту дилетанта, который находится выше. Чтобы понять требуется прочтение статьи Систематика прокариот — дальние родственники , там описаны основы, которые являются входными данными.
Поясняя далее, я предполагаю, что вы разобрались, что означает например такой граф и как он был построен: Теперь нам надо разобраться как его преобразовать в дерево с направленной эволюцией, например такое: В этом дереве мы восстанавливаем предков современных родов бактерий. Современные рода бактерий имеют названия и представлены как листья дерева, в то время как их предки обозначены набором цифр. Каждая цифра — это идентификатор группы тРНК, которой обязан обладать предок, чтобы передать своим потомкам в следующие поколение.
Если бы он не обладал такой группой тРНК, то мы однозначно не смогли бы получить текущие состояние взаимоотношений совпадения идентичных тРНК , которое имеется на графе «многовидового происхождения» выше. Таким образом, алгоритм построения такого дерева состоит из двух частей: 1. Распределение тРНК по группам, так чтобы на всем анализируемом множестве можно было апеллировать только группами без перехода на единичные тРНК — это нужно для двух целей 1 на порядок удобнее иметь дело с группами, чем с большим множеством тРНК.
Устраняется дублирующая информация, и группа является минимальной единицей дивергенции. Вероятность дивергенции разделения большей группы по разным родам выше при меньшем числе предковых дивергенций длины ветви. Собственно построение дерева предков.
Далее я опишу только общий принцип реализации эти двух частей. Разделение на группы: 1. На входе имеется информация вида: 1 10 000913,003420,006818,011215,013800,016316,017374, 2 10 000913,003420,006818,007509,011215,013800,016316,017374, 2 8 000487,003420,005891,006678,011163,013218,007509, она описывает граф «многовидового происхождения», а именно набор связей, где «1» идентификация одного рода, «10» — идентификация второго рода, «000913,003420,006818,011215,013800,016316,017374,» — те тРНК, которые идентичны как в первом, так и во втором роде.
Создается первая группа, как набор из всех вообще различных тРНК 3. Происходит распределение по группам, если тРНК на связи между родами относится к группе этот набор заменяется на идентификацию группы, но если вхождение частичное то помечается каких тРНК не хватает, или наоборот какие тРНК, только имеются из этой группы. Разделение группы на две.
Остались вопросы?
Вот видимо в чем разница у нас. Интуитивно подозреваю, что полученная величина будет очень хорошо коррелировать с длиной каждой конкретной ветви от корня для каждого конкретного вида. Вот это то я и назвал — интерпретацией по дарвиновской эволюции. Но специально отмечу, что хотя этим то и должны заниматься все дарвинисты то есть классические таксономисты и филогенетики , они строят деревья используя меры, которые больше сходны для интерпретации «многовидового происхождения», и конечно им тогда сложно говорить о «древности вида» по определению такой интерпретации — как говорилось выше там нет направления эволюции и не может быть. Но оппонент оказался не прав в своей оценке «я думаю, что большой разницы между разными видами не будет» — она есть и существенная, это и будет продемонстрировано далее — достаточно посмотреть полученное дерево эволюции. Метод восстановления направления эволюции Отсюда могут читать те, кто брезглив к пафосному тексту дилетанта, который находится выше. Чтобы понять требуется прочтение статьи Систематика прокариот — дальние родственники , там описаны основы, которые являются входными данными. Поясняя далее, я предполагаю, что вы разобрались, что означает например такой граф и как он был построен: Теперь нам надо разобраться как его преобразовать в дерево с направленной эволюцией, например такое: В этом дереве мы восстанавливаем предков современных родов бактерий. Современные рода бактерий имеют названия и представлены как листья дерева, в то время как их предки обозначены набором цифр.
Каждая цифра — это идентификатор группы тРНК, которой обязан обладать предок, чтобы передать своим потомкам в следующие поколение. Если бы он не обладал такой группой тРНК, то мы однозначно не смогли бы получить текущие состояние взаимоотношений совпадения идентичных тРНК , которое имеется на графе «многовидового происхождения» выше. Таким образом, алгоритм построения такого дерева состоит из двух частей: 1. Распределение тРНК по группам, так чтобы на всем анализируемом множестве можно было апеллировать только группами без перехода на единичные тРНК — это нужно для двух целей 1 на порядок удобнее иметь дело с группами, чем с большим множеством тРНК. Устраняется дублирующая информация, и группа является минимальной единицей дивергенции. Вероятность дивергенции разделения большей группы по разным родам выше при меньшем числе предковых дивергенций длины ветви. Собственно построение дерева предков. Далее я опишу только общий принцип реализации эти двух частей.
Разделение на группы: 1. На входе имеется информация вида: 1 10 000913,003420,006818,011215,013800,016316,017374, 2 10 000913,003420,006818,007509,011215,013800,016316,017374, 2 8 000487,003420,005891,006678,011163,013218,007509, она описывает граф «многовидового происхождения», а именно набор связей, где «1» идентификация одного рода, «10» — идентификация второго рода, «000913,003420,006818,011215,013800,016316,017374,» — те тРНК, которые идентичны как в первом, так и во втором роде. Создается первая группа, как набор из всех вообще различных тРНК 3. Происходит распределение по группам, если тРНК на связи между родами относится к группе этот набор заменяется на идентификацию группы, но если вхождение частичное то помечается каких тРНК не хватает, или наоборот какие тРНК, только имеются из этой группы. Разделение группы на две. Анализируется выше сделанное распределение на группы, берется первое частичное вхождение — создается новая группа, а недостающая часть остается у предшествующей группы. Повторяется пункт 3. Так постепенно, произойдет разделение на группы без частичных вхождений.
Группы сортируются по величине 1 — группа это набор скажем 20 тРНК, а уже после 300 группы — вхождение 1-2 тРНК Построение дерева предков: 1.
Различия между тремя только что озвученными группами живых существ настолько радикальны, что сейчас некоторые авторы предлагают вообще разделять всю существующую на Земле жизнь на три разных формы: эубактерии, архебактерии и эукариоты Шаталкин, 2004. Естественно, возникает вопрос, корректно ли переносить те механизмы эволюции, которые мы можем обнаружить у одной формы жизни — на другую форму жизни? Например, уникальной чертой бактерий является их способность достаточно легко обмениваться между собой разными генами. То есть, осуществлять тот самый горизонтальный перенос генов, который у эукариот напрямую пока еще никто не наблюдал. Зато в мире бактерий горизонтальный перенос является наблюдаемым явлением. Бактерии могут поглощать куски ДНК других бактериальных клеток, например, в ходе процессов коньюгации или трансформации. При этом какие-то отдельные чужие гены вполне могут быть «усвоены» бактерией, поглотившей соответствующую молекулу ДНК, ранее принадлежавшую другой бактерии.
Крайне интригующим обстоятельством здесь является то, что поглощенные гены, в принципе, могут быть вообще не от родственной бактерии, а от какой-нибудь удаленной в таксономическом отношении. Получается, что гены вообще всех видов бактерий, обитающих на каком-нибудь общем участке, в принципе, можно считать единым «генетическим пулом» всех этих бактерий. Особенно те гены, которые находятся в плазмидах, то есть, в тех молекулах ДНК, которыми бактерии обмениваются чаще всего. Стоит ли говорить, что именно в плазмидах, например, нередко сосредоточены гены устойчивости к тем или иным антибиотикам? Но наверное, самой главной отличительной особенностью бактерий является потрясающая численность их «популяций», которую для подавляющего числа эукариотических организмов даже представить себе невозможно. В одной колонии бактерий может насчитываться миллиарды, десятки или даже сотни миллиардов отдельных особей. Разве можно сравнивать подобную численность с группами каких-нибудь горных горилл Gorilla beringei beringei , которые настолько редки, что занесены в Международную Красную книгу? Корректно ли переносить механизмы эволюции, которые теоретически возможны в отношении миллиардных колоний бактерий — на эволюцию горилл?
Но и это еще не всё. Бактерии еще и размножаются очень быстро. В благоприятных условиях у бактерий смена поколений может происходить в течение всего одного часа. Так можно ли сравнивать возможные механизмы эволюции у бактерий, с возможными механизмами эволюции, например, слонов? Если знать, что смена поколений у слонов происходит примерно раз в 17 лет. Итак, с одной стороны у бактерий колоссальная численность особей и фантастическая скорость размножения… а с другой стороны у эукариот , популяции меньшего размера сразу на несколько порядков , с гораздо меньшей скоростью смены поколений. Имеем ли мы право ставить знак равенства между этими двумя формами жизни в отношении их возможных механизмов изменений? Рассмотрим теоретический пример.
Допустим, в окружающей среде бактерий возникло такое изменение, которое убьет всех этих бактерий, если у какой-нибудь бактерии срочно не произойдет одной конкретной точечной мутации, которая защищает от этого катастрофического изменения среды. Частота точечных мутаций у бактерий, допустим, одна на миллиард. Тогда весьма возможно, что в многомиллиардной колонии бактерий сразу же и найдется какой-нибудь один или даже несколько необходимых мутантов, которые окажутся способными выжить в новых условиях. А теперь давайте представим себе, что такое же изменение возникло в среде каких-нибудь слонов. Если численность отдельных популяций слонов составляет, допустим, 1000 особей, а всего популяций слонов в этом регионе, допустим, тоже тысяча, тогда общая численность всех слонов, попавших под воздействие новой катастрофической «стихии», составит 1 млн. В этом случае, слонам потребуется примерно 1000 поколений! Поскольку поколения у слонов сменяются раз в 15—20 лет, то получается, что слоны будут находиться под воздействием предположенной нами стихии 10000-20000 лет, пока, наконец, не будет найдена необходимая мутация. Понятно, что за такое время эти слоны просто вымрут, а никуда не эволюционируют.
Так можно ли вообще сравнивать механизмы эволюции адаптации?
Это важно для диагностики и персональной медицины ближайшего будущего, например для разработки правильной диеты. Диета оказывает огромное влияние на что угодно. Но когда я ем шоколадку, мои клетки получают не какао, сахар и масло, а продукты их глубокого разложения живущими в моем пищеварительном тракте бактериями. Есть такая замечательная вещь, как пересаживание кала, — этот метод в США прошел клиническое испытание на людях и уже используется. Оказывается, лучший способ похудеть — это пересадить себе какашку худого человека, которая, как известно, в основном состоит из его бактерий. В дальнейшем можно будет на своей странице в соцсетях выставлять не только геном, но и метагеном. И если какой-нибудь Цукерберг или Брин будут иметь доступ к этой информации, они смогут проводить исследования, например, о связи определенной бактерии с желанием, я не знаю, купить айфон.
А медики, скажем, выяснят, что все, кто ел огурцы и имел такую-то бактерию, рано умерли. То есть бактерии могут служить диагностическими маркерами заболеваний или какого-то поведения. Таков размер самой крупной бактерии Thiomargarita namibiensis. Большинство же бактерий имеют размер 0,5—5 мкм. Кстати, проанализировав геном, тоже почти ничего пока нельзя сказать. К сожалению, это сложно. Любой человек с точки зрения геномики — это, в общем, одна и та же книжка. Если вы возьмете «Войну и мир» и увеличите ее в тысячу раз, там будет три миллиарда букв.
Эти «опечатки» обеспечивают нашу индивидуальность и предрасположенность к болезням. Есть очень простые заболевания, как гемофилия у Романовых, причиной которой служит одна-единственная опечатка. Но на возникновение шизофрении или рака влияют десятки и сотни опечаток — пока вычленить все влияния не представляется возможным. С микробиомом то же самое. Получается, они разрушают всё наше уникальное сообщество бактерий? Возможно, это связано с аппендиксом. Некоторые ученые утверждают, что аппендикс — это такой резервуар, маленький домик для нашей микрофлоры. Считается, что именно эта бактерия виновна в развитии язвы желудка О чем микробы говорят друг с другом [КШ] Почему разные страшные эпидемии обычно приходят из Африки?
В Африке просто разнообразные условия и биоразнообразие очень большое. Это такая гигантская лаборатория, в которой можно обкатывать всякие новые варианты. И одна из причин, почему Африку так тяжело было завоевать или покорить. Европейская цивилизация развивалась в схожих климатических условиях. А когда вы движетесь с севера на юг, возникают новые климатические зоны с новыми микробами. То же самое в вытянутой с севера на юг Америке: майя, инки, ацтеки почти не общались друг с другом, потому что не могли пройти этот барьер — в новых природных условиях их убивали непривычные для их организма микробы. Антибиотики ведь не люди изобрели — это вещества, с помощью которых микробы общаются друг с другом. Ученые всегда изучали бактерий в чистой культуре определенного вида, но в природе такого не бывает: у любого места обитания свой микробиом, сообщество разных микробов, где все зависят друг от друга.
У них сложные отношения, всё как у людей, хотя конечная цель каждого вида — победить, всё захватить. Но другие бактерии не дают — возникает какой-то баланс. Самая важная информация для бактерий — это есть ли еда, сколько вокруг других представителей твоего вида и других видов. Определяют они это с помощью механизма, который по-английски называется quorum sensing, — некоторые переводят это как «чувство локтя». В небольшом объеме среды каждая бактерия выпускает наружу какое-то вещество, которое ее собратья могут почувствовать. Если бактерий много, то и вещества будет много — они поймут, что здесь тесно и, вместо того чтобы размножаться как бешеные, образуют споры или биопленку. Так, например, происходит в легких больного муковисцидозом — микробы говорят другу: «Нам здесь стало очень тесно» и образуют пленки, а больной при этом умирает. Для таких сообщений им и нужны антибиотики.
В природе антибиотики, как правило, не достигают такой концентрации, при которой убивают. А поскольку антибиотики были изобретены бактериями для общения между собой, то и гены устойчивости к антибиотикам возникли давным-давно, задолго до всяких врачей. Именно поэтому победить устойчивость к антибиотикам всё равно никогда не удастся. Гены устойчивости появились не потому, что злые бактерии вдруг решили наступить на горло нашей песне. Если вы возьмете образцы бактериальной ДНК из скважины, пробуренной в вечной мерзлоте, то, конечно, найдете гены устойчивости ко всем антибиотикам. Ведь бактерия, которая их производит, по определению к ним устойчива, то есть сама является источником антигенов. Война с микробами: антибиотики и бактериофаги [КШ] Что-то в последние десятилетия ничего не слышно о новых антибиотиках. Во-первых, до недавнего времени антибиотики, которые были, и так работали хорошо.
Во-вторых, новые найти очень непросто. Золотой век антибиотиков закончился. Вот я, например, работаю в Институте микробиологии Ваксмана [подразделение Университета Ратгерса — КШ] , а Ваксман — это человек, который получил Нобелевскую премию за стрептомицин, которым изначально лечили туберкулез. Так вот, он отправлял своих друзей и сотрудников по городам и весям за образцами земли, потому что большинство антибиотиков производится почвенными бактериями: их там слишком много живет — вынуждены общаться. В институте, построенном на его Нобелевскую премию, эти почвенные бактерии до сих пор болтаются — работать там невозможно, потому что они всё перезаразили. Крупные фармкомпании тоже собирали образцы почвы по миру и потом из найденных в ней бактерий выделяли антибиотики. Выделяли-выделяли — так возникло большинство антибиотиков, но постепенно новые перестали появляться. Потому что количество культивируемых бактерий невелико.
Для того чтобы выделять новые антибиотики, по-видимому, будет использоваться та самая геномика, которая позволяет смотреть генетическую информацию «темной материи» неизвестных бактерий. Биоинформатика может выделить кластеры генов, которые потенциально могут кодировать антибиотики, потом генные инженеры будут создавать специальные штаммы-продуценты. Собственно, этим и я занимаюсь — мы делаем предсказания: мол, такая-то бактерия, такие-то гены могут быть ответственны за производство таких-то веществ.
Клубеньки небольшие утолщения на корнях многих растений, в которых живут симбиотические азотфиксирующие бактерии. У бобовых растений это бактерии рода Rhizobium Генрих Роберт Кох — немецкий микробиолог. Открыл бациллу сибирской язвы, холерный вибрион и туберкулезную палочку.
Какими организмами являются бактерии с точки зрения эволюции
В природе преимущественно выживают и оставляют потомство те особи, которые имеют наиболее удачное для данных условий сочетание признаков, то есть лучше приспособлены. Избирательное выживание размножение наиболее приспособленных организмов Ч. Дарвин назвал естественным отбором. Под действием естественного отбора находящиеся в разных условиях группы особей одного вида из поколения в поколение накапливают различные приспособительные признаки. Они приобретают настолько существенные отличия, что превращаются в новые виды принцип расхождения признаков. Эволюционная теории Дарвина совершила переворот в биологической науке. На основе изучения гигантского материала, собранного во время путешествия на корабле УБиглФ, Дарвину удается вскрыть причины изменения видов. Изучив геологию Южной Америки, Дарвин убедился в несостоятельности теории катастроф и подчеркнул значение естественных факторов в истории земной коры и ее животного и растительного населения. Благодаря палеонтологическим находкам он отмечает сходство между вымершими и современными животными Южной Америки.
Он находит так называемые переходные формы, которые совмещают признаки нескольких современных отрядов. Таким образом был установлен факт преемственности между современными и вымершими формами. На Галапагосских островах он нашел нигде более не встречающиеся виды ящериц, черепах, птиц. Они близки к южноамериканским. Галапагосские острова имеют вулканическое происхождение, и поэтому Ч. Дарвин предположил, что виды попали на них с материка и постепенно изменились. В Австралии его заинтересовали сумчатые и яйцекладущие, которые вымерли в других местах земного шара. Австралия как материк обособилась, когда еще не возникли высшие млекопитающие.
Сумчатые и яйцекладущие развивались здесь независимо от эволюции млекопитающих на других материках. Так постепенно крепло убеждение в изменяемости видов и происхождении одних от других. Однако в естественных условиях численность взрослых особей каждого вида длительно сохраняется примерно на одном уровне, следовательно, большинство появляющихся на свет особей гибнет в борьбе за существование — внутривидовой, межвидовой и в борьбе с неблагоприятными абиотическими факторами условиями неживой природы. Сопоставив два вывода — о перепроизводстве потомства и о всеобщей изменчивости, Дарвин пришел к главному заключению: больше шансов выжить и достичь взрослого состояния имеют особи, отличающиеся от множества других какими-либо полезными свойствами. Так был открыт принцип естественного отбора как главной движущей силы эволюции. Хотя эволюция протекает как единый процесс, обычно выделяют два уровня — микроэволюционный и макроэволюционный. Процессы, протекающие на популяционном и внутривидовом уровне, называют микро эволюцией, на уровне выше видового — макро эволюцией. Биополимеры - белки.
Полимеры- высокомалекулярные соединения состоящие из молекул мономеров. Мономеры- низкомалеккулярные соединения. Регулярные полимеры- молекула состоит из мономеров одного вида. Нерегулярные полимеры- молекула состоит из мономеров нескольких видов. Белки- это нерегулярные полимеры, мономерами которых являются аминокислоты. Аминокислот — 20 видов из них 8 незаменимые, не синтезируются в организме человека, а поступают в него вместе с пищей. Нуклеиновые кислоты. Эти биополимеры состоят из мономеров, называемых нуклеотидами.
Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями. Нуклеотиды, входящие в состав РНК, содержат пяти-углеродный сахар — рибозу, одно из четырех органических соединений, которые называют азотистымиоснованиями: аденин, гуанин, цитозин, урацил А, Г, Ц, У — и остаток фосфорной кислоты. Нуклеотиды, входящие в состав ДНК, содержат пяти-углеродный сахар — дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин А, Г, Ц, Т —и остаток фосфорной кислоты. В составе нуклеотидов к молекуле рибозы или дезокси-рибозы с одной стороны присоединено азотистое основание, а с другой — остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и органических фосфатов, а боковые группы этой цепи — четыре типа нерегулярно чередующихся азотистых оснований. Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью.
Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Гвсегда расположено азотистое основаниеЦ. А аденин — Т тимин Т тимин — А аденин Г гуанин — Ц цитозин Ц цитозин -Г гуанин Эти пары оснований называют комплиментарными основаниями дополняющими друг друга. Нити ДНК, в которых основания расположены комплементарно друг другуФ называют комплиментарными нитями. Расположение четырех типов нуклеотидов в цепях ДНК несет важную информацию. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, то есть их первичную структуру. Набор белков ферментов, гормонов и др. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков. Другими словами, ДНК является носителем наследственной информации.
Молекулы ДНК в основном находятся в ядрах клеток. Однако небольшое их количество содержится в митохондриях и хлоропластах. Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов — рибосом — идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах. Молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы — рибоза и вместо тимина — урацил. Значение РНК определяется тем, что они обеспечивают синтез в клетке специфических для нее белков.
Удвоение ДНК. Перед каждым клеточным делением при абсолютно точном соблюдении нуклеотидной последовательности происходит самоудвоение редупликация молекулы ДНК. Редупликация начинается с того, что двойная спираль ДНК временно раскручивается. Это происходит под действием фермента ДНК-полимеразы в среде, в которой содержатся свободные нуклеотиды. Каждая одинарная цепь по принципу химического сродства А-Т, Г-Ц притягивает к своим нуклеотидным остаткам и закрепляет водородными связями свободные нуклеотиды, находящиеся в клетке. Таким образом, каждая полинуклеотидная цепь выполняет роль матрицы для новой комплиментарной цепи. В результате получаются две молекулы ДНК, у каждой из них одна половина происходит от родительской молекулы, а другая является вновь синтезированной, то есть две новые молекулы ДНК представляют собой точную копию исходной молекулы. Несоответствие между возможностью видов к беспредельному размножению и ограниченностью ресурсов — главная причина борьбы за существование.
Виды борьбы за существование. Внутривидовая борьба. Дарвин указывал, что борьба за жизнь особенно упорна между организмами в пределах одного вида, и обосновывал свое утверждение тем, что они обладают сходными признаками и испытывают одинаковые потребности. Широкое распространение в природе конкуренции организмов за ограниченные ресурсы — типичный способ естественного отбора, благоприятствующего победителям в конкуренции. Кроме того, естественный отбор может осуществляться и без непосредственной конкуренции, например вследствие действия неблагоприятных факторов среды. Способность переносить низкие и высокие температуры, воздействие других параметров среды также приводит к выживанию более приспособленных или к их более успешному размножению. Иногда косвенные формы борьбы за существование дополняются прямой борьбой. Примером могут служить турнирные бои самцов за право обладать гаремом.
Взаимоотношения особей в пределах вида не ограничиваются борьбой и конкуренцией, существует также и взаимопомощь. Межвидовая борьба. Под межвидовой борьбой следует понимать конкуренцию особей разных видов. Особой остроты межвидовая борьба достигает в тех случаях, когда противоборствуют виды, обитающие в сходных экологических условиях и использующие одинаковые источники питания. В результате межвидовой конкуренции происходит либо вытеснение одного из противоборствующих видов, либо приспособление видов к разным условиям в пределах единого ареала, либо, наконец, их территориальное разобщение. Межвидовая борьба ведет к экологическому и географическому разобщению видов. При попытках переселения в новые зоны обитания большинство не выдерживает влияния других видов и факторов внешней среды, лишь некоторые способны закрепиться и выдержать конкуренцию. Сложные взаимоотношения хищника и жертвы, хозяина и паразита — тоже примеры межвидовой борьбы.
Борьба с неблагоприятными условиями среды. В ходе естественного отбора основное значение имеет фенотип организма: окраска, способность быстро перемещаться, устойчивость к действию высоких или низких температур и многое другое. Поэтому верно утверждение, что естественный отбор оценивает прежде всего фенотип особи. Поскольку за одинаковыми фенотипами могут скрываться различные генотипы например, АА и Аа при полном доминировании , то сходные фенотипы, наиболее приспособленные к конкретной ситуации, могут формироваться на различной генетической основе. Широкое распространение инсектицидов привело к возникновению у многих видов насекомых устойчивости к ним. Однако генетические механизмы устойчивости оказались неодинаковыми в различных популяциях. В одних случаях устойчивость определялась доминантным геном, в других — рецессивным, отмечено не только аутосомное наследование, но и наследование, сцепленное с полом. Обнаружены, кроме того, случаи полигенного и цитоплазматического наследования.
Соответственно и физиологические механизмы устойчивости к инсектицидам оказались различными. Среди них накопление яда кутикулой; повышенное содержание липидов, способствующих растворению инсектицида; повышение устойчивости нервной системы к действию ядов; снижение двигательной активности и др. Направление, в котором действует естественный отбор, и его интенсивность в природных популяциях не являются строго фиксированным, неизменным показателем. Они существенно изменяются как во времени, так и в пространстве. У обыкновенного хомяка обнаруживаются две основные формы окраски — бурая и черная. Их распространение от Украины до Урала показывает, что существует как большое разнообразие в сезонной изменчивости черных и бурых форм, так и значительные различия в их концентрации на видовом ареале. Итак, естественный отбор — единственный фактор эволюции, осуществляющий направленное изменение фенотипического облика популяции и ее генотипического состава вследствие избирательного размножения организмов с разными генотипами. Аденозинфосфорные кислоты.
Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой АТФ. Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, нервных импульсов, свечений например, у люминесцентных бактерий , то есть для всех процессов жизнедеятельности. АТФ — универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20—30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счет расщепления содержащейся в них АТФ.
После окончания работы человек усиленно дышит — в этот период происходит расщепление углеводов и других веществ происходит накопление энергии и запас АТФ в клетках восстанавливается. Митохондрии окружены наружной мембраной и, следовательно, уже являются компартментом, будучи отделенными от окружающей цитоплазмы; кроме того, внутреннее пространство митохондрий также подразделено на два компартмента с помощью внутренней мембраны. Наружная мембрана митохондрий очень похожа по составу на мембраны эндоплазматической сети; внутренняя мембрана митохондрий, образующая складки кристы , очень богата белками - пожалуй, эта одна из самых насыщенных белками мембран в клетке; среди них белки Удыхательной цепиФ, отвечающие за перенос электронов; белки-переносчики для АДФ, АТФ, кислорода, СО у некоторых органических молекул и ионов. Продукты гликолиза, поступающие в митохондрии из цитоплазмы, окисляются во внутреннем отсеке митохондрий. Белки, отвечающие за перенос электронов, расположены в мембране так, что в процессе переноса электронов протоны выбрасываются по одну сторону мембраны - они попадают в пространство между наружной и внутренней мембраной и накапливаются там. Это приводит к возникновению электрохимического потенциала вследствие разницы в концентрации и зарядах. Эта разница поддерживается благодаря важнейшему свойству внутренней мембраны митохондрии - она непроницаема для протонов. То есть при обычных условиях сами по себе протоны пройти сквозь эту мембрану не могут.
Но в ней имеются особые белки, точнее белковые комплексы, состоящие из многих белков и формирующие канал для протонов. Протоны проходят через этот канал под действием движущей силы электрохимического градиента. Энергия этого процесса используется ферментом, содержащимся в тех же самых белковых комплексах и способным присоединить фосфатную группу к аденозиндифосфату АДФ , что и приводит к синтезу АТФ. Митохондрия, таким образом, исполняет в клетке роль Уэнергетической станцииФ. Принцип образования АТФ в хлоропластах клеток растений в общем тот же - использование протонного градиента и преобразование энергии электрохимического градиента в энергию химических связей. Направления эволюции На макроэволюционном уровне можно проследить главные направления органической эволюции: биологический и морфофизиологический прогрессы. Поскольку направление эволюции определяется естественным отбором, то пути эволюции совпадают с путями формирования приспособлений, определяющих те или иные преимущества одних групп перед другими. Появление таких признаков обусловливает прогрессивность данной группы.
Биологический прогресс, то есть расширение ареала, увеличение количества особей данного вида и количества новых систематических единиц внутри вида или более крупной систематической единицы, достигается различными путями. Можно выделить несколько путей эволюции : — арогенез ароморфоз или морфофизиологический прогресс аллогенез идиоадаптацию — гипергенез Арогенез — такой путь эволюции, который характеризуется повышением организации, развитием приспособлений широкого значения, расширением среды обитания данной группы организмов. На арогенный путь развития группа организмов вступает, вырабатывая определенные приспособления, называемые в таком случае ароморфозами. Примером ароморфоза у млекопитающих является разделение сердца на левую и правую половины с развитием 2 кругов кровообращения, что привело к увеличению легких и улучшению снабжения кислородом органов. Дифференцировка органов пищеварения, усложнение зубной системы, появление тепло кровности — все это уменьшает зависимость организма от окружающей среды. У млекопитающих и птиц появилась возможность переносить снижение температуры среды значительно легче, чем, например, у рептилий, которые теряют активность с наступлением холодной ночи и холодного времени года. В связи с этим ночная активность рептилий в среднем ниже, чем дневная. Теплокровность млекопитающих и птиц позволила им овладеть поверхностью всего земного шара.
Дифференцировка зубного аппарата у млекопитающих, приспособление его к жевательной функции, чего не было ни у одного из предшествовавших классов хордовых, обеспечили большую возможность использования пищи. У них хорошо развиты большие полушария головного мозга, которые обеспечивают поведение Уразумного типаФ, позволяют организмам приспосабливаться к быстрым изменениям среды без изменения своей морфологической организации. Ароморфозы сыграли важную роль в эволюции всех классов животных. Например, в эволюции насекомых большое значение имело появление трахейной системы дыхания и преобразование ротового аппарата. Трахейная система обеспечила резкое повышение активности окислительных процессов в организме, что вместе с появлением крыльев обеспечило им выход на сушу. Благодаря необычайному разнообразию ротового аппарата у насекомых сосущий, колющий, грызущий они приспособились к питанию самой разнообразной пищей Немалую роль сыграло в их эволюции и развитие сложной нервной системы, а также органов обоняния, зрения, осязания. Аллогенез — путь эволюции без повышения общего уровня организации. Организмы эволюционируют путем частных приспособлений к конкретным условиям среды.
Такой тип эволюции ведет к быстрому повышению численности и многообразию видового состава. Все многообразие любой крупной систематической группы является результатом аллогенеза. Достаточно вспомнить многообразие млекопитающих, чтобы увидеть, насколько разнообразны пути их приспособления к самым различным факторам среды. Аллогенезы осуществляются благодаря мелким эволюционным изменениям, повышающим приспособление организмов к конкретным условиям обитания. Эти изменения называются идиоадаптацией. Хорошим примером идиоадаптаций служат защитная окраска у животных, разнообразные приспособления к перекрестному опылению ветром и насекомыми, приспособление плодов и семян к рассеиванию, приспособление к придонному образу жизни уплощение тела у многих рыб. Аллогенез часто приводит к узкой специализации отдельных групп. Общая дегенерация катагенез.
В ряде эволюционных ситуаций, когда окружающая среда стабильна, наблюдается явление общей дегенерации, то есть резкого упрощения организации, связанного с исчезновением целых систем органов и функций. Очень часто общая дегенерация наблюдается при переходе видов к паразитическому образу существования. У крабов известен паразит саккулина, имеющая вид мешка, набитого половыми продуктами, и обладающая как бы корневой системой, пронизывающей тело хозяина. Эволюция этого организма такова. Родоначальная форма принадлежала к усоногим ракам и прикреплялась не к водным камням, а к крабам и постепенно перешла к паразитическому способу существования, утратив во взрослом состоянии почти все органы. Несмотря на то, что общая дегенерация приводит к значительному упрощению организации виды, идущие по этому пути, могут увеличивать численность и ареал, то есть двигаться по пути биологического прогресса. Гипергенез — путь эволюции, связанный с увеличением размеров тела и непропорциональным пере развитием органов. В различные периоды в различных классах организмов появлялись гигантские формы.
Но, как правило, они довольно быстро вымирали и наступало господство более мелких форм. Вымирание гигантских форм чаще всего объясняется нехваткой пищи, хотя некоторое время такие организмы могут иметь преимущество вследствие своей огромной силы и отсутствия по этой причине врагов. Соотношение направлений эволюции. Пути эволюции органического мира сочетаются друг с другом либо сменяют друг друга, причем ароморфозы происходят значительно реже идиоадаптаций. Но именно ароморфозы определяют новые этапы в развитии органического мира. Возникнув путем ароморфоза, новые, высшие по организации группы организмов занимают другую среду обитания. Далее эволюция идет по пути идиоадаптаций, иногда и дегенерации, которая обеспечивает организмам обживание новой для них среды обитания. Клетка — элементарная единица живой системы.
Элементарной единицей она может быть названа потому, что в природе нет более мелких систем, которым были бы присущи все без исключения признаки свойства живого. Известно, что организмы бывают одноклеточными например, бактерии, простейшие, водоросли или многоклеточными. Клетка обладает всеми свойствами живой системы: она осуществляет обмен веществ и энергии, растет, размножается и передает по наследству свои признаки, реагирует на внешние раздражители и способна двигаться. Она является низшей ступенью организации, обладающей всеми этими свойствами. Клетка, по существу, представляет собой самовоспроизводящуюся химическую систему.
Каждая популяция размножалась в искусственной среде, где скорость размножения ограничивалась стрессовыми условиями. Каждый день 0,1 мл содержимого каждой пробирки переносилось в пробирку с 10 мл свежей питательной среды, где размножение бактерий продолжалось. В эксперименте использовалась линия E.
Каждый день 0,1 мл содержимого каждой пробирки переносилось в пробирку с 10 мл свежей питательной среды, где размножение бактерий продолжалось. В эксперименте использовалась линия E. Таким образом, круг исследуемых явлений ограничивался вновь возникшими мутациями.
Появились более свежие свидетельства того, что Thermotogales возникли примерно 3,2—3,5 миллиарда лет назад. Эти доказательства были собраны путем секвенирования генов бактериальных нуклеоидов для реконструкции их филогении. Первое серьезное расхождение в филуме Thermotogales было между Thermotogaceae и Fervidobacteriaceae, однако, когда это произошло, еще предстоит определить. Затем семейство Thermotogaceae разделилось на род Thermotoga и род Pseudothermotoga. Род Thermotoga представляет собой большинство существующих гипертермофилов и уникален тем, что они заключены во внешнюю мембрану, которую называют «тогой». Сегодня некоторые из существующих видов рода Thermotoga включают T. Thermotogale Phylogeny.
Остались вопросы?
Как называется состояние зрения, при котором человек лучше видит предметы на удалении. Эволюция микроорганизмов Главная проблема – Эволюция 3 доменов жизни: Бактерий, Археев и Эукариот и создание универсального дерева жизни. Его основной труд «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926 г.) лег в основу синтетической теории эволюции. Мы поговорим ниже о построение дерева эволюции согласно Дарвину, посмотрим на сколько это справедливо и таки я в итоге дам полное дерево (в рамках имеющейся информации) эволюции бактерий на основании самых консервативных генов тРНК.
Презентация, доклад на тему Методы эволюционной биологии: исследование эволюции бактерий
Исходя из концепции химической эволюции, рассмотрены возможные этапы появления бактерий, отмечены положительные стороны теории и ее недостатки. Бактерии как и все организмы прошли эволюционный путь развития с точки зрения эволюции они являются. а)высокоорганизованными б) организмами способными дать начало новой группе организмов в)примитивными г)не способными изменяться. пж дайте ответ. Согласно третьей точке зрения, это был химерный организм, образовавшийся в результате слияния клеток нескольких разных архей и бактерий. Какими организмами являются бактерии с точки зрения эволюции.