На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для.
Презентация факультета биотехнологии и промышленной экологии
А самое главное — люди. Вы с равным вниманием слушали и об анаэробном метаболизме бактерий, и о масс-спектрометрии, и об иммунологических аспектах атеросклероза. Нереальное вдохновение от вас всех! А сколько новых знаний! Спасибо вам! Оригинал: www. Рисунок 5. Научные бои и прочая самодеятельность. На осеннем интенсиве 2015 года и на ЗШ-2016 прошли настоящие Научные бои под руководством их основателей из Политехнического музея. Так и повелось Так и повелось.
Начиная с 2012 года, провели две летние школы «Биотехнологии будущего» об одной уже рассказали выше, о другой — 2013 года — для краткости тут рассказано не будет , четыре зимние совместные «Современная биология и Биотехнологии будущего» и еще два осенних интенсива — в 2014 и 2015 годах интенсив — это что-то вроде школы, только короче по времени и без выезда из Москвы — то есть без совместного проживания и ночных посиделок. Мероприятия крепчали и матерели: ясны уже были подводные камни организации, закреплялись характер и стиль школы, а постепенно сформировавшееся сообщество помогало в организации и самим своим существованием давало понять, насколько всё это нужно. Общая концепция получилась такая. Летняя школа и осенний интенсив посвящены больше бизнесу, чем науке. На них зовут: лекторами — молодых, но уже многого добившихся научных предпринимателей и предприимчивых ученых, а также бизнес-ангелов, инвесторов и представителей стартап-инкубаторов; участниками — тоже молодых, но еще не так многого добившихся ученых и предпринимателей. Лекции посвящены не столько тому, что сейчас интересного творится в науке, сколько как это интересное ухватить, превратить в продукт и отправить из лаборатории в реальную жизнь. Особый акцент осенних интенсивов — карьерные траектории: чем можно в жизни заняться человеку, получившему образование в сфере наук о жизни, ну или глубоко интересующемуся ими. Осенью 2015 года на интенсиве провели круглый стол, посвященный вопросам научной политики, на мысли о которых навело закрытие фонда «Династия» , традиционно поддерживавшего всю серию этих зимних школ. На интенсив приехал сам основатель и бессменный руководитель фонда Дмитрий Борисович Зимин рис.
Главное правило отбора участников на школу — ощущение, что человек дорос до потолка в той области, которой занимался, и теперь должен что-то менять в своей жизни. Дело тут в том, что многие люди совершенно не представляют себе весь тот веер возможностей, который в наше время дает биотехнологический бэкграунд. Можно остаться в фундаментальной науке, работать в лабе, капать в пробирки, постепенно достигнуть профессиональных и карьерных высот и, может быть, в конце концов совершить какое-нибудь великое открытие. Можно бросить фундаментальную науку и заняться прикладной: на основе своих научных идей организовать стартап и возможно добиться невообразимых успехов в бизнесе. Можно пойти наемным сотрудником в фармацевтическую компанию или биотехнологическое производство зарабатывать хорошие деньги. Можно вообще уйти из науки как таковой и применить свои знания и опыт биотехнолога в финансовой сфере: заняться консалтингом, инвестированием в различные проекты и так далее. Можно пойти в госструктуры: стать чиновником, регулирующим отношения науки и власти, и налаживать научный процесс с этой непростой стороны. Можно, наконец, стать популяризатором науки: писать научно-популярные статьи и книги, делать сайты, снимать научные фильмы и мультики, организовывать научные музеи, праздники науки и так далее. Иными словами, перед молодым и талантливым биотехнологом открыт весь мир, а не только двери лаборатории, и задача летних школ и осенних интенсивов — показать ему, как пользоваться теми потрясающими возможностями, какие дает ему профессия.
Итак, прошел день с окончания школы, я немного пришел в себя, вспомнил алфавит и теперь наконец могу что-то написать. Ну, во-первых, привет чатику SC2TV! Ребята, с вами просто нереально весело! Стоит также отметить, что с каждым днем аудитория чата становилась всё серьезнее, и в последний день я даже уже не всегда улавливал нить рассуждений, так что пора переименовывать ресурс в SCienceTV! Что-то я всё про чатик, да про чатик... Но кроме чатика, стоит отметить просто великолепнейших лекторов — цвет и свет российской науки, а самое главное — добрых, умных, интересных и открытых для общения людей! Это профессионалы высшего уровня, их просто невероятно приятно слушать, с ними бесконечно полезно общаться, и я горжусь, что мне выпала честь познакомиться с ними. Ну и, конечно, теперь немного про тех, без кого ничего бы и не было, то есть организаторов! Ребята, вы просто нереально крутые, именно благодаря вам у стольких молодых ученых и не только ученых появилась возможность познакомиться друг с другом, с топовыми людьми из мира науки и самыми последними достижениями и трендами.
Итак, еще раз всем-всем-всем огромное спасибо за эти драйв, фан и дружественную атмосферу, уверен, что все мы вынесли кучу пользы из этой крайне насыщенной недели! До новых встреч особенно в чатике на стримах! Артём Богомолов Оригинал: www. Рисунок 6. Непременная часть долгих вечеров на зимних школах — круглые столы и дебаты. А в это время ведущая видеоблога « Всё как у зверей » Евгения Тимонова говорит об альтернативных форматах популяризации научного знания. Зимние же школы ориентированы больше на современную науку, чем на бизнес. Лекторы, приезжающие на зимнюю школу, обычно уже седовласы и общепризнанны; помимо российских научных гигантов приезжают и известные иностранные ученые. Лекции, читаемые ими, посвящены фундаментальным вопросам науки и прорывам последних лет.
Хотя и на зимних школах всегда есть сильная бизнес-секция, но посвящена она скорее не прикладным вопросам, а фундаментальным взаимоотношениям науки и бизнеса: каковы стратегии превращения научных разработок в решения для бизнеса, в каком случае ваше научное открытие имеет бизнес-применения, и тому подобное. Я впервые побывал на школе Future Biotech, и, честно говоря, не ожидал, что это окажется настолько полезно и весело одновременно. Конечно, я не сомневался, что лекции будут предельно интересными, но последующее их горячее обсуждение с другими участниками — вещь достаточно уникальная на фоне рутинного обучения в университете и даже работы в лаборатории. Спасибо, ребята, за то, что у вас разные научные интересы, но всех объединяет энтузиазм и интерес к науке в целом! Из вечерних мероприятий меня наиболее впечатлили дебаты. Когда мы в 10 вечера садились обсуждать документ, я и представить себе не мог, что к 4 утра я что-то пойму и смогу даже потом вести хотя бы отчасти аргументированную беседу об устройстве научных институтов и перспективах их реформирования.
Клонирована по государственному заказу. Начало коммерческого клонирования собак 2009 — первое успешное клонирование верблюда. Первые успешные полевые испытания трансгенных растений устойчивые к вирусной инфекции растения табака были проведены в США в 1986 г. Уже через 1-2 года биотехнологические фирмы поставили на рынок целый ряд генетически измененных растений: томатов, кукурузы, картофеля, табака, сои, рапса, кабачков, редиса, хлопчатника. Белок, кодируемый этим геном, токсичен только для гусениц некоторых бабочек. Повысились урожаи хлопка. Резко сократилось использование химических ядов, что сильно улучшило экологическую обстановку в сельскохозяйственных районах Китая. Слайд 24 Гусеница хлопковой совки Helicoverpa armigera Слайд 25 В 1999 г.
Все приходит с опытом. Правильно подберите наряд, так как одежда докладчика также играет большую роль в восприятии его выступления. Старайтесь говорить уверенно, плавно и связно. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться. Информация о презентации Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов Дата добавления:26 ноября 2018.
В рамках Форума пройдет Третья Международная конференция «Перспективные подходы и технологии в задачах биомедицины и клинической практики» Сопредседатели: академик Ю. Гуляев, научный руководитель ИРЭ им. Левшина Сеченовского университета, профессор Сурендра Кумар Верма, действительный член Индийской академии биомедицинских наук. В рамках конференции будут представлены, как результаты экспериментов, например, нетепловое воздействие мощных ультракоротких электромагнитных импульсов на карциному академик РАН Черепенин В. Котельникова РАН и коллагеновая мембрана для применения в кардиохирургии B. Будут обсуждаться актуальные вопросы и достижения в области пищевых технологий и функциональных продуктов питания в России и за рубежом.
Учёные впервые напечатали на 3D-принтере живые ткани человеческого мозга
Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты Прогресс биотехнологии позволил совершить прорыв в таких отраслях человеческой деятельности, как селекция, сельское хозяйство, медицина, фармация и др. Так, введение в растения бактериальных генов устойчивости к поеданию насекомыми и поражению вирусами, а также способных расти на бедных или загрязненных почвах способствует решению продовольственной проблемы, особенно в странах с быстро растущим населением. В настоящее время значительная часть посевных площадей занята трансгенными культурами в США, Канаде и Китае. Культивирование клеток растений на фоне высоких концентраций солей и других соединений позволяет сократить сроки выведения новых сортов пшеницы, сои и других важнейших сельскохозяйственных культур до… Культивирование клеток растений на фоне высоких концентраций солей и других соединений позволяет сократить сроки выведения новых сортов пшеницы, сои и других важнейших сельскохозяйственных культур до одного-двух лет.
Клонирование животных, особенно с генетически измененными признаками и свойствами, позволяет вывести более продуктивные породы и добиться их быстрого размножения, однако этот процесс пока еще слишком трудоемок и дорог, чтобы применяться в промышленном масштабе. Трансформация бактерий позволила уже в начале 80-х годов Трансформация бактерий позволила уже в начале 80-х годов ХХ века получать биологически активные вещества — инсулин, соматотропный гормон, интерферон, которые применяются в медицине, а также создать новые штаммы микроорганизмов, предназначенных для очистки сточных вод, ликвидации нефтяных разливов и т. Путем селекции выведены также и формы бактерий, с помощью которых получают антибиотики, извлекают цветные металлы, получают биогаз.
В будущем возможно использование клонирования в сочетании с другими отраслями биотехнологии не только для размножения растений, микроорганизмов и грибов, но и для восстановления исчезнувших видов… В будущем возможно использование клонирования в сочетании с другими отраслями биотехнологии не только для размножения растений, микроорганизмов и грибов, но и для восстановления исчезнувших видов животных, возобновления природных популяций исчезающих видов. Однако для этого необходимо вначале создать генные банки, поскольку ДНК довольно быстро подвергается разрушению в окружающей среде. Этические аспекты развития некоторых исследований в биотехнологии клонирование человека, направленные изменения генома Этические аспекты развития некоторых исследований в биотехнологии клонирование человека, направленные изменения генома С помощью биотехнологии стало возможным преодоление бесплодия, лечение многих наследственных и приобретенных заболеваний, решение продовольственных и экологических проблем современности.
С другой стороны, активное вторжение современных технологий в медицину сопряжено с операциями с клетками и тканями человека. Большинство стран законодательно ограничило эксперименты по клонированию человека в основном по этическим соображениям, поскольку они направлены не просто на воспроизведение человека, но и на последующее… Большинство стран законодательно ограничило эксперименты по клонированию человека в основном по этическим соображениям, поскольку они направлены не просто на воспроизведение человека, но и на последующее использование клеток, тканей и органов зародыша для экспериментов, а также в качестве их донора. В связи с этим во всем мире активно обсуждается вопрос о допустимости подобных действий.
Особую опасность представляет внесение новых генов в сбалансированный геном, откуда они могут быть исключены в любой момент, что может привести к появлению каких-либо вирусоподобных организмов Особую опасность представляет внесение новых генов в сбалансированный геном, откуда они могут быть исключены в любой момент, что может привести к появлению каких-либо вирусоподобных организмов. Применение генных технологий в создании новых сортов растений, пород животных и штаммов микроорганизмов вызывает некоторые опасения, поскольку их попадание в окружающую среду может вызвать неконтролируемое распространение, например, раковых генов, и привести к необратимым последствиям для жизни и здоровья человека. Так, опыление пыльцой трансгенных растений генетически немодифицированных сортов и видов может стимулировать появление сверхустойчивых к химическим и биологическим средствам борьбы сорняков.
Чучело Долли выставлено в Национальном музее Шотландии. Но все же перспектив у клонирования много. Слайд 11 Это растения, в ДНК которых введен ген, не данный им природой, ген из другого организма. Он наделяет своего «хозяина» новыми свойствами: высокая урожайность, пищевая и вкусовая ценность, устойчивость к болезням, пестицидам, выносливость и др.
Левшина Сеченовского университета, профессор Сурендра Кумар Верма, действительный член Индийской академии биомедицинских наук. В рамках конференции будут представлены, как результаты экспериментов, например, нетепловое воздействие мощных ультракоротких электромагнитных импульсов на карциному академик РАН Черепенин В. Котельникова РАН и коллагеновая мембрана для применения в кардиохирургии B. Будут обсуждаться актуальные вопросы и достижения в области пищевых технологий и функциональных продуктов питания в России и за рубежом. В работе Форума примут активное участие молодые специалисты и аспиранты ВУЗов и научных организаций. В рамках Форума пройдет Выставки-презентации инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства.
Проще говоря, бионика - это соединение биологии и техники. Бионика рассматривает биологию и технику совсем с новой стороны, объясняя, какие общие черты и какие различия существуют в природе и в технике. Слайд 14 Биоремедиация Комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов — растений, грибов, насекомых, червей и других организмов. Слайд 15 Описание слайда: Клонирование Появление естественным путем или получение нескольких генетически идентичных организмов путем бесполого в том числе вегетативного размножения. Термин «клонирование» в том же смысле нередко применяют и по отношению к клеткам многоклеточных организмов. Клонированием называют также получение нескольких идентичных копий наследственных молекул молекулярное клонирование. Наконец, клонированием также часто называют биотехнологические методы, используемые для искусственного получения клонов организмов, клеток или молекул.
Презентация, доклад по теме Биотехнологии
Работа ежегодной конференции охватывает следующие направления: «Сельскохозяйственная биотехнология»; «Пищевая биотехнология»; «Биоинформатика, клеточная и генетическая. Перспективы развития биотехнологий Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, Агро биотехнологии и экологические. Презентация на тему: " Биотехнология " — Транскрипт: 1 Биотехнология дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их. Новости из мира биотехнологий. If you have Telegram, you can view and join БиоТехнологии right away. Найдите нужное среди 340 529 стоковых фото, картинок и изображений роялти-фри на тему «биотехнологии» на iStock. Сочетание кремния и биотехнологий позволяет гибридным электронным цепям реагировать одновременно на электрические и биологические сигналы.
Презентации по экологической биотехнологии
Ученые утверждают, что биотехнология открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы. Она рассказала, что впервые конференцию организуют два ведущих вуза по подготовке специалистов для различных отраслей биотехнологии. Презентация на тему "Биотехнология: достижения и перспективы развития", предназначена для сопровождения урока по аналогичной теме для обучающихся 10 класса. Фон для презентации по биотехнологии Открыть оригинал.
Биотехнология – достижения и проблемы
Полученные в результате переноса генов организмы называются генетически модифицированными, или трансгенными. Клонирование — это получение многочисленных копий гена, белка, клетки или организма Клонирование — это получение многочисленных копий гена, белка, клетки или организма. Клонирование генов чаще всего осуществляется с помощью бактерий и вирусов, поскольку, например, одна вирусная частица бактериофага, в которой содержится нужный ген, за один день может образовать более 1012 идентичных копий себя и этой молекулы. Клонирование растений также не представляет значительной трудности, поскольку клетки растений тотипотентны, т. Массовое клонирование животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных Массовое клонирование животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных.
Однако в 1997 году эта проблема была разрешена с получением первого клонированного организма — овцы Долли. Для клонирования были взяты клетки молочной железы ее генетической матери, а также яйцеклетки суррогатной матери. Ядра яйцеклеток удалялись, а на их место вводились ядра клеток молочной железы. После стимуляции развития зиготы электрическим током делящийся зародыш короткий промежуток времени культивировали на питательной среде, а затем вводили в матку суррогатной матери.
Из пяти пересаженных эмбрионов выжил лишь один. Овечка Долли 5. Овца Долли являлась генетической копией овцы-донора клетки. В настоящее время клонирован уже целый ряд видов животных — мыши, собаки, коровы и др В настоящее время клонирован уже целый ряд видов животных — мыши, собаки, коровы и др.
Заманчивые перспективы перед человечеством раскрываются в области терапевтического клонирования — воспроизведения отдельных органов. Так, в настоящее время широко используются клонированная кожа, клетки соединительной ткани и другие части организма. Американские ученые клонировали ухо знаменитого голландского художника Винсента Ван Гога, мочку которого он себе отрезал при жизни.
В этом году мероприятие проводится в 17 раз и традиционно было организовано при сотрудничестве трех отделений Российской академии наук: Отделения нанотехнологий и информационных технологий, Отделения медицинских наук и Отделения сельскохозяйственных наук РАН. На Форуме были представлены достижения в области фундаментальных и прикладных биотехнологических исследований. На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства и награждение научно-исследовательских коллективов за актуальные разработки. Основная цель Форума — предоставить специалистам в фундаментальных и прикладных отраслях биотехнологий, медицины, фармацевтических и пищевых производств возможность презентовать свои исследования, наладить контакты, провести плодотворные научные дискуссии, в том числе для возможности инициирования совместных проектов — междисциплинарных и международных. На мероприятии встретились учёные и разработчики наукоёмких технологий из России, Индии, Китая, Ирана, Австралии, Кубы и других стран. Требуется взаимодействие между людьми разных специальностей, это дает толчок к развитию», — обратился с приветствием к участникам Алексей Николаевич Фёдоров, директор ФИЦ Биотехнологии РАН.
Основополагающий вопрос Изображение слайда Слайд 3: Проблемные вопросы «Красная» биотехнология— производство биофармацевтических препаратов для диагностики и лечения различных заболеваний человека и коррекции генетического кода.
Препарат прошел все доклинические испытания, доказав свою высокую эффективность. Оказалось, что защитные свойства искусственного антитела в сто раз выше, чем коммерческого препарата антител, получаемого из сыворотки доноров. Вторжение в наследственность Открытия последних лет расширили возможности генотерапии, которые до недавнего времени представлялась фантастикой.
При «ремонте» репарации таких нарушений можно исправлять мутации, ответственные за заболевания, или вводить в терапевтических целях новые генетические элементы. Редактирование генов открывает перспективы радикального решения проблемы генетических заболеваний путем модификации генома при использовании экстракорпорального оплодотворения. Принципиальная возможность направленного изменения генов эмбриона человека уже доказана экспериментально, и создание технологии, обеспечивающей появление на свет детей, свободных от наследственных заболеваний, задача ближайшего будущего. С помощью геномного редактирования можно не только «исправлять» гены: этот подход можно использовать для борьбы с вирусными инфекциями, не поддающимися обычной терапии. Речь идет о вирусах, встраивающих свой геном в клеточные структуры организма, где он оказывается недоступным для современных противовирусных препаратов.
Системы геномного редактирования могут инактивировать вирусную ДНК внутри клетки, разрезав ее на безопасные фрагменты либо внеся в нее инактивирующие мутации. Кроме того, для успешной борьбы с опасными вирусными инфекциями необходимо решить проблему эффективной доставки терапевтических агентов в целевые клетки. В ведущих странах уже проходят клинические испытания клеточных технологий, разработанных для лечения аутоиммунных, аллергических, онкологических и хронических вирусных заболеваний. В России пионерные работы по созданию средств терапии на основе стволовых клеток и клеточных вакцин были выполнены в Институте фундаментальной и клинической иммунологии СО РАН Новосибирск. В результате исследований были разработаны методы лечения онкологических заболеваний, гепатита В и аутоиммунных заболеваний, которые уже начали применяться в клинике в экспериментальном режиме.
Чрезвычайно актуальными в наши дни стали проекты создания банков культур клеток пациентов с наследственными и онкологическими заболеваниями для тестирования фармакологических препаратов. В Новосибирском научном центре такой проект уже реализуется межинститутским коллективом под руководством проф. Новосибирские специалисты отработали технологии внесения мутаций в культивируемые клетки человека, в результате чего были получены клеточные модели таких заболеваний, как боковой амиотрофический склероз, болезнь Альцгеймера, спинальная мышечная атрофия, синдром удлиненного интервала QT и гипертрофическая кардиомиопатия. Разработка методов получения из обычных соматических клеток плюрипотентных стволовых, способных превратиться в любую клетку взрослого организма, привела и к появлению клеточной инженерии, позволяющей восстанавливать пораженные структуры организма. Удивительно быстро развиваются технологии получения трехмерных структур для клеточной и тканевой инженерии на основе биоразрушаемых полимеров: протезов сосудов, трехмерных матриксов для выращивания хрящевой ткани и конструирования искусственных органов.
Мешалкина Новосибирск разработали технологию создания протезов сосудов и сердечных клапанов методом электроспиннинга. С помощью этой технологии из раствора полимера можно получить волокна толщиной от десятков нанометров до нескольких микрон. В результате серии экспериментов удалось отобрать изделия с выдающимися физическими характеристиками, которые сейчас успешно проходят доклинические испытания. Благодаря высокой био- и гемосовместимости такие протезы со временем замещаются собственными тканями организма. Микробиом как объект и субъект терапии К настоящему времени хорошо изучены и расшифрованы геномы многих микроорганизмов, поражающих человека.
Существенный вклад в эту область исследований внесли и отечественные ученые. Также были изучены микробные сообщества, ассоциированные с различными видами опасных для человека клещей. В развитых странах сегодня активно ведутся работы, направленные на создание средств регуляции микробиома организма человека, в первую очередь его пищеварительного тракта. Как оказалось, от состава микробиома кишечника в огромной степени зависит состояние здоровья. Методы воздействия на микробиом уже существуют: например, обогащение его новыми терапевтическими бактериями, использование пробиотиков, благоприятствующих размножению полезных бактерий, а также прием бактериофагов вирусов бактерий , избирательно убивающих «вредные» микроорганизмы.
В последнее время работы по созданию средств терапии на основе бактериофагов активизировались во всем мире в связи с проблемой распространения лекарственно-устойчивых бактерий. В РФ существует промышленное производство препаратов, разработанных еще в советское время, и чтобы получать более эффективные бактериофаги, необходимо их совершенствовать, и эта задача может быть решена методами синтетической биологии. В институте охарактеризованы промышленно производимые в РФ фаговые препараты, расшифрованы геномы ряда бактериофагов, а также создана их коллекция, в которую вошли и уникальные вирусы, перспективные для применения в медицине. В клинике института отрабатываются механизмы оказания персонализированной помощи больным, страдающим от бактериальных инфекций, вызванных лекарственно-устойчивыми микроорганизмами. Последние возникают при лечении диабетической стопы, а также в результате пролежней или послеоперационных осложнений.
Разрабатываются и методы коррекции нарушений состава микробиома человека. Совершенно новые возможности использования вирусов открываются в связи с созданием технологий получения интеллектуальных систем высокоизбирательного действия на определенные клетки. Речь идет об онколитических вирусах, способных поражать только опухолевые клетки. В экспериментальном режиме несколько таких вирусов уже применяются в Китае и США.
Перспективные направления биотехнологии
Печать непосредственно на ране представляется наиболее быстрым и доступным способом восстановить ткани пациента. До сих пор для этого ткани для восстановления выращивались отдельно в стерильных условиях, что требовало времени и затрат. Роботизированный комплекс сразу в процессе операции сканировал рану, создавал её 3D-модель и корректировал заполнение с учётом перемещений тела, например, в процессе дыхания. Ранее комплекс был испытан на животных и показал свою состоятельность.
Первая операция на человеке была проведена в Главном Военном Клиническом Госпитале им. Живые клетки для «чернил» принтера брались из костного мозга пациента. Композиция состоит из смеси высокоочищенного концентрированного стерильного раствора коллагена и клеток.
Такая методика проводилась впервые, она особенно актуальна при множественных осколочных ранениях конечностей, когда донорский ресурс ограничен. При обширных ранениях в перспективе мы планируем сканировать тело полностью и замещать все раны таким методом. Это ускорит время их заживления и позволит сократить время пребывания пациентов в стационаре», — подчеркнул травматолог-ортопед 1 квалификационной категории, хирург Владимир Беседин, контролировавший операцию в ГВКГ им.
Как отметил директор Института биомедицинской инженерии НИТУ МИСИС Фёдор Сенатов, в скором будущем мы можем ожидать более масштабного внедрения в клиническую практику технологии биопечати in situ непосредственно в рану. Колония живых нейронов обучалась быстрее искусственных моделей с почти таким же результатом. Если отбросить вопрос с этикой, до проблем с которой пока далеко, живые клетки человеческого мозга могут превзойти современные и будущие нейронные сети, работающие на кремниевых чипах, как по производительности, так и по экономическим соображениям.
Источник изображений: Nature Electronics С помощью стволовых клеток учёные вырастили так называемый органоид мозга — объёмную колонию клеток, повторяющих структуру нейронов и их связей в мозге. Это не первый и наверняка не последний эксперимент с живыми клетками, позаимствованными у человека. Ранее органоид мозга, например, научили игре в «Понг», с чем он успешно справился.
В таких исследованиях самым сложным бывает донести информацию до «мозга» и считать её. Группа профессора Го Фэня из Университета штата Индиана в Блумингтоне США предложила достаточно простое решение — они вырастили органоид на высокоплотном массиве электродов. Электроды, а это, по сути, компьютерный интерфейс, вносили данные в клетки «мозга» и считывали результат его последующей активности.
Тем самым на практике была реализована такая архитектура спайковой импульсной нейросети, как резервуарная. Что происходило в массиве нейронов, учёным было неизвестно, но условно живая модель показала способность к быстрому обучению и расчётам. Свою нейросеть учёные назвали Brainoware.
Система прошла двухдневное обучение на наборе из 240 аудиозаписей речи восьми японских мужчин, произносящих гласные звуки. Также система смогла решать уравнения по отображениям Эно примерно с такой же точностью. На это ушло ещё четыре дня обучения.
Более того, решение дифференциальных уравнений проходило с большей точностью, чем в случае искусственной нейронной сети без блока длинной цепи элементов краткосрочной памяти. Мозг Brainoware в «возрасте» 7, 14, 28 дней и через несколько месяцев нижний ряд в увеличенном виде Живой искусственный «мозг» был не такой точный, как искусственные нейронные сети с длинной цепью элементов краткосрочной памяти, но каждая из этих сетей прошла 50 этапов обучения. Для этого раствор армируется волокнами со спорами особых бактерий.
Разработка может избавить от дорогостоящих ремонтных работ, что также снизит потребность в стройматериале, производство которого наносит один из тяжёлых уронов окружающей среде. Источник изображения: Drexel University Человечество бесконечно строит и ремонтирует. Бетон стал самым востребованным материалом в этом процессе.
Самовосстанавливающиеся бетонные конструкции помогли бы сэкономить на средствах для ремонта, и это также сократило бы вредные выбросы в атмосферу. Группа физиков, химиков, биологов, материаловедов и строителей из Дрексельского университета нашла возможное решение проблемы. Учёным давно известны бактерии, которые минерализуют добытый из воздуха углерод, превращая его в «камень».
Если в трещинах бетона поселить колонии таких бактерий, то они самостоятельно заполнят трещины минералами и сцементируют её края. Исследователи подобрали перспективный для поставленной задачи штамм бактерий Lysinibacillus sphaericus. Оставался вопрос, как сохранить бактерии и активировать их только для случая появления трещин.
Для этого споры бактерий поместили в гидрогель и покрыли всё это полимерной оболочкой. Получилась тончайшая полимерная арматура, которая сама по себе придавала бетону дополнительную прочность. Если в бетоне с полимерной арматурой возникала трещина, то когда она доходила до волокна, внутреннее давление высвобождало гидрогель и споры бактерий.
Споры превращались в живых бактерий, которые питались кальцием и поглощали углерод из воздуха, образуя взамен минеральные соединения в виде карбоната кальция. Трещина зарастала с такой скоростью, которая обещает залечивать подобные раны в бетоне за сутки или двое. Разработанный учёными материал пока не годится для коммерческого применения, для этого с ним ещё предстоит много работы.
Однако идея вполне рабочая и может со временем воплотиться в жизнь. Бактерии можно будет даже подселять лишь в трещины, не добавляя изначально в раствор. Ремонт сведётся до прогулки вдоль строений с бутылкой аэрозоля вместо замеса, вёдер с раствором, мастерков и всего вот этого.
Ждём видео в интернете, как в домашних условиях вырастить полезных цементирующих бактерий, например, на перловке. Биологический материал включили в стандартный техпроцесс производства чипов, что обещает сделать его использование массовым. Сочетание кремния и биотехнологий позволяет гибридным электронным цепям реагировать одновременно на электрические и биологические сигналы, открывая путь к датчикам здоровья и нейропроцессорам.
Перспективы подобных решений невозможно переоценить. Нейросети, подобные мозгу процессоры, датчики биологических процессов в организме людей — это многое изменит в жизни людей. Произойдёт это не завтра и не послезавтра, но рано или поздно мир станет совершенно иным.
Подтолкнут ли к этим изменениям только что представленные гибридные транзисторы, или они канут в небытие, мы пока не знаем. Но на данном этапе разработка демонстрирует ряд интересных свойств, например, способность вписаться в современные техпроцессы выпуска микросхем. Предложенный учёными гибридный процессор в качестве изолятора очевидно, затвора использует материал на основе белка фиброина, входящего в состав шёлковых нитей и, например, паутины.
Исследование влияния натуральных биологических стимуляторов на рост и развитие растений является актуальной проблемой. Мы попробовали себя в роли исследователей-биотехнологов, провели эксперименты и выяснили, благодаря чему бобовое дерево из старинной английской сказки смогло дорасти до небес. Итак, цель нашего исследования: изучение влияние различных стимуляторов на развитие ростков семян гороха. Задачи исследований: изучить теоретический материал по исследуемым биостимуляторам; исследовать влияние различных стимуляторов на развитие растений.
В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов. Слайд 8 Первый антибиотик — пенициллин — был выделен в 1940 году. Вслед за пенициллином были открыты и другие антибиотики эта работа продолжается и поныне. С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине. Слайд 9 Синтезировать антибиотики химически было очень дорого или вообще невероятно трудно, почти невозможно недаром химический синтез тетрациклина советским учёным академиком М.
Шемякиным считается одним из крупнейших достижений органического синтеза. И тогда решили для промышленного производства лекарственных препаратов использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза. Слайд 10 Слайд 11 Микробиологический синтез Развитие микробиологической промышленности, выпускающей ценные продукты биосинтеза, позволило накопить очень важный опыт конструирования, производства и эксплуатации принципиально нового промышленного оборудования. Современное микробиологическое производство — производство очень высокой культуры. Технология его очень сложна и специфична, обслуживание аппаратуры требует овладения специальными навыками, ведь всё производство работает только в условиях строжайшей стерильности: стоит попасть в ферментатор лишь одной клетке микроорганизма другого вида, как всё производство может остановиться — «чужак» размножится и начнёт синтезировать совсем не то, что нужно человеку. Слайд 12 В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, полупродукты для дальнейшего синтеза разнообразных веществ, феромоны вещества, с помощью которых можно управлять поведением насекомых , органические кислоты, кормовые белки и другие. Технология производства этих веществ хорошо отработана, получение их микробиологическим путём экономически выгодно.
В литре молока коров корпорации « Gene Farm » — 1 грамм человеческого лактоферрина. Все они — потомки быка по кличке Герман, который родился в 1990 году в Голландии. В 1999 году началось промышленное производство химозина из молока трансгенных овец в ГПЗ «Трудовой» Саратовская обл. Себестоимость в 4-5 раз ниже, чем при получении из сычугов забитых молочных телят. От одной овцы за сезон можно получить достаточно фермента, чтобы приготовить 30 тонн сыра. Для процесса сыроварения химозин можно не выделять, а просто залить 50 тонн молока КРС несколькими литрами овечьего молока и перемешать. Слайд 32 В мире ведутся работы по выведению трансгенных коз и коров, в молоке которых содержится большое количество инсулина, соматотропина и других биологических соединений, необходимых для терапевтических целей. Противораковая активность этих антител оказалась в 10-100 раз большей, чем у антител, полученных другими методами.
Достижения биотехнологии
На осеннем интенсиве 2015 года и на ЗШ-2016 прошли настоящие Научные бои под руководством их основателей из Политехнического музея. Так и повелось Так и повелось. Начиная с 2012 года, провели две летние школы «Биотехнологии будущего» об одной уже рассказали выше, о другой — 2013 года — для краткости тут рассказано не будет , четыре зимние совместные «Современная биология и Биотехнологии будущего» и еще два осенних интенсива — в 2014 и 2015 годах интенсив — это что-то вроде школы, только короче по времени и без выезда из Москвы — то есть без совместного проживания и ночных посиделок. Мероприятия крепчали и матерели: ясны уже были подводные камни организации, закреплялись характер и стиль школы, а постепенно сформировавшееся сообщество помогало в организации и самим своим существованием давало понять, насколько всё это нужно.
Общая концепция получилась такая. Летняя школа и осенний интенсив посвящены больше бизнесу, чем науке. На них зовут: лекторами — молодых, но уже многого добившихся научных предпринимателей и предприимчивых ученых, а также бизнес-ангелов, инвесторов и представителей стартап-инкубаторов; участниками — тоже молодых, но еще не так многого добившихся ученых и предпринимателей.
Лекции посвящены не столько тому, что сейчас интересного творится в науке, сколько как это интересное ухватить, превратить в продукт и отправить из лаборатории в реальную жизнь. Особый акцент осенних интенсивов — карьерные траектории: чем можно в жизни заняться человеку, получившему образование в сфере наук о жизни, ну или глубоко интересующемуся ими. Осенью 2015 года на интенсиве провели круглый стол, посвященный вопросам научной политики, на мысли о которых навело закрытие фонда «Династия» , традиционно поддерживавшего всю серию этих зимних школ.
На интенсив приехал сам основатель и бессменный руководитель фонда Дмитрий Борисович Зимин рис. Главное правило отбора участников на школу — ощущение, что человек дорос до потолка в той области, которой занимался, и теперь должен что-то менять в своей жизни. Дело тут в том, что многие люди совершенно не представляют себе весь тот веер возможностей, который в наше время дает биотехнологический бэкграунд.
Можно остаться в фундаментальной науке, работать в лабе, капать в пробирки, постепенно достигнуть профессиональных и карьерных высот и, может быть, в конце концов совершить какое-нибудь великое открытие. Можно бросить фундаментальную науку и заняться прикладной: на основе своих научных идей организовать стартап и возможно добиться невообразимых успехов в бизнесе. Можно пойти наемным сотрудником в фармацевтическую компанию или биотехнологическое производство зарабатывать хорошие деньги.
Можно вообще уйти из науки как таковой и применить свои знания и опыт биотехнолога в финансовой сфере: заняться консалтингом, инвестированием в различные проекты и так далее. Можно пойти в госструктуры: стать чиновником, регулирующим отношения науки и власти, и налаживать научный процесс с этой непростой стороны. Можно, наконец, стать популяризатором науки: писать научно-популярные статьи и книги, делать сайты, снимать научные фильмы и мультики, организовывать научные музеи, праздники науки и так далее.
Иными словами, перед молодым и талантливым биотехнологом открыт весь мир, а не только двери лаборатории, и задача летних школ и осенних интенсивов — показать ему, как пользоваться теми потрясающими возможностями, какие дает ему профессия. Итак, прошел день с окончания школы, я немного пришел в себя, вспомнил алфавит и теперь наконец могу что-то написать. Ну, во-первых, привет чатику SC2TV!
Ребята, с вами просто нереально весело! Стоит также отметить, что с каждым днем аудитория чата становилась всё серьезнее, и в последний день я даже уже не всегда улавливал нить рассуждений, так что пора переименовывать ресурс в SCienceTV! Что-то я всё про чатик, да про чатик...
Но кроме чатика, стоит отметить просто великолепнейших лекторов — цвет и свет российской науки, а самое главное — добрых, умных, интересных и открытых для общения людей! Это профессионалы высшего уровня, их просто невероятно приятно слушать, с ними бесконечно полезно общаться, и я горжусь, что мне выпала честь познакомиться с ними. Ну и, конечно, теперь немного про тех, без кого ничего бы и не было, то есть организаторов!
Ребята, вы просто нереально крутые, именно благодаря вам у стольких молодых ученых и не только ученых появилась возможность познакомиться друг с другом, с топовыми людьми из мира науки и самыми последними достижениями и трендами. Итак, еще раз всем-всем-всем огромное спасибо за эти драйв, фан и дружественную атмосферу, уверен, что все мы вынесли кучу пользы из этой крайне насыщенной недели! До новых встреч особенно в чатике на стримах!
Артём Богомолов Оригинал: www. Рисунок 6. Непременная часть долгих вечеров на зимних школах — круглые столы и дебаты.
А в это время ведущая видеоблога « Всё как у зверей » Евгения Тимонова говорит об альтернативных форматах популяризации научного знания. Зимние же школы ориентированы больше на современную науку, чем на бизнес. Лекторы, приезжающие на зимнюю школу, обычно уже седовласы и общепризнанны; помимо российских научных гигантов приезжают и известные иностранные ученые.
Лекции, читаемые ими, посвящены фундаментальным вопросам науки и прорывам последних лет. Хотя и на зимних школах всегда есть сильная бизнес-секция, но посвящена она скорее не прикладным вопросам, а фундаментальным взаимоотношениям науки и бизнеса: каковы стратегии превращения научных разработок в решения для бизнеса, в каком случае ваше научное открытие имеет бизнес-применения, и тому подобное. Я впервые побывал на школе Future Biotech, и, честно говоря, не ожидал, что это окажется настолько полезно и весело одновременно.
Конечно, я не сомневался, что лекции будут предельно интересными, но последующее их горячее обсуждение с другими участниками — вещь достаточно уникальная на фоне рутинного обучения в университете и даже работы в лаборатории. Спасибо, ребята, за то, что у вас разные научные интересы, но всех объединяет энтузиазм и интерес к науке в целом! Из вечерних мероприятий меня наиболее впечатлили дебаты.
Когда мы в 10 вечера садились обсуждать документ, я и представить себе не мог, что к 4 утра я что-то пойму и смогу даже потом вести хотя бы отчасти аргументированную беседу об устройстве научных институтов и перспективах их реформирования. Немного жалею, что не поучаствовал в научных боях, но получил огромное удовольствие от наблюдения за этим шоу! Уехал со школы с кучей позитивных эмоций и интересных идей, так что считаю, что школа удалась.
Спасибо организаторам, вы делаете очень важное дело! Успехов в дальнейшем! Алексей Агапов Оригинал: www.
За время существования школ на них успели перебывать многие достойные русскоязычные и не только русскоязычные лекторы: Александр Каплан рассказывал про нейроинтерфейсы, Сергей Лукьянов — про то, как массовое секвенирование прорубает новые дороги для иммунологии, Федор Кондрашов — про свой излюбленный эпистаз и расширяющуюся белковую вселенную, Константин Северинов на каждой зимней школе поведывал что-нибудь новенькое про криспры и Сколтех, а работающий в Австрии хорват Боян Жагрович рассказывал свою рисковую и чрезвычайно соблазнительную теорию возникновения генетического кода см. Приложение 1. Само собой, на школе бывают не только лекции и семинары: помимо этого на ней кипит жизнь во множестве проявлений: Есть постерная сессия, которая прекрасна не только сама по себе, но и благодаря презентации постеров, которая интереснее любого стендапа: на презентации танцуют о своих постерах, поют о них, играют о них на музыкальных инструментах, читают проникновенные стихи и разыгрывают театральные сцены.
Слайд 4 Биологические технологии биотехнологии обеспечивают управляемое получение полезных продуктов для различных сфер человеческой деятельности, базируясь на использовании каталитического потенциала биологических агентов и систем различной степени организации и сложности — микроорганизмов, вирусов, растительных и животных клеток и тканей, а также внеклеточных веществ и компонентов клеток. В широком смысле: биотехнология занимается производством коммерческих продуктов, образуемых микроорганизмами в результате их жизнедеятельности. Формально это применение научных и инженерных принципов к переработке материалов живыми организмами с целью создания товаров и услуг.
Мало того, по признанию некоторых ученых, работающих в биотехнологической отрасли, они были вынуждены изменить данные своих результатов по «настойчивой просьбе» спонсоров. Например, еще первое предмаркетинговое исследование генетически модифицированного томата на безопасность, проведенное в США в 1994 г. Однако позже открылось, что в течение двух недель после его проведения 7 из 40 подопытных крыс умерли, и причина их смерти неизвестна. В конце 90-х годов английские ученые на основании проведенных опытов впервые заявили о том, что употребление подопытными крысами генетически модифицированного картофеля привело к серьезным повреждениям их внутренних органов и иммунной системы. У животных возник целый набор серьезных изменений желудочно-кишечного тракта, печени, зоба, селезенки. Но самое зловещее - уменьшился объем мозга. Тогда же были вовремя остановлены опыты по введению в сою генов бразильского ореха. В продажу мог быть выпущен аллерген, смертельно опасный для тысяч людей, не переносящих орехи. Причем тестирование животных не выявило опасности, а тестирование ГМ-продуктов на людях-аллергиках не входит в обязательную программу испытаний новых продуктов. Так что аллерген был вовремя замечен только по счастливой случайности. Проведенная в России в 2006 году проверка влияния ГМ-сои, устойчивой к гербициду раундапу, на потомство лабораторных крыс показала повышенную смертность крысят первого поколения, недоразвитость выживших крысят, патологические изменения в органах и отсутствие второго поколения. Возможным ущербом для здоровья людей опасность ГМО-растений не ограничивается. Доказано, что некоторые ГМ-растения смертельно опасны для живущих на поле или рядом с ним грызунов и насекомых. Последствия нарушения биоценоза в окрестностях плантаций таких ГМ-растений никто не берётся предсказать. Также существует реально доказанная опасность передачи трансгена от культурного растения его дикорастущим сородичам. В результате может получиться устойчивый к действию пестицидов и гербицидов, не боящийся ни жары, ни холода, не угрызаемый жуками и паразитами и страшно плодовитый суперсорняк. По этой причине, в США, являющихся лидером в создании и производстве ГМ-растений, плантации натуральных и генетически модифицированных растений далеко разнесены друг от друга. Например, во Флориде ГМ-хлопок разрешено выращивать только в северной части штата, а натуральный — в южной. Обещанное увеличение урожая оказалось не столь значительным, чтобы закрыть глаза на многочисленные страшилки генно-модифицированных растений. В итоге восторженное настроение в мире сменилось на осторожное. В Европе целые города и округи позиционируют себя как «зоны, свободные от ГМО». В России производство ГМО запрещено а импорт почему-то разрешён. У нас в продажу допускаются продукты с добавлением ГМО. Есть сведения, что в нашей стране этот порядок не всегда соблюдается. Перспективы: Скептические. В 2008 г. ООН и Всемирный банк впервые выступили против крупного агробизнеса и генетически-модифицированных технологий. Эксперты ООН убеждены, что в голоде сотен миллионов людей заинтересован крупный агробизнес, который строит свою политику на создании искусственного дефицита продовольствия. Впервые ООН фактически осудила использование в сельском хозяйстве генетически-модифицированных технологий, поскольку они, во-первых, не решают проблемы голода, а во-вторых, представляют угрозу здоровью населению и будущему планеты. В последние годы сложилось впечатление, что крупные агропромышленные корпорации потихоньку сворачивают исследования по генной модификации растений и переключаются на более благодарную сферу деятельности - микроорганизмы. Корни биотехнологии применительно к микроорганизмам уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, брожение с участием микроорганизмов, было известно и широко применялось еще в древнем Вавилоне. Микроорганизмы синтезируют целый ряд ценных веществ. С развитием генной инженерии удается не только увеличить продуктивность биосинтеза, но и получать вещества, химическое производство которых ранее было невозможно. Пищевые добавки, аминокислоты, витамины, ароматизаторы, ферменты — вот далеко не полный перечень веществ, которые получают при помощи генетически модифицированных микроорганизмов. В ряде случаев, биотехнологические методы производства этих соединений уже заменили традиционный химический синтез. Преимущества биотехнологического производства с использованием генетически модифицированных микроорганизмов очевидны: микроорганизмы быстро растут и, в большинстве случаев, легко культивируются. В отличие от традиционного химического синтеза, биосинтез протекает при нормальных условиях, а значит, для него не требуется создание таких дополнительных условий как повышенная температура, давление, или применение агрессивных химикатов. Генетически модифицированные микроорганизмы используются в настоящее время для производства фармацевтических препаратов, вакцин, продуктов тонкого органического синтеза, пищевых добавок и других сопутствующих соединений пищевой промышленности. Вот только некоторые примеры продуктов микробного синтеза: витамин B2, витамин С, лимонная кислота, консерванты натамицин, низин, лизоцим, аминокислоты глутамат, аспартам, цистеин. Впечатляющим успехом является производство в промышленных масштабах человеческого инсулина, вырабатываемого генно-модифицированной кишечной палочкой. Кроме крупных корпораций, биосинтезом сейчас занялись небольшие стартапы, выращивающие генно-модифицированные дрожжи. Роботизированные системы тасуют гены иногда с умыслом, иногда случайным образом, получая и проверяя десятки тысяч штаммов в месяц. Наиболее удачные выращиваются на продажу в чанах вместимостью 200 тыс. Таким образом им удается получать различные вещества, гораздо более дешевые, чем оригиналы — от пряностей ваниль, шафран, экстракты цитрусовых и сандалового дерева до лекарств пока известно о морфине и противомалярийном препарате артемизинине. Методы биосинтеза с использованием микроорганизмов встречают в мире гораздо меньшее сопротивление, чем выращивание генно-модифицированных растений. Связано это с тем соображением, что в качестве продукции биосинтеза человеком употребляются не сами микроорганизмы, а продукты их метаболизма. Считается, что методы контроля качества исключают попадание генетического кода бактерий и грибов в конечный продукт, и этот продукт ничем не отличается от природного оригинала. Нельзя, правда, не вспомнить о случае в США в конце 80-х годов, когда бактерия, генно-модифицированная для производства пищевой добавки триптофан, стала вдруг по неизвестным причинам также вырабатывать токсичное вещество этилен-бис-триптофан. В результате употребления пищевой добавки погибло 38 человек, и более тысячи стали инвалидами. К счастью, в дальнейшем подобных крупных инцидентов не было зафиксировано. Перспективы: Очень хорошие.
С помощью новых вакцинных препаратов возможно предупреждение инфекционных болезней. Слайд 13 Биотехнология в медицине Слайд 14 Метод стволовых клеток: лечит или калечит? Японские ученые под руководством профессора Синья Яманака из Университета Киото впервые выделили стволовые клетки из человеческой кожи, предварительно внедрив в них набор определенных генов. По их мнению, это может послужить альтернативой клонированию и позволит создать препараты, сравнимые с теми, что получаются при клонировании человеческих эмбрионов. Американские ученые практически одновременно получили аналогичные результаты. Но это не означает, что через несколько месяцев можно будет полностью уйти от клонирования эмбрионов и восстанавливать работоспособность организма при помощи стволовых клеток, полученных из кожи пациента. Сначала специалистам придется убедиться в том, что «кожные» столовые клетки на самом деле так многофункциональны, как кажутся, что их можно без опасений за здоровье пациента вживлять в различные органы и что они при этом будут работать. Главное опасение — как бы такие клетки не представляли риска в отношении развития рака. Потому что главная опасность эмбриональных стволовых клеток заключается в том, что они генетически нестабильны и обладают способностью развиваться в некоторые опухоли после трансплантации в организм Приёмы генной инженерии позволяют выделять необходимый ген и вводить его в новое генетическое окружение с целью создания организма с новыми, заранее предопределёнными признаками. Методы генной инженерии остаются ещё очень сложными и дорогостоящими. Но уже сейчас с их помощью в промышленности получают такие важные медицинские препараты, как интерферон, гормоны роста, инсулин и др. Селекция микроорганизмов является важнейшим направлением в биотехнологии. Развитие бионики позволяет эффективно применять для решения инженерных задач биологические методы, использовать в различных областях техники опыт живой природы. Слайд 16 Трансгенные продукты: за и против?
биотехнологии - Сток картинки
Найдите нужное среди 340 529 стоковых фото, картинок и изображений роялти-фри на тему «биотехнологии» на iStock. Главное по теме «Биотехнологии» – читайте на сайте производственное использование биологических агентов для получения ценных продуктов и осуществления целевых превращений в биотехнологических процессах.
Презентация "Биотехнологии" (11 класс) по биологии – проект, доклад
Биотехнологии являются одной из самых быстрорастущих и инновационных отраслей. Привлечены партнеры из ERA-Net EuroTransBio (ETB). (эффективный инструмент финансирования малых предприятий, работающих в области современных биотехнологий). Изобретение относится к биотехнологии и сельскохозяйственной микробиологии и касается штаммов, которые повышает урожайность пшеницы и содержание белка в зерне. В этом видеоуроке мы обсудим биотехнологию: узнаем, где она используется, рассмотрим ее современное состояние и перспективы на ближайшее ание.