«Впервые мы получили поляриметрические изображения в масштабе горизонта событий черной дыры в центре нашей Галактики, Sgr A*», — говорят исследователи. В рамках международного проекта «Event Horizon Telescope» астрономам впервые за всю историю наблюдений удалось получить снимок черной дыры, а точнее ее тени, «отбрасываемой» на светящийся диск из перегретого газа и пыли.
Первое изображение чёрной дыры в центре Млечного пути
В 1915 году Эйнштейн опубликовал теорию общей теории относительности, удивительно успешную теорию гравитации, которая вытеснила концепцию Ньютона «таинственное действие на расстоянии» с новым подходом к геометрии пространства-времени. Вместо того, чтобы рассматривать объекты, притягиваемые к другой массе силой гравитации, общая теория относительности описывает способ, которым масса и энергия деформируют пространство, а объекты, включая свет, просто следуют контурам искривленного пространства. Общая аналогия - представить батут или матрас с шаром для боулинга, вызывающим углубление на окружающей поверхности, в то время как движущийся рядом мрамор следует по пути наименьшего сопротивления и спирали внутрь. Перефразируя физика Джеймса Уилера: «искривленное пространство говорит материи, как двигаться, в то время как материя говорит пространству, как изгибаться». Концепция проста и изящна, но математика для решения конкретных задач устрашает. Через год после публикации Эйнштейн был удивлен, получив письмо от молодого математика Карла Шварцшильда, который тогда находился на российском фронте Первой мировой войны, в котором было дано точное решение общих уравнений относительности для сферической массы достаточного веса, которая бы заставила пространство-время изгибаться так сильно, что вся материя и свет будут захвачены внутри.
Граница, из которой ничто не могло уйти, стала называться «горизонтом событий». Эйнштейн поздравил Шварцшильда с его математическим достижением, но утверждал, что таких объектов на самом деле не существует. Вселенная не должна содержать все явления, которые соответствуют уравнениям теории. Немногие физики взялись за этот вопрос, но в 1939 году Роберт Оппенгеймер и Хартленд Снайдер рассчитали, как массивная звезда, лишенная ядерного топлива, будет бесконечно взрываться до точки «сингулярности». Ничто, кроме ее гравитационного поля, не будет сохраняться для внешних наблюдателей.
Уникальные свойства черной дыры продолжают оставаться предметом изучения великих умов теоретической физики. Общая теория относительности описывает материю и пространство в большом масштабе, в то время как квантовая механика описывает свойства очень малых с выдающейся предсказательной силой. Но эти две теории имеют фундаментальные различия в своих математических основах, включая саму природу пространства, что делает их несовместимыми везде, где они оба необходимы для описания реальности. Это существо, где интенсивная масса ограничена крошечными пространствами. Два места, где происходит это столкновение теорий, находятся в начале вселенной большого взрыва и в черных дырах.
Общая теория относительности предсказывает, что ничто не остановит коллапс до сингулярности звезды, более чем в десять раз превышающей массу Солнца, когда оно исчерпало внешнее давление своего ядерного синтеза. И ничто не остановит падение неосторожного космического путешественника, когда он упадет в черную дыру. Но может ли вселенная действительно иметь массовый контракт с бесконечно малой точкой? Многие ученые надеются, что возможная теория квантовой гравитации покажет, что такая особенность предотвращена. Поиски этой теории остаются одной из величайших задач современной физики.
Первое «обнаружение» черной дыры произошло не от ее непосредственного наблюдения, а от анализа ее взаимодействия с соседними звездами. Более десяти лет, начиная с 1960-х годов, усовершенствования в орбитальных рентгеновских обсерваториях предоставили подробную информацию о мощном источнике рентгеновских лучей, названном Cygnus X-1. Было установлено, что оптически видимая звезда вращается вокруг оптически темного спутника, который был источником рентгеновского излучения.
За объектом наблюдала команда из 200 человек в течение нескольких дней в апреле 2017 года. Ученым понадобилось два года, чтобы обработать весь массив данных, полученных от телескопов. Однако ученые остановились на черной дыре из галактики М87.
В дальнейшем были получены изображения джетов квазаров и тени черной дыры в центре Млечного Пути. Группа астрономов во главе с Светланой Йорстад Svetlana Jorstad из Института астрофизических исследований Бостонского университета представила результаты наблюдений Телескопом горизонта событий за квазаром NRAO 530 в апреле 2017 года, который выступал как калибровочная цель перед наблюдениями за центром Млечного Пути. NRAO 530 представляет собой квазар с плоским радиоспектром, который демонстрирует сильную переменность яркости в оптическом диапазоне и ярок в гама-диапазоне. Объект относится к категории блазаров и обладает релятивистским джетом, красное смещение NRAO 530 составляет 0,902, что означает, что мы видим его таким, каким он был 7,5 миллиардов лет назад. Структура ядра оказалась сложнее, чем предполагалось ранее, в нем наблюдаются два ярких компонента.
Черную дыру в ней в 2011 году обнаружила группа американских астрономов во главе с Карлом Гебхардтом Karl Gebhardt из Университета Техаса University of Texas in Austin. Открытие они сделали с помощью 8-метрового телескопа на Гавайских островах 8. Астрономы уже тогда определили массу объекта - около 7 миллиардов солнечных. Чудовищными оказались и размеры «монстра» - внутри него целиком поместилась бы Солнечная система. Далеко не все верили, что черная дыра может быть такой огромной. Но теперь убедились в этом, что называется, увидели собственными глазами. Галактика М87 на снимке, сделанном радиотелескопом Chandra X-ray Observatory Наблюдение за объектом в галактике М87 астрономы вели в апреле 2017 года. Собрали более одного петабайта данных, 2 года их обрабатывали, пока не получили искомое изображение. Оно размытое, но представление об объекте дает. Более того, соответствует прежним — не столь давно выдвинутым - теоретическим представлениям. О том, как черная дыра должна выглядеть на самом деле еще в 2013 году рассказывал астроном из Университета Калифорнии в Беркли University of California, Berkeley Айман Бин Камруддин Ayman Bin Kamruddin , работавший в команде «Телескопа горизонта событий».
Опубликован первый снимок гигантской черной дыры в Млечном Пути
Когда свет поляризован, он колеблется в определённом направлении, и хотя для человеческого глаза он выглядит так же, как обычный свет, исследователи изучают поляризованный свет, чтобы узнать об ориентации магнитных полей. Мариафелиция Де Лаурентис, заместитель научного сотрудника проекта, отмечает, что это открытие подразумевает универсальные физические процессы, регулирующие питание и испарение чёрных дыр. Помимо этого, оно способствует улучшению теоретических моделей и симуляций, а также расширяет понимание физики чёрных дыр вблизи горизонта событий.
Галактика считается второй по яркости в Скоплении Девы и одной из самых массивных галактик в Местном сверхскоплении галактик, или Суперкластере Девы. Сверхмассивная чёрная дыра, которая делает ядро галактики активным, является мощным источником различного излучения, особенно радиоволн. Также она порождает релятивистскую струю джет.
Длина такого джета достигает примерно пяти тысяч световых лет.
Источник: Без источника Ученые использовали дополнительные программные методы и алгоритмы визуализации для восстановления и детализации изображения. Они также использовали данные 2017 года, полученные с помощью глобальной сети телескопов EHT Телескоп горизонта событий. Эта сеть состоит из восьми связанных между собой обсерваторий в разных частях Земли, которые изучают одни и те же космические объекты.
Поляризованный свет помогает уменьшить блики от ярких источников, что позволило команде получить более четкое представление о крае черной дыры и составить карту линий магнитного поля, присутствующих там.
Важно, что эти изображения представлены в поляризованном свете, потому что это позволяет нам «видеть» и понимать геометрию магнитного поля вокруг черной дыры — важнейший аспект, который невозможно уловить с помощью неполяризованного света». Плазма вокруг сверхмассивной черной дыры движется вдоль силовых линий магнитного поля, поскольку плазма состоит из заряженных частиц. Вращение этих частиц создает поляризацию света, перпендикулярную магнитному полю.
Event Horizon Telescope captures images of NRAO 530 quasar
12 мая астрофизики проекта Event Horizon Telescope опубликовали первую в истории фотографию сверхмассивной чёрной дыры Стрелец A из самого центра нашей Галактики. A large team of scientists has used data from the Event Horizon Telescope (EHT) project to create images of the NRAO 530 quasar. Коллаборация Телескопа горизонта событий (EHT) показала первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути.
«Око» телескопа направили на ярчайший источник света во Вселенной: что увидели ученые
Дыра в центре Дыра в центре Для того, чтобы проникнуть за эту завесу, был организован проект Event Horizon Telescope (EHT, Телескоп горизонта событий). The paradigm-shifting observations made with the Event Horizon Telescope — composed of ALMA, APEX and six other radio telescopes — have produced an image of the gargantuan black hole at the heart of distant galaxy Messier 87. и миллиметровых обсерваторий «Телескоп горизонт событий» (EHT) и Европейская южная обсерватория (ESO) получили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный путь, в которой расположена Земля. Next Generation Event Horizon Telescope.
Получен первый в истории снимок сверхмассивной черной дыры
Изображение: EHT Для визуализации астрономы использовали поляризацию света — когда свет создаётся колеблющимися в определённом направлении электромагнитными волнами. Именно так работают 3D-очки — две линзы имеют разную поляризацию, пропускающую только часть света, поэтому наш мозг может создавать в голове объёмное изображение. Поляризованный свет помогает уменьшить блики от ярких источников света, что и позволило команде учёных получить более чёткое представление о краях черной дыры и составить карту линий магнитного поля. Благодаря поляризации света эти изображения показывают удивительно подробную и упорядоченную магнитную структуру вокруг чёрной дыры. Мы можем «видеть» и понимать геометрию магнитного поля.
Ученые смогли получить изображение, объединив порядка восьми телескопов, расположенных на разных континентах. Такой «виртуальный телескоп» позволил взглянуть на объект с разных углов зрения. За объектом наблюдала команда из 200 человек в течение нескольких дней в апреле 2017 года. Ученым понадобилось два года, чтобы обработать весь массив данных, полученных от телескопов.
Поляризованный свет помогает уменьшить блики от ярких источников света, что и позволило команде учёных получить более чёткое представление о краях черной дыры и составить карту линий магнитного поля. Благодаря поляризации света эти изображения показывают удивительно подробную и упорядоченную магнитную структуру вокруг чёрной дыры. Мы можем «видеть» и понимать геометрию магнитного поля. А учитывая, что оно играет ключевую роль в процессе выброса ими быстрых и длинных струй, подобные исследования также позволят лучше понимать природу этих экстремальных явлений. На нём можно увидеть структуру магнитного поля вдоль струи.
Измерение поляризации говорит о том, как именно магнитное поле обволакивает сверхмассивную черную дыру. Эти поля играют ключевую роль в процессах аккреции и выбросах вещества, непосредственно это повлияет на наблюдение черных дыр и на наше понимание физики, управляющей этими экстремальными объектами». Наблюдение тех же магнитных структур в нашей сверхмассивной черной дыре позволяет предположить, что эти основные механизмы являются общими для всех черных дыр. На заднем плане справа: Коллаборация Планка нанесла на карту поляризованное излучение пыли по всему Млечному Пути.
5 неподвластных учёным загадок космоса, которые раскроет только телескоп Уэбб
О том, как черная дыра должна выглядеть на самом деле еще в 2013 году рассказывал астроном из Университета Калифорнии в Беркли University of California, Berkeley Айман Бин Камруддин Ayman Bin Kamruddin , работавший в команде «Телескопа горизонта событий». Уверял, что черные дыры совсем не такие, какими их принято было изображать — эдакими воронками и пузырями. На основе данных, полученных с помощью радиотелескопов, Камруддин и его коллеги смоделировали «правильное» изображение. Получился объект, похожий на полумесяц. Что, как теперь выяснилось, оказалось очень близко к реальности. По мнению астрономов из Беркли, полумесяц получается от того, что вокруг черной дыры вращается и светится газовый диск в виде пончика, край которого засасывается внутрь. Сама черная дыра предстает пятном в центральной части полумесяца. Как в воду глядели. Модель черной дыры, сделанная 6 лет назад: оказалась очень близкой к оригиналу. Подробно о всех деталях нынешнего сенсационного открытия рассказывает сайт NASA — специалисты американского космического агентства принимали самое деятельное участие в исследованиях.
Напомню, в 2019-м именно этот Event Horizon точно так же дразнил публику новым открытием, которое потом оказалось первым в истории реальным «фото» черной дыры. Всё-таки мы говорим о проекте телескопа. Посмотрел стрим ученых, впечатлился, рассказываю. Event Horizon — массив из 11 радиотелескопов из разных стран, связанных друг с другом. Вместе они работают над получением одного более четкого изображения. За счет математических моделей и ресурсов суперкомпьютеров, анализирующих эти модели, получается телескоп размером с Землю. После получения первого фото черной дыры группы ученых сосредоточились на новом объекте — черной дыре в центре нашей галактики.
Using the Event Horizon Telescope, scientists obtained an image of the black hole at the center of galaxy M87, outlined by emission from hot gas swirling around it under the influence of strong gravity near its event horizon. Credit: Event Horizon Telescope collaboration et al. This is because the last major announcement from the Event Horizon Telescope project was three years ago when they released the first-ever image of a black hole and its shadow see above image.
Это делает их практически невидимыми для обычного наблюдения. Несмотря на то, что саму чёрную дыру невозможно наблюдать, вращающийся газ и вещество в её окрестностях излучают достаточно яркий свет, который можно зарегистрировать. Для получения нового изображения коллаборация Event Horizon Telescope использовала эффект поляризации света, что позволило отобразить мощные магнитные поля, окружающие чёрную дыру.
Event Horizon Telescope
Блазар: цель телескопов, снявших силуэт черной дыры | Европейская южная обсерватория совместно с "Телескопом горизонта событий" представили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный Путь, в которой находится Земля. |
Статьи по теме «Event Horizon Telescope» — Naked Science | Консорциум Event Horizon Telescope (EHT) с 2006 года работал над тем, чтобы получить снимок горизонта событий сверхмассивной черной дыры. |
На фото показали магнитное поле вокруг сверхмассивной чёрной дыры нашей Галактики - Лайфхакер | Именно в этот день состоялась конференция ученых проекта Event Horizon Telescope (EHT), на которой были обнародованы изображения сверхмассивной черной дыры Стрелец А*, которая находится в самом центре нашей галактики. |
Event Horizon Telescope
Они также использовали данные 2017 года, полученные с помощью глобальной сети телескопов EHT (Телескоп горизонта событий). Первая сверхмассивная черная дыра, изображение окрестностей которой было получено при помощи Телескопа горизонта событий, предоставила также и то, что исследователи называют «однозначным доказательством вращения черных дыр». Event Horizon Telescope Collaboration Stub. Ученые из коллаборации Телескопа горизонта событий (EHT) показали первое в истории изображение тени сверхмассивной черной дыры, находящейся в самом центре.
Телескоп горизонта событий
Международная группа учёных, работающая в рамках проекта «Телескоп горизонта событий» (Event Horizon Telescope — EHT), получила изображения квазара NRAO 530, который находится на расстоянии 7,5 млрд световых лет от Земли. Ученые хотят использовать Телескоп Горизонта Событий, чтобы заснять на видео, как черная дыра Sagittarius A* в центре нашей галактики затягивает в себя то, что находится вокруг. В среду представители сети Event Horizon Telescope показали первый в истории снимок окрестностей горизонта событий черной дыры в центре галактики М 87. Наблюдения с использованием Телескопа горизонта событий в течение нескольких лет подтвердили наше предсказание», — рассказал Захаров.