Образец "ядерной батарейки" состоял из двухсот алмазных преобразователей, чередуемых слоями фольги из никеля-63 и стабильного никеля. Новости / Батарейки и аккумуляторы. Российские ученые создали атомную батарейку, которая способна работать до 20 лет.
Что за ядерную батарейку создали российские учёные?
В природе он получается в высоких слоях атмосферы под воздействием радиации. Тритий научились получать и искусственно. Только стоит учесть, что килограмм этого элемента стоит несколько десятков миллионов долларов. Излучение, вызванное распадом этого элемента, считается безопасным для человека. Вырабатывает NanoTritium очень мало — от 50 до 300 нА. Однако такой аккумулятор подойдет для питания множества микроэлектронных устройств. Он уже применяется в системах с ограниченным доступом.
В труднодоступных и опасных местах, о которых хочется забыть на пару десятков лет. Стоит один аккумулятор свыше 1000 долларов США. Эта технологии позволила значительно уменьшить токи утечки, а, следовательно, и потребление энергии. Первоначально high-k диэлектрики планировалось масштабно применять в интегральных схемах, начиная с 2007 года. То есть одновременно с коммерческой реализацией 45-нм техпроцесса. Действительно, по факту первыми центральными процессорами, оснащенными этой технологией, стали решения поколения Penryn.
Что дает использование high-k диэлектриков?
Как отмечают авторы опубликованного видеоролика, плутоний излучает 87 лет, а, например, америций-241 — 432 года. Планируемая мощность батареи может достигать 500 Вт. Этого достаточно, чтобы, к примеру, обеспечить метеостанцию на Крайнем Севере, отмечают автора ролика.
Тритиевые «батарейки» могут служить в течение 15 лет. Источники питания мощностью 200 нановатт могут использоваться в датчиках различных аэрокосмических приборов, микросхем и т. Ранее канал «Наука» рассказал об изотопе урана.
Изделие способно работать до двадцати лет. Причём батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах и в труднодоступных или недоступных местах, например, в космосе, под водой или в высокогорных районах.
Российская «атомная батарейка» способна проработать 20 лет!
Выхлоп можно повысить еще минимум в три раза. А это значит, что ядерную батарейку можно сделать в 3-и раза дешевле. Ядерная батарейка на углероде 14 работающая 100 лет У данной атомной батарейке по сравнению с другими радиационными источниками энергии имеются следующие преимущества: Дешевизна. Долгий срок работы до 100 лет. Низкая токсичность. Способна работать в экстремальных температурных условиях.
Радио активный изотоп углерод 14 имеет период полураспада 5700 лет. Он абсолютно не токсичен и имеет низкую стоимость. Активную работу по модернизации ядерной батарейки ведут не только США и Россия, но и другие страны! Исследователи научились наращивать пленку на карбидной подложке. В результате чего подложка подешевела в целых 100 раз.
Такая структура устойчива к радиации, а это делает данный энергетический источник безопасным и долговечным. Применяя карбид кремния в ядерные батареи можно добиться ее работы при температуре в 350 градусов Цельсия.
Как сообщили «МК» разработчики новой технологии, до их изобретения в вышеуказанных приборах, работающих при сверхнизких температурах в космосе, под водой и в высокогорных районах, устанавливали батарейки с радиоактивным веществом никель-63.
Однако преобразование лучевой энергии в электрическую было не слишком эффективным из-за самой конструкции батарейки. Российским ученым удалось по-новому взглянуть на проблему: они нанесли тот же радиоактивный материал с обратной стороны от преобразователя энергии, что позволило контролировать обратный ток, который обычно «крадет» мощность батареи. Особая пористая структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока.
Его реализация позволила использовать процесс преобразования энергии во всем объеме материала, что увеличивает эффективность преобразования и открывает широкие возможности масштабирования данных элементов для получения больших мощностей или миниатюризации. Это обстоятельство дает право рассматривать данный подход к созданию ядерных батарей с энергиями до единиц кВт как универсальный. Ядерные батарейки — это источники тока, в которых энергия радиоактивного распада метастабильных ядер преобразуется в электричество. Выбор ядра для атомной батареи из широкого спектра радионуклидов, используемых в радиоизотопной энергетике, зависит от конкретной цели, для которой создается источник питания, режима его эксплуатации и целого ряда других условий. Области применения ядерных батарей разнообразны: в ближайшем будущем ядерные батарейки станут незаменимы на территориях, удаленных от инфраструктуры, например, в Арктике, на больших глубинах, на газо- и нефтепроводах большой протяженности, в космосе, а также в связи и медицине — там, где нужен длительный мониторинг без возможности подзарядки или замены источников энергии.
Кроме высокой удельной мощности, важны также простота и удобство наработки радионуклида например, в атомном реакторе и такой параметр, как отсутствие гамма-излучения. Поэтому, скажем, для ядерных батареек в кардиостимуляторах или датчиках артериального давления и показателей крови подходят только плутоний-238 и никель-63. Требование безопасного радиоизотопа резко сужает круг потенциальных кандидатов, поскольку ядра при распаде должны либо все переходить в основное состояние дочернего ядра, либо заселять возбужденные состояния дочернего ядра с очень низкой вероятностью.
Такая батарейка относительно безопасна для человека и способна работать до 20 и более лет, но из-за дороговизны производства пока не может использоваться в быту. Её применение возможно в специальных приборах, в том числе работающих в критических условиях — в космосе, под водой или в высокогорных районах. Об этом сообщает пресс-служба вуза. Разработка описана в научном журнале Applied Radiation and Isotopes. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Она относится к так называемым бетавольтаическим элементам.
Российские ученые оценили созданную в Китае ядерную батарейку
«Сердце ядерной батарейки — вакуумная капсула с радиоактивным изотопом. Благодаря энергии ядерного распада она нагревается до 1500°C и начинает светиться. Как будто концепции ядерных батарей недостаточно, есть и более эксцентричная идея — создавать батареи из искусственных наноалмазов. С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи. Принцип атомной батарейки в том, что радиоактивный изотоп, распадаясь, излучает тепло и разогревает капсулу, в которой он находится, до полутора тысяч градусов. Атомная батарея Nickel-63 diamond β-volt представляет собой алмазный полупроводниковый преобразователь и лист никеля-63 толщиной 2 мкм, уложенный слоями. Срок службы такой батарейки составляет не менее 50 лет, стоимость – около 4000 долларов.
Создана самая маленькая ядерная батарея — с ней смартфоны будут работать 50 лет без подзарядки
В Китае создали компактную ядерную батарею, которая может проработать 50 лет. Сейчас ученые патентуют свою технологию производства атомной батарейки на международном уровне. Атомная батарейка. Российская «атомная батарейка» способна проработать 20 лет! В Китае изобрели атомную батарейку, способную работать без подзарядки 50 лет. Принцип атомной батарейки в том, что радиоактивный изотоп, распадаясь, излучает тепло и разогревает капсулу, в которой он находится, до полутора тысяч градусов.
В МИФИ создали прототип плутониевой батарейки
А это надёжно? Защитный корпус батарейки проектируют с учётом условий эксплуатации. А ещё учитывают, какой именно изотоп используется внутри. Например, тритий даёт довольно слабое излучение, поэтому делать огромный корпус с толстыми стенками для него не нужно. А вот для плутония нужна куда более серьёзная защита: его рекомендуют применять только там, где минимален риск потенциальной аварии. А для гипотетического бытового применения можно использовать изотопы с низкими энергиями, например тритий или никель-63. Защитные корпуса для них могут быть тоньше и меньше, ведь глубина проникновения излучения очень низкая. Даже если человек случайно возьмёт в руки никель-63, ему будет достаточно просто помыть руки, чтобы избежать негативного влияния». Корпус разрабатывают так, чтобы он мог выдерживать большие нагрузки: перепады давления вплоть до полного вакуума, повышенные и пониженные температуры, удары и катаклизмы. Ведь существующие сейчас прототипы собираются использовать в довольно суровых условиях.
Даже если с источником питания что-то случится — контур закрытый, и радиация не выйдет наружу. А ещё современные батарейки оснащают системами контроля обстановки, в том числе мониторингом радиационного фона и геолокацией. Так можно следить за работой устройства, даже если оно находится в космосе или на дне океана. Для чего нужны такие батарейки Ядерные батарейки способны бесперебойно питать элементы годами, пока не достигнут периода полураспада радиоактивного изотопа. Для трития это 12 лет, а для никеля-63 — около 100. И даже после этого батарейка не перестанет работать совсем, просто её мощность упадёт вдвое. На протяжении всего срока службы её не надо подзаряжать или заменять источники питания, она полностью автономна. Реактор для кофеварки Поэтому ядерные батарейки можно использовать для питания критичных узлов. Например, на космических или арктических станциях.
Обычно ядерные батарейки применяют как дополнительный источник питания вместе с химическими и солнечными батареями. Дело в том, что в производстве ядерная батарейка очень дорогая — использовать её как основной источник электричества невыгодно, хотя характеристики это позволяют. Впрочем, свою сферу применения такие элементы питания всё-таки находят. Сейчас привлекают финансирование для создания малых серий тритиевых батареек, которые отправят в космос для питания важных технологических узлов. А плутониевые термофотовольтаические батарейки от НИЯУ «МИФИ» планируют пустить в производство в ближайшие три года — и использовать на объектах вдоль Северного морского пути, к примеру на маяках или метеостанциях. А в магазинах они появятся? К сожалению, вряд ли. Главная проблема с ядерными батарейками — стоимость. Любые радиоактивные изотопы очень дорогие.
Чтобы обогатить вещество и создать из него подходящее сырьё для батарейки, нужно годами держать его в центрифуге и постоянно питать оборудование, это требует больших вложений. В итоге себестоимость изотопов выходит огромной, а конечная цена одной батарейки может достигать миллионов рублей. Поэтому сейчас ядерные батарейки производят только по индивидуальному заказу, и позволить их себе могут исключительно огромные корпорации.
Срок службы данных изделий составляет пятьдесят лет. Об этом сообщает Fresh-News. Источником энергии для уникальных батареек послужил изотоп никеля-63.
Кроме высокой удельной мощности, важны также простота и удобство наработки радионуклида например, в атомном реакторе и такой параметр, как отсутствие гамма-излучения — поэтому, скажем, для ядерных батареек в кардиостимуляторах или датчиках артериального давления и показателей крови подходят только плутоний-238 и никель-63. Кроме выбора радиоизотопа принципиально важным является выбор схемы преобразования энергии ядерного распада в электричество. На практике преобразование ядерной энергии в электрическую осуществляется преимущественно по непрямому ступенчатому принципу: энергия альфа- и бета-частиц сначала превращаются в другие виды энергии, например в тепловую, химическую, механическую или световую энергию, а они уже превращаются в электричество. Почему никель-63? Сегодня ученые НИЯУ МИФИ занялись исследованием возможностей использования никеля-63 в качестве радиоизотопа для ядерных батарей в гражданском секторе. Это наиболее перспективный радионуклид: в миниатюрном элементе питания от излучаемого этим изотопом мягкого бета-излучения легко создать защиту, а его период полураспада - более 100 лет - достаточно длительный. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный многократными соударениями излучаемых изотопом бета-частиц. Эта система является относительно простой, она представляет собой ансамбль плотно упакованных нанокластеров никеля, наночастицы которого осаждены на поверхности диэлектрика — оксида кремния.
Мы собираем факты, предпочитаем подтвержденные данные и указываем источники информации; в ногу со временем. Наш интернет-портал разработан таким образом, что с легкостью адаптируется под любое устройство, будь то компьютер, планшет или смартфон. Вы сможете следить за новостями, где бы ни находились! Сегодня получать новости о самых свежих событиях — просто! А с порталом «Новости 24» это еще и максимально удобно! Новостной агрегатор. Новости24 novosti24 — информационный портал новостные сайты и информационные ленты, свежие новости, свежий новость, последний новость.
Почему не делают смартфоны и ноутбуки на атомных батарейках? И могут ли они появиться в будущем?
Со слов Сергея Зырянова, руководителя изотопного отдела это единственное в мире предприятие, занимающееся изготовления радиоизотопа в промышленных масштабах. Для производства идеи данных атомных батареек будет использоваться радиоизотоп Никель-63. Сам изотоп добывают в ядерном реакторе из Никеля-62 - природного изотопа. Батареи в основу которых ляжет данное вещество будут производить низкое B-излучение, поглощение которого будет происходить уже внутри источника питания и не будет нести вред живым существам.
Как делают ядерные батарейки и зачем они нужны От кардиостимуляторов до космических аппаратов Наука 12. Они полностью автономны, способны функционировать много лет подряд и в теории могут применяться даже в быту.
Но пока такой сценарий далёк от реальности — и дело вовсе не в страхах по поводу радиации. Представьте себе батарейку, которая может работать годами. Её не нужно заряжать, она ничего не выделяет в окружающую среду и способна выдержать сильнейшие нагрузки без повреждений. Звучит как сказка, но такая технология существует. Речь идёт о ядерных батарейках, которые известны науке с 60-х годов.
Такие батарейки не найти в магазине. Их разрабатывают для долговременного питания важных технологических комплексов. Они стоят дорого, но зато крайне надёжны: их можно использовать даже на космических станциях. Что такое ядерная батарейка Ядерная батарейка — устройство, которое использует энергию распада радиоактивного изотопа, чтобы вырабатывать электроэнергию. Излучение внутри батарейки «ловят» с помощью специальных элементов, чаще всего полупроводниковых.
А они превращают ядерное излучение в электричество. В качестве источника могут использоваться разные изотопы, поясняет Сергей Леготин. Чаще всего говорят о батарейках на основе трития, плутония или изотопа никель-63. От вида изотопа зависит, сколько времени будет работать батарейка и какие мощности выдавать. Структуру, состоящую из изотопа и полупроводников, помещают внутрь специального защищённого корпуса.
Он спроектирован таким образом, чтобы радиация не выходила наружу, а сама батарейка могла пережить ударные нагрузки, перепады температур и давления. Получается надёжная и практически автономная конструкция, изолированная от окружающей среды. Ядерные батарейки не нуждаются в подзарядке и могут работать в течение многих лет. В теории — пока не достигнут периода полураспада изотопа, который в них находится. На практике ещё нужно учитывать деградацию других элементов, например полупроводников.
Какими бывают ядерные батарейки и как они работают Источники энергии на основе изотопов можно разделить на две категории: тепловые и нетепловые. Всё зависит от того, каким образом из энергии ядерного распада получают электричество. РИТЭГ: что было до ядерных батареек. Такие устройства использовали в космосе, в тех местах, где невозможно применять солнечные батареи. Например, на космических кораблях, которые отходят далеко от Солнца.
Внутри устройства — радиоактивный изотоп, который распадается естественным путём и при этом выделяет тепло. Специальные элементы преобразуют это тепло в электричество. РИТЭГ — хорошо изученная технология, но не слишком эффективная. При таком способе преобразования теряется много энергии.
Такая батарейка относительно безопасна для человека и способна работать до 20 и более лет. Её применение возможно в специальных приборах, в том числе работающих в критических условиях — в космосе, под водой или в высокогорных районах. Учёные Национального исследовательского технологического университета «МИСиС» представили компактную атомную батарейку, которая в десять раз мощнее и вдвое дешевле существующих аналогов. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры.
Европейцы активно используют для обогрева городов газ, но в данном случае важно лишь то, что мы так и не научились хранить большие объёмы энергии. Существующие технологии топчутся на месте уже несколько десятилетий, а автопроизводители никак не могут уйти от использования лития. Мобильные телефоны разражаются за несколько часов интенсивной работы, а бесперебойный станции громоздкие и недорогие. В настоящее время проблема не имеет решения, а твердотельные батареи пока массово не выпускаются. Теоретически, сдвинуться с мёртвой точки удастся к концу текущего десятилетия, но мы уже не раз слышали подобные рассказы от учёных и крупных аналитиков. Например, это могут быть различные имплантаты, находящиеся внутри человека годами. Необходимость замены батарейки без хирургической операции невозможна, а сфер, где требуется небольшой и очень мощный источник питания очень много. Недавно в научных изданиях появилась любопытная информация о компании Betavolt Technology, которая представила атомную батарейку. Размер батарейки немногим меньше монеты, а сама она способна обеспечивать энергией устройства в течение примерно половины века без необходимости дополнительной зарядки или технического обслуживания. На сайте Betavolt Technology отмечается, что в перспективе такая батарейка может быть использована не только в медицинских приборах, но и найдёт жизнь в потребительской электронике.
Сделано в России
Кроме выбора радиоизотопа принципиально важным является выбор схемы преобразования энергии ядерного распада в электричество. На практике преобразование ядерной энергии в электрическую осуществляется преимущественно по непрямому ступенчатому принципу: энергия альфа- и бета-частиц сначала превращаются в другие виды энергии, например в тепловую, химическую, механическую или световую энергию, а они уже превращаются в электричество. Почему никель-63? Сегодня ученые НИЯУ МИФИ занялись исследованием возможностей использования никеля-63 в качестве радиоизотопа для ядерных батарей в гражданском секторе. Это наиболее перспективный радионуклид: в миниатюрном элементе питания от излучаемого этим изотопом мягкого бета-излучения легко создать защиту, а его период полураспада - более 100 лет - достаточно длительный. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный многократными соударениями излучаемых изотопом бета-частиц. Эта система является относительно простой, она представляет собой ансамбль плотно упакованных нанокластеров никеля, наночастицы которого осаждены на поверхности диэлектрика — оксида кремния. Ключевая особенность предложенной системы заключается в том, что наночиастицы никеля распределены по размерам, средний размер частицы постепенно изменяется в выделенном направлении.
Их можно будет масштабировать для мобильных телефонов и до транспортных систем, а также для нужд электроэнергетики. Разработка имеет специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный центр, работающий на переработанных ядерных отходах углерода-14. Бета-излучение изотопов преобразуется в электрический ток.
Испытания батарейки показали, что радиационный фон остается в норме, а сама она не выделяет углекислый газ. При этом ее стержень «фонит» до 28 тыс. Разные форм-факторы атомных батереек Фото: ndb. Их конструкция работает на никелевом бета-гальваническом элементе, который служит около 20 лет. Эти элементы можно размещать на одежде и использовать их энергию для зарядки мобильных устройств. Термохимические ячейки Фото: misis. Эти панели можно будет устанавливать в окнах домов и офисов. Они будут аккумулировать энергию солнечного света в течение дня. А в 2020 году Tesla презентовала собственный инвертор солнечной энергии, который дополнит линейку домашних солнечных батарей компании. Он будет преобразовывать солнечную энергию в энергию постоянного тока, а затем — в энергию переменного тока для бытового потребления.
В зависимости от числа трекеров точки максимальной мощности, оно сможет выдавать от 3,8 кВт до 7,6 кВт мощности. Инвертор Tesla Фото: electrek. Система объединит солнечные тепловые коллекторы с параболическими зеркалами фокусируют лучи в одной точке , подземное хранилище тепла в осадочных породах образуются при низких температурах и давлении и электрогенерирующее оборудование на пару в виде трубок и турбины. При нагревании солнцем вода в трубках будет испаряться, а пар будет входить в турбину и одновременно закачиваться под землю, разогревая осадочную породу. Ночью вода под землей будет испаряться уже под воздействием разогретой породы. Получаемый пар используют для выработки электроэнергии.
Однако преобразование лучевой энергии в электрическую было не слишком эффективным из-за самой конструкции батарейки. Российским ученым удалось по-новому взглянуть на проблему: они нанесли тот же радиоактивный материал с обратной стороны от преобразователя энергии, что позволило контролировать обратный ток, который обычно «крадет» мощность батареи. Особая пористая структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока. В итоге при уменьшении размера самой батареи в три раза ее удалось сделать в 10 раз более мощной при том же сроке годности, как и ее предыдущие менее мощные аналоги — до 20 лет.
Получить объемы электроэнергии, необходимые для питания, например, телефона, от подобного устройства невозможно. Заявленного напряжения будет недостаточно, чтобы зарядить что-то сложнее простейших устройств. По словам Сергея Леготина, максимум, на что сгодится ядерная батарейка, — это использование ее в качестве аварийного элемента питания резервных датчиков или передачи коротких сигналов.
Ядерное питание: российские учёные создали атомную батарейку повышенной мощности
Американцы первые образцы своих атомных батареек устанавливали на спутники Transit 4A и 4B. В Китае изобрели атомную батарейку, способную работать без подзарядки 50 лет. В отличие от батарейки Росатома, бристольская атомная батарейка использует изотоп C 14 и может работать 5730 лет! Также известно, что атомная батарейка может быть создана на основе изотопа америций-241, в этом случае устройство будет работать 432 года. На фото: Новая российская атомная батарейка стала в десять раз мощнее и вдвое дешевле аналогов © НИТУ «МИСиС». примерно 100 лет).
Сделано в России
Отмечается, что ядерные батарейки работают за счет преобразования в электричество энергии распада метастабильных ядер. Сейчас ученые патентуют свою технологию производства атомной батарейки на международном уровне. Ядерная батарейка вошла в Единый отраслевой тематический план научно-исследовательских и опытно-конструкторских работ «Росатома». О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам.