Новости фрактал в природе

Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе. Если посмотреть на фрактал с близкого или дальнего расстояния, можно увидеть, как повторяются одни и те же узоры. Папоротник — один из основных примеров фракталов в природе.

Строка навигации

  • Фракталы в природе - 65 фото
  • Фракталы – Красота Повтора
  • Откройте свой Мир!
  • Математика в природе: самые красивые закономерности в окружающем мире
  • Удивительный мир фракталов

ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ

Фрактальная вселенная. Цицин Ф.А. | Дельфис Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе.
Физики нашли фракталы в лазерах Смотрите 27 онлайн по теме фрактал в природе.
Фрактальные узоры в природе и искусстве эстетичны и снимают стресс Посмотрите больше идей на темы «фракталы, природа, эрнст геккель».
Фракталы в природе (53 фото) Посмотрите больше идей на темы «фракталы, природа, эрнст геккель».

Исследовательская работа: «Фракталы в нашей жизни».

Международная команда исследователей под руководством ученых из Германии обнаружила молекулярный фрактал в цитрат-синтазе цианобактерии, ферменте микроорганизма, который спонтанно собирается в фигуру, известную в математике как «треугольник Серпинского». Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек. Деревья – один из самых квинтэссенциальных фракталов в природе.

Фракталы в природе и в дизайне: сакральная геометрия повсюду

Войти на сайт В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности.
Молния фрактал Деревья – один из самых квинтэссенциальных фракталов в природе.
Математика в природе: самые красивые закономерности в окружающем мире Найдите нужное среди 30 986 стоковых фото, картинок и изображений роялти-фри на тему «Fractals In Nature» на iStock.

Фракталы в природе (102 фото)

(с) Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек. Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе. Фракталы существуют не только в макро мире, но и на поверхности Земли. Фракталы часто встречаются в природе. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым».

Фрактальные закономерности в природе

Да, такая запись на первый взгляд кажется парадоксальной, и многие математики на первых порах с подозрением относились к подобной «магии». Но именно она в XVI веке помогла решить некоторые проблемные кубические уравнения. А потом комплексные числа нашли применение и в других областях, например в тригонометрии. Возвращаемся к нашему Мандельброту. Небольшая шпаргалка, чтобы напомнить, о чём шла речь: Изображение: Лев Сергеев для Skillbox Media Суть фрактала Мандельброта та же, что и у предыдущих: на каждой новой итерации мы используем значение функции из предыдущего шага. В результате получаются невероятные картины! Приближаясь к любым координатам множества Мандельброта, вы увидите всё новые и новые бесконечные узоры, которые напоминают изначальный вариант. Рассматривать и изучать такие фракталы можно бесконечно. Поэтому при разных значениях C, фрактал Жюлиа можно визуализировать по разному, например так: Изображение: Лев Сергеев для Skillbox Media Стохастические фракталы Если в геометрических и алгебраических фракталах формула постоянна, то в стохастических она меняется — и не один раз.

Изменение может проходить как по конкретному закону, так и произвольно, но в обоих случаях это приводит к фантастическому визуальному эффекту! Следующее изображение основано на нескольких фрактальных формулах: Изображение: Лев Сергеев для Skillbox Media С помощью сложных стохастических законов учёные могут воспроизводить структуры объектов живой природы. Добавляя отклонения на различных итерациях к таким фракталам, как дерево Пифагора, или снежинка Коха, мы можем получить изображение наклонившейся листвы или сгенерировать сколько угодно неповторимых снежинок. Фрактальная графика На принципе самоподобия основано целое направление в компьютерной графике. При таком подходе компьютер хранит не готовый объект, а лишь формулу его отрисовки, что значительно экономит память. Таким образом, появляется возможность рисовать конкретные объекты и абстрактные 3D-модели, описывая лишь часть итогового изображения. Например, можно сгенерировать известный папоротник Барнсли, указав формулу для построения одной ветви, количество итераций и добавив хаотичные изменения на последующих итерациях: Закон, описывающий папоротник Барнсли Изображение: Лев Сергеев для Skillbox Media Изображение, сгенерированное по формуле Барнсли Изображение: Лев Сергеев для Skillbox Media Фракталы в физике Принципы построения фракталов используются в физике, в таких разделах, как гидродинамика, физика плазмы, электродинамика и радиоэлектроника. Одно из самых заметных изобретений в этой области — фрактальная антенна, которая была разработана американским инженером Натаном Коэном в 1995 году.

Главное преимущество такой антенны заключается в её широком диапазоне рабочих частот. А ещё она занимает намного меньший размер, чем аналоги классической формы, и может выступать в качестве основы для подводных антенн. А чуть позже инженеры научились строить антенны на основе фракталов Серпинского, кривых Пеано и того же фрактала Коха. Фракталы в природе Как уже было сказано ранее, стохастические фракталы подарили науке новый подход к описанию природных объектов и явлений.

Последнее изменение: 2024-02-27 08:19 Бразильское растение араукария показывает фракталы в природе Когда вы думаете о фракталах, вы можете думать о плакатах и футболках Grateful Dead, пульсирующих всеми цветами радуги и закрученными сходствами. Фракталы, впервые названные математиком Бенуа Мандельбротом в 1975 году, представляют собой специальные математические наборы чисел, которые демонстрируют сходство во всем диапазоне масштабов, то есть они выглядят одинаково независимо от того, насколько они велики или малы.

Еще одна характеристика фракталов заключается в том, что они демонстрируют большую сложность, обусловленную простотой - некоторые из самых сложных и красивых фракталов можно создать с помощью уравнения, состоящего всего из нескольких членов. Подробнее об этом позже.

Та же задача, видимо, стоит и перед физикой.

И построение исчисления, включившего дискретные целые действительные значения фрактального оператора как частный случай, открывает реальные перспективы серьезного продвижения в решении указанной фундаментальной математической — физической — общенаучной — философской проблемы. Как потом оказалось, выражение это с точностью до тождественных преобразований совпало с оператором, найденным за 96 лет до этого Тарди; а через четыре года после меня эквивалентное повторение результата Тарди было опубликовано А. Светлановым [ 11 ].

Опуская для простоты некоторую «дополнительную функцию», аналог произвольной аддитивной постоянной неопределенного интеграла, имеем: 1 Или максимально компактно: 1а где Г — гамма-функция Эйлера. Вывод оператора занимал у меня полторы страницы и опирался на пару довольно рискованных шагов. Но результат оказался верен.

Как всегда при принципиальном шаге к новой картине мира, на пути встают исторически необходимые! В данном случае возражение их радикально. Начиная с аккуратного сомнения, скептик в данном случае весьма проницательный теоретик заключает: «Фракталы не являются реально существующими объектами» [ 14 ],с.

Реальные системы не являются фракталами в точном смысле этого термина, они могут быть только фракталоподобными». Отсюда и делается приведенный выше, вроде бы убийственный для фракталов вывод. Однако, «в конечном счете ничто так не помогает победе истины, как сопротивление ей» У.

Ведь вывод нашего критика напоминает, что по сути ни один объект теоретической науки, ни одна математическая модель природного объекта, процесса и т. Но в том трагедии нет. Ведь в действительности теоретические «точные науки» называются так.

Исторический опыт науки показывает, что внутренне непротиворечивые модели все более адекватно представляют свойства наблюдаемых объектов, что в целом растет предсказательная сила науки. Так и с фракталами. Да, «реальные системы не являются фракталами в точном [математическом] смысле этого термина, они могут быть только фракталоподобными».

Аналогично реальная материя не является «строго континуальной», а лишь «континуально-подобной» в определенных пределах, на нескольких маршах бесконечной лестницы масштабов, или «дискретно-подобной» на других ее участках. Для приближенного описания ряда свойств и закономерностей существующих систем достаточно того, что они в каких-то конечных интервалах масштабов удовлетворительно представляются идеальной моделью фрактальной системы. В этом и состоит соотношение любых теоретических моделей с реальностью.

В этом — единственно возможном и обычном во всей науке! Фрактальная Вселенная и А. Вот как об этом пишет, например, Е.

Фейнберг в очерке «Контуры биографии»: «Здесь [на военном заводе в Ульяновске] началась его творческая работа [- выполнены] четыре работы по теоретической физике. Из очерка А. Яглома «Товарищ школьных лет»: «Д.

Сахаров, отец Андрея, по приезде сына в Москву передал какую-то его научную рукопись Тамму через математика А. Лопшица, давнего знакомого Игоря Евгеньевича». А в письме сотрудников отдела теоретической физики им.

На оборонном заводе 1942 — начало 1945 г. Случилось так, что я имею информацию об одной из этих работ, непосредственно от И. В начале зимы 1959—1960 г.

В заключение беседы, уже провожая меня, И. На этом мы и распрощались. Пока остается неизвестным, какой именно путь молодой Андрей Сахаров нашел для построения того, что мы в эпоху фракталов вправе назвать фрактальным исчислением.

Но то, что Сахаров не только интересовался этим вопросом почти забытым тогда в математике и ставшим актуальным в физике лишь через 30 лет , но и решил его — судя по словам И. Тамма, непреложный факт. Мы можем констатировать, что по меньшей мере одна из остающихся неизвестными его первых работ была посвящена не «теоретической физике небольшого масштаба», а очень нетривиальной математике.

Сахаровым еще полвека назад, подобно тому, как молодые Галуа и Абель создавали теорию групп, в конечном счете, для Реальной Природы, а Н. Лобачевский на нее же примерял свою «воображаемую геометрию»... Заключение По существу, только начинающаяся всерьез «история фракталов» в современной науке, в нашей картине мира, помимо множества частных результатов и выводов, уже дает основание для ряда обобщающих заключений, на этом новом примере подтверждающих генеральные закономерности и тенденции развития науки — познания Вселенной.

Мы еще раз, на истории с фракталами, убеждаемся в парадоксальном характере научных революций и вообще крупных прозрений в науке, с удивлением и восторгом открываем то, что всегда видели вокруг себя, но не замечали. Фракталы-деревья растут вокруг нас. Но, вопреки пословице, до недавних дней за лесом мы не видели отдельного, всегда так или иначе фрактального дерева...

Фрактальные белые облака от века плыли у нас над головами по фрактально голубому небу... На фрактальном морском бережку мудрый Аристотель, прихлебывая фрактальную простоквашу, обдумывал важные, но совсем другие проблемы, не замечая этой; а его легкомысленный соплеменник, молодой древний грек, перебрав неразведенного фрактального вина из плодов фрактального виноградного куста, заплетающимися ногами выписывал фрактальную траекторию на площади у Парфенона... А уж совсем в нашу эпоху сонмы ученых, разбредясь по фрактальным маршрутам своих лабораторий, до мозолей на фрактальных извилинах изучали кто почву земли-матушки, кто фликкер-шум в радиоприемнике, кто переменные звезды и квазары; а кто углубился «в себя», в систему своих кровеносных сосудов или даже ресничек на стенках кишечника, и т.

Открытие фрактальности Мира еще раз подтвердило «поразительную эффективность математики в естественных науках» Е. Очевидно, приведенные выше сетования на то, что физическая концепция фракталов якобы «не имеет адекватного аппарата в традиционной математике» Дж. Лэн и др.

Математика и на этот раз оказывается, так сказать, «превентивной физикой»! Да, в физической Природе не существуют ни идеальный газ, ни континуальная материя, ни фрактальные объекты с «действительно бесконечной» лестницей иерархических этажей. Но это не делает беспредметными ни дифференциальное, ни интегральное, ни фрактальное!

Открытие фрактальности Вселенной распутывает гигантский клубок труднейших проблем во всех областях естествознания. Та «прореха» в картине мира, где не хватало фракталов, заполнялась, как обычно бывает, натягиванием на подобную «черную дыру» соседних элементов этой картины, что сильно деформировало полученный таким образом фрагмент изображения. Да и соседние, неестественно растягиваемые фрагменты искажались, а наши представления о Природе в уже изученных областях оказывались неадекватными, лишенными правильных связей и пропорций.

Ошибки, ранее не замечавшиеся рядом и на фоне соседней Гигантской Деформации, теперь-таки получают шанс на исправление. Какие конкретно неожиданные сдвиги и прорывы в этих соседних областях принесет установление фрактальности Вселенной — заранее сказать невозможно. Но есть уверенность, на основе всего предшествующего опыта познания Вселенной, что принесет!

Посмотрите потрясающие примеры фракталов в природе. Морские раковины.

Фракталы в природе

Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest! Смотрите 51 фото онлайн по теме фракталы в природе фото. Международная команда исследователей под руководством ученых из Германии обнаружила молекулярный фрактал в цитрат-синтазе цианобактерии, ферменте микроорганизма, который спонтанно собирается в фигуру, известную в математике как «треугольник Серпинского». Смотрите 66 фотографии онлайн по теме фракталы в природе. Просмотрите доску «Фракталы в природе» пользователя Александрина в Pinterest.

Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать

Фракталы в природе (53 фото) Деревья – один из самых квинтэссенциальных фракталов в природе.
ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ | Наука и жизнь (с) Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек.

Фракталы в природе презентация - 97 фото

Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. Одним из таких исследований является изучение фракталов в природе. Давай лучше рассмотрим дизайн фракталов в природе и науке, чтобы вернуть себе веру в волшебство.

Впервые в природе обнаружена микроскопическая фрактальная структура

Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Примеры объектов в природе, которые приближённо являются Ф., дают кроны деревьев, кораллы, береговые линии, снежинки. Фрактал – это геометрическая фигура, в которой один и тот же мотив повторяется в последовательно уменьшающемся масштабе. В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек. Фрактал – это геометрическая фигура, в которой один и тот же мотив повторяется в последовательно уменьшающемся масштабе.

Фрактальные узоры в природе и искусстве эстетичны и снимают стресс

А у тех — свои. Возникает структура, удивительно похожая на кровеносную систему человека. И опять возникает вопрос. Какова протяженность всей этой водной системы? Если измерять протяженность только основного русла — все понятно. В любом учебнике можно прочитать. А если все измерять? Опять в пределе бесконечность получается. Наша Вселенная Конечно, в масштабах миллиардов световых лет, она, Вселенная, устроена однородно.

Но давайте посмотрим на нее поближе. И тогда мы увидим, что никакой однородности в ней нет. Где-то расположены галактики звездные скопления , где-то — пустота. Почему распределение материи подчиняется иррегулярным иерархическим законам. А что происходит внутри галактик еще одно уменьшение масштаба. Где-то звезд больше, где-то меньше. Где-то существуют планетные системы, как в нашей Солнечной, а где-то — нет. Не проявляется ли здесь фрактальная сущность мира?

Сейчас, конечно, существует огромный разрыв между общей теорией относительности, которая объясняет возникновение нашей Вселенной и ее устройством, и фрактальной математикой. Но кто знает? Возможно, это все когда-то будет приведено к «общему знаменателю», и мы посмотрим на окружающий нас космос совсем другими глазами. К практическим делам Подобных примеров можно приводить много. Но давайте вернемся к более прозаическим вещам. Вот, например, экономика. Казалось бы, причем здесь фракталы. Оказывается, очень даже причем.

Пример тому — фондовые рынки. Практика показывает, что экономические процессы носят зачастую хаотичный, непредсказуемый характер. Существовавшие до сегодняшнего дня математические модели, которые пытались эти процессы описывать, не учитывали одного очень важного фактора — способность рынка к самоорганизации. Вот тут на помощь и приходит теория фракталов, которые имеют свойства «самоорганизации», воспроизводя себя на уровне разных масштабов. Конечно, фрактал является чисто математическим объектом. И в природе, да и в экономике, их не существует. Но есть понятие фрактальных явлений. Они являются фракталами только в статистическом смысле.

Тем не менее симбиоз фрактальной математики и статистики позволяет получить достаточно точные и адекватные прогнозы. Особенно эффективным этот подход оказывается при анализе фондовых рынков. И это не «придумки» математиков. Экспертные данные показывают, что многие участники фондовых рынков тратят немалые деньги на оплату специалистов в области фрактальной математики. Что же дает теория фракталов? Она постулирует общую, глобальную зависимость ценообразования от того, что было в прошлом. Конечно, локально процесс ценообразования случаен. Но случайные скачки и падения цен, которые могут происходить сиюминутно, имеют особенность собираться в кластеры.

Которые воспроизводятся на больших масштабах времени. Поэтому, анализируя то, что было когда-то, мы можем прогнозировать, как долго продлиться та или иная тенденция развития рынка рост или падение. Таким образом, в глобальном масштабе тот или иной рынок «воспроизводит» сам себя.

Работа алгоритма состоит в последовательном вычислении сумм, причем в формулу каждый раз подставляется значение z, полученное на предыдущем шаге. Ясно, что в этом случае алгоритм сводится к бесконечной формуле... Для любого значения числа с возможен один из двух результатов вычислений. Либо сумма постоянно растет - быстрее или медленнее, но рано или поздно "улетая" в бесконечность, либо она остается конечной, сколько бы шагов ни сделал алгоритм на практике берется не более 1000, что вполне достаточно. По мере роста числа шагов алгоритма выявляются новые и новые причудливые и стройные фрактальные структуры, неисчерпаемое богатство форм. А самое удивительное в том, что многие из них напоминают различные природные объекты: инфузории и снежинки, морские коньки и галактики, раковины и облака... Вот оно, самоподобие! Фрактальная геометрия природы выражается в том, что принцип самоподобия в приближенном виде выполняется во многих проявлениях: в линиях берегов морей и рек, в очертаниях облаков и деревьев, в турбулентном потоке жидкости и иерархической организации живых систем хотя нет ни одной реальной структуры, которую можно было бы последовательно увеличивать бесконечное число раз и которая выглядела бы при этом неизменной. Фрактальные структуры порождают процессы с обратной связью, когда одна и та же операция выполняется снова и снова, и результат одной операции является начальным значением для следующей. Проблемы, связанные с итерациями, возникают при изучении эволюции любой системы в любой области знания, от астрономии до биологии и экологии. Например, прочитать генетическую информацию ДНК человека в принципе возможно, не расшифровывая последовательно год за годом три миллиарда буквенных обозначений, а установив ключ, лежащий в основе кода. Несмотря на внешнее разнообразие встречающихся в природе самоподобных структур, все они обладают общей количественной мерой - фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов, на котором он рассматривается. Сложные биологические структуры и сигналы могут быть численно охарактеризованы всего лишь одним параметром - показателем фрактальной размерности 1993г. Первая международная конференция "Фракталы в естественных науках". Как уже отмечалось, фрактальным строением обладает огромное число объектов и процессов в окружающем нас мире. Хрестоматийный пример фрактала - крона дерева. Крона имеет ветвящуюся многомасштабную структуру с отчетливо выраженным самоподобием: ветви разных масштабов похожи между собой и на дерево в целом. Примерами фракталов являются поверхность облаков и гор, разветвленные системы рек, траектории броуновских частиц, турбулентные вихри в атмосфере и в воде, контуры электрических разрядов и многие другие объекты и явления. Наше ощущение прекрасного возникает под влиянием гармонии порядка и хаоса в объектах природы - тучах, деревьях, горных грядах и кристалликах снега. Их очертания - динамические процессы, застывшие в физических формах, и определенное чередование порядка и беспорядка характерно для них. В 1992 году вышла книга М. Маковского "Лингвистическая генетика". В ней автор доказывает, что человеческие языки развиваются по законам Менделя. У многочисленных "братьев" и "сестер" родительские признаки расщепляются по закону Менделя в соотношении 3:1. Дурная наследственность порождает мутации - появляются слова уродцы. Иногда часть слова перепрыгивает с места на место - происходит транспозиция. Лингвист Геннадий Гриневич писал, что языки мира подобны ветвям дерева, то есть имеют общий корень. Математик-лингвист Ноам Хомский доказал, что грамматики всех языков универсальны имеют общие стратегические черты. Эти и другие факты позволили лингвистам создать универсальную математическую модель человеческих языков, которая оказалась похожей на дерево. Существует математическая модель генетических текстов кодов. Все они имеют общее происхождение и общие черты, которые можно изобразить в виде дерева.

Фракталы также встречаются в природе. В частности, изрезанные береговые линии можно описать с помощью этих фигур, а кочан цветной капусты сорта Романеско, контуры облаков и ветвящаяся форма молний обладают свойством самоподбия. В новой работе физики обнаружили фракталы в лазерах. Как отмечают авторы, лазеры являются практически полной противоположностью природе, так как создаются в максимально приближенных к идеальным условиях: для возникновения когерентного излучения необходим резонатор из безупречно отшлифованных сферических зеркал и усиливающая колебания среда. В 1998 году было предсказано существование фрактальных распределений в поперечных срезах интенсивности некоторых лазеров, однако экспериментальных подтверждений эффекту не было.

Данное открытие считалось новаторским для математических наук того времени, так как математики привыкли к тому, что функции задают гладкие кривые. Вторым ученым, который занимался исследованиями по данной тематике, является Георг Кантор. Именно этот ученый стал основоположником будущих открытий Мандельброта. Будучи студентом Берлинского университета, Георг Кантор посещал лекции Вейерштрасса. Позднее данное множество получило название «множество Кантора». Следующим ученым, который сделал шаг на пути к открытию фрактальной геометрии, является Хельге фон Кох, построил кривую Коха, а в результате — снежинку Коха, которая является ярким примером фрактала. Хотя в то время ученые не оперировали такими определениями и фрактальной геометрии, как таковой, не существовало. Далее в марте 1918 года Ф. Хаусдорф ввел понятие хаусдорфовой размерности, которое стало значительным в исследовании фракталов. Сложнейшее исследование свойств самоподобия произвел Пол Леви, в своих работах он показал, что кривая Коха — это лишь один из множества примеров самоподобных кривых. Вряд ли кто-то в то время подозревал, что появиться ученый, который объединит все труды и внесет величайшее открытие в мире математики.

Похожие новости:

Оцените статью
Добавить комментарий