Новости отличие водородной бомбы от атомной

термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития.

Каков принцип действия атомной бомбы?

  • Атомная бомба и водородная бомба - ТЕХНОЛОГИЯ 2024
  • Чем отличается водородная бомба от атомной? - Ответы
  • Содержание
  • Термоядерная тайна СССР: академик раскрыл секреты создания царь-бомбы
  • В чём разница между атомной и водородной бомбой?
  • 10. Little boy | Мощность 18 килотонн

За счет чего происходит взрыв водородной бомбы?

  • Разница между водородной бомбой и атомной бомбой
  • Чем водородная бомба отличается от атомной?
  • «В чем отличие атомной, ядерной и водородной бомб друг от друга?» — Яндекс Кью
  • Термоядерная тайна СССР: академик раскрыл секреты создания царь-бомбы

В чем разница между ядерной и термоядерной бомбой?

Ядерная (атомная) и термоядерная (водородная) бомбы очень похожи друг на друга. Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Чем отличаются атомная, ядерная и водородная бомбы. Согласно сообщениям новостей, Северная Корея угрожает протестировать водородную бомбу над Тихим океаном. используют ядерное деление. Каковы принципы действия водородной и атомной бомб и есть ли разница в последствиях? Работа имела прямое отношение к атомному проекту, и Андрей Сахаров попал в спецгруппу Тамма, проверявшую выкладки по водородной бомбе коллектива Зельдовича.

Какую роль в истории СССР сыграло появление водородного оружия

  • Что такое атомная бомба
  • Чем отличаются атомная, ядерная и водородная бомбы | В чем разница
  • В чем разница между атомной и водородной бомбами
  • В чем разница между атомной и ядерной бомбой?
  • Ответы : В чем отличие Водородной бомбы от Ядерной?

Водородная (термоядерная) бомба: испытания оружия массового поражения

Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Термоядерные бомбы, в отличие от атомных, используют процесс ядерного синтеза. B-53 — американская термоядерная бомба, наиболее старое и мощное ядерное оружие находившееся в арсенале стратегических ядерных сил США вплоть до 1997 года. Основное отличие между атомной и водородной бомбами заключается в том, что атомная бомба использует деление ядерных элементов, таких как уран или плутоний, чтобы освободить большое количество энергии.

Атомный и ядерный взрыв в чем разница. Чем отличаются атомная, ядерная и водородная бомбы

Сообщалось, что в советских районах в сотнях километров от зоны взрывы были повреждения всех сортов — дома обрушились, крыши просели, стекла вылетели, двери разбились. Радиосвязь не работала в течение часа. Один советский оператор, который был свидетелем детонации, рассказал следующее: «Облака под самолетом и на расстоянии от него осветила мощная вспышка. Море света разошлось под люком и даже облака начали светиться и стали прозрачными. В этот момент наш самолет оказался между двух слоев облаков и внизу, в расщелине, расцветал огромный, яркий, оранжевый шар. Шар был мощным и величественным, как Юпитер.

Медленно и тихо он крался вверх. Пробив толстый слой облаков, он продолжал расти. Казалось, он засосал всю Землю. Зрелище было фантастическим, нереальным, сверхъестественным». Это в 1500 раз больше, чем высвободили обе бомбы, сброшенные на Хиросиму и Нагасаки, и в 10 раз мощнее всех боеприпасов, израсходованных во время Второй мировой войны.

Датчики зарегистрировали взрывную волну бомбы, которая обошла Землю не один, не два раза, а три. Такой взрыв невозможно удержать в секрете. У США был шпионский самолет в нескольких десятках километров от взрыва. В нем было специальное оптическое устройство, bhangemeter, полезное для расчета силы удаленных ядерных взрывов. Данные этого самолета — под кодовым названием Speedlight — использовались Группой оценки иностранных вооружений для расчета результатов этого тайного испытания.

Единственное светлое пятно в этом грибном облаке заключалось в том, что поскольку огненный шар не соприкоснулся с Землей, радиации было поразительно мало. Все могло быть иначе. Изначально Царь-бомба задумывалась в два раза мощнее. Он был ветераном советской программы по разработке атомных бомб с самого начала и стал частью команды, которая создала первые атомные бомбы для СССР. Сахаров начал работу над многослойным устройством деления-синтеза-деления, бомбой, которая создает дополнительную энергию из ядерных процессов в ее ядре.

Это включало обертывание дейтерия — стабильного изотопа водорода — слоем необогащенного урана. Уран должен был улавливать нейтроны с горящего дейтерия и также начинать реакцию. Сахаров называл ее «слойкой». Этот прорыв позволил СССР создать первую водородную бомбу, устройство куда более мощное, чем были атомные бомбы за несколько лет до этого. Хрущев поручил Сахарову придумать бомбу, которая была мощнее всех остальных, уже испытанных к тому моменту.

Советскому Союзу нужно было показать, что он может опередить США в гонке ядерных вооружений, по словам Филиппа Койла, бывшего руководителя испытаниями ядерного оружия в США при президенте Билле Клинтоне. Он провел 30 лет, помогая создавать и испытывать атомное оружие. И затем провели множество испытаний в атмосфере еще до того, как русские провели свое первое». Царь-бомба в первую очередь предназначалась для того, чтобы заставить мир остановиться и признать Советский Союз как равного», говорит Койл. Первоначальный дизайн — трехслойная бомба с урановыми слоями, разделяющими каждую ступень — имела бы выход в 100 мегатонн.

В 3000 раз больше, чем бомбы Хиросимы и Нагасаки. Советский Союз уже к тому времени испытывали большие устройства в атмосфере, эквивалентные нескольким мегатоннам, но эта бомба стала бы просто гигантской по сравнению с теми. Некоторые ученые начали полагать, что она слишком большая. С такой огромной силой не было бы никакой гарантии, что гигантская бомба не упадет в болото на севере СССР, оставив после себя огромное облако радиоактивных осадков. Именно этого опасался, отчасти, Сахаров, говорит Франк фон Хиппель, физик и глава отдела общественных и международных отношений Принстонского университета.

До начала испытаний слои урана, которые должны были разогнать бомбу до невероятной мощи, были заменены слоями свинца, что уменьшило интенсивность ядерной реакции. Советский Союз создал такое мощное оружие, что ученые не пожелали проверять его на полной мощности. И этим проблемы с этим разрушительным устройством не ограничивались. Бомбардировщики Ту-95, созданные для переноса ядерного оружия Советского Союза, были предназначены для перевозки гораздо более легкого оружия. Царь-бомба была такой большой, что ее нельзя было разместить на ракете, и такой тяжелой, что самолеты, перевозящие ее, не смогли бы доставить ее до цели и остаться с нужным количеством топлива для возвращения.

Да и вообще, будь бомба такой мощной, как ее задумывали, самолеты могли бы не возвращаться. Даже ядерного оружия может быть слишком много, говорит Койл, который сейчас работает ведущим сотрудником Центра по контролю над вооружением в Вашингтоне. Фон Хиппель соглашается. Направление движения изменилось — в сторону увеличения точности ракет и количества боеголовок». Царь-бомба привела и к другим последствиям.

Она вызвала столько опасений — в пять раз больше, чем любое другое испытание до нее — что привела к табу на атмосферные испытания ядерного оружия в 1963 году. Фон Хиппель говорит, что Сахаров был особенно обеспокоен количеством радиоактивного углерода-14, который выбрасывался в атмосферу — изотопом с особенно длительным периодом полураспада. Частично он смягчался углеродом от ископаемого топлива в атмосфере. Сахаров беспокоился, что бомба, которая будет больше испытанной, не оттолкнется под действием собственной взрывной волны — как Царь-бомба — и вызовет глобальные радиоактивные осадки, распространит токсичную грязь по всей планете. Сахаров стал ярым сторонником запрета на частичные испытания 1963 года и откровенным критиком ядерного распространения.

А в конце 1960-х годов — и противоракетной обороны, которая, как он справедливо полагал, подстегнет новую гонку ядерных вооружений. Он все больше подвергался остракизму со стороны государства и впоследствии стал диссидентом, которому в 1975 году присудили Нобелевскую премию мира и назвали «совестью человечества», говорит фон Хиппель.

Термин "атомная бомба" является общим термином для обозначения любого оружия, в котором для выделения энергии используются ядерные реакции. Таким образом, все атомные бомбы, по определению, являются ядерными, но не все ядерные бомбы являются атомными. Практически все ядерное оружие проходит испытания, но только атомные бомбы имеют известное боевое применение.

Первыми и пока единственными, кто применил это оружие массового поражения, были Соединенные Штаты Америки во время Второй мировой войны. Были применены только атомные бомбы "Малыш" и "Толстяк", сброшенные на Хиросиму и Нагасаки соответственно. Радиус взрыва этих устройств составлял около 1,6 км, в результате чего погибло в общей сложности около 160-200 тыс. Это остается единственным случаем применения ядерного оружия в боевых условиях. Водородные бомбы, напротив, применялись только в ходе испытаний.

В 1961 году в Советском Союзе было проведено испытание "Царь-бомбы", которая до сих пор остается самым крупным ядерным оружием, когда-либо взорванным. Однако это мощное термоядерное оружие никогда не применялось в реальных конфликтах. Что такое атомная бомба?

Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года. Последствия взрыва Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время. Радиоактивные остатки после взрыва водородной бомбы При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада. Сначала оседает крупная, а затем более легкая, которая при помощи ветра разносится на сотни километров. Эти частицы можно разглядеть невооруженным глазом, например, такую пыль можно заметить на снегу.

Вопрос в том, сумеют ли они поставить нам мат раньше, чем мы их обанкротим Джин Киркпатрикпредставитель США в ООН Вот только несмотря на надежды затянуть СССР как можно глубже в гонку вооружений, «Звездные войны» раскололи в первую очередь американскую элиту. Например, замминистра обороны Ричард Делойер буквально называл этот план бессмысленным. По его мнению, против того количества ядерных ракет, которым располагал Советский Союз, бессильна любая противоракетная система. Несмотря на эти протесты, в конце 1983-го Рейган все же начал реализацию программы. Для гарантированного уничтожения межконтинентальных баллистических ракет МБР хотели использовать не только ракеты «земля-космос» и «воздух-космос», но и оружие на новых физических принципах — лучевое, электромагнитное, кинетическое. Началась разработка новых видов ракет, способных перехватывать боеголовки в космическом пространстве. Кроме того, были и другие, еще более необычные и фантастические предложения. Например, звучали предложения разместить в космосе системы орбитальных зеркал с наземными лазерами и задействовать излучатели нейтральных частиц, рельсотронов и спутников-перехватчиков. В реализации программы было задействовано около 60 компаний и институтов из США, Великобритании, Германии и других стран. На программу потратили более 30 миллиардов долларов. Это не мешало им вовсю работать над достойным ответом на фантастические идеи противника. Одним из средств защиты на случай ядерной войны стала система «Периметр», которая известна на Западе под колоритным названием «Мертвая рука». По сути она представляет собой комплекс автоматического массированного ответного ядерного удара. Даже если ракеты противника долетят и уничтожат все командные центры страны, включая «ядерный чемоданчик», автоматическая система сама запустит все доступное оружие по целям на территории США. Тогда она начала бы мониторить сеть датчиков — сейсмических, радиационных, атмосферного давления — на признаки ядерных взрывов», — описывает принцип работы системы один из ее создателей Владимир Ярынич. В то же время «Периметр» служит и страховкой от поспешных решений руководства собственной страны. Поэтому перед тем, как отдать приказ о пуске, этот комплекс проверяет несколько четких параметров. Если система была активирована, сперва она попыталась бы определить, был ли ядерный удар по советской территории. Если бы это оказалось похожим на правду, система проверила бы наличие связи c Генеральным штабом. Если связь имелась, система автоматически отключилась бы по прошествии некоторого времени — от 15 минут до часа — в отсутствие дальнейших признаков атаки, предположив, что официальные лица, способные отдать приказ о контратаке, по-прежнему живы. Если бы связи не было, "Периметр" решил бы, что Судный день настал. Он незамедлительно передал бы право принятия решения о запуске любому, кто в этот момент находился глубоко в защищенном бункере. В обход обычных многочисленных инстанций», — рассказывает Ярынич. Созданный в 1985 году «Периметр» до сих пор функционирует и стоит на боевом дежурстве. При этом он практически не требует обслуживания и тщательно скрыт от возможного нападения диверсантов Что касается «Звездных войн», то эта программа полностью провалилась и была со скандалом закрыта. Позднее стало известно о многочисленных фактах неудачных испытаний. Самые современные Сейчас, когда обстановка в мире снова накалена до предела, гонка вооружений опять ускоряется. Россия начинает ее с форой. Как и 30 лет назад, по общему числу боезарядов с ней могут сравниться только США. Другие ядерные державы, такие как Китай , значительно отстают. Несмотря на перестройку, распад Советского Союза и экономические трудности 1990-х годов, России удалось сохранить ядерное наследие СССР. Более того, арсенал атомного оружия только вырос и пополнился современными образцами — в отличие от американского. Срок службы ядерного оружия времен холодной войны превысил все нормативы на много лет. Ремонтировать его тяжело, а запчастей не хватает», — пишет журнал Time. Журналисты издания посетили одну из баз ракетного оповещения, расположенную в 20 метрах под землей в штате Вайоминг. Они были потрясены, когда вместо современного оборудования увидели технику времен холодной войны. В том, что она работоспособна, сомневается даже Пентагон. По оценкам ведомства, ее модернизация обойдется в астрономические суммы. Мало того, что из шахт нужно удалить более 400 ракет, а 45 командных центров полностью переоборудовать, предстоит еще и выплачивать гигантские компенсации местным жителям и фермерам, которых, возможно, придется переселять. К счастью, подобные мероприятия в России проводились постепенно и не останавливались даже в самые смутные периоды 1990-х. Доля современного оружия в ядерной триаде страны выросла до исторического рекорда и, по данным на декабрь 2021 года, составила 89,1 процента. Все они, кроме Р-36М2 «Воевода», приняты на вооружение уже после 1991 года. Первая является модификацией ракеты, созданной в Советском Союзе; разработка второй велась уже в современной России. Смертоносное оружие В отличие от только начавших обновлять свой арсенал США, Россия уже располагает готовыми образцами современного ядерного оружия. Они готовы к серийному производству и массовому развертыванию на местах. Работы по созданию новейшей российской МБР шахтного базирования РС-28 «Сармат» начались более десяти лет назад, а прошедшие в прошлом году испытания стали настоящей сенсацией для мировой прессы. Ракеты заступят на боевое дежурство уже в ближайшие месяцы. Точные характеристики комплекса засекречены. Известно тем не менее, что 200-тонный «Сармат» может преодолевать в полете около 16 тысяч километров. В зависимости от поставленной задачи, его нагрузка может включать несколько разделяющихся боеголовок общей мощностью несколько мегатонн в тротиловом эквиваленте. Это в разы больше, чем американцы обрушили на Хиросиму и Нагасаки , вместе взятые. В заряд ракеты входят ложные цели — имитационные боезаряды, на перехват которых будет отвлекаться защита противника. Эти элементы также маневрируют и летят на гиперзвуковой скорости, так что перехват практически невозможен. Надежно защищены от вражеского удара и шахтные пусковые установки «Сарматов».

В чем отличия между атомной и водородной бомбой, какой взрыв мощнее

Работа имела прямое отношение к атомному проекту, и Андрей Сахаров попал в спецгруппу Тамма, проверявшую выкладки по водородной бомбе коллектива Зельдовича. “Идея бомбы основанной на термоядерном синтезе, инициируемом атомным зарядом, была предложена его коллеге у (который и считается “отцом” термоядерной бомбы) ещё в 1941году. Чем водородная бомба отличается от атомной? Атомная бомба — это тип ядерного оружия, взрывная сила которого обеспечивается ядерными реакциями, включающими деление (расщепление) атомных ядер, тогда как водородная бомба (термоядерная бомба) — это более совершенное ядерное оружие, в. Водородные и атомные бомбы относятся к атомной энергетике.

Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?

Термоядерная бомба и ядерная отличия Сущностное отличие ядерной и термоядерной бомб. Ядерной (атомной) бомбой принято называть такое устройство взрывного типа, где основная доля высвобождаемой энергии при взрыве выделяется за счёт ядерной реакции деления, а водородной (термоядерной).
Водородная бомба и ядерная бомба отличия Термоядерная бомба основана на реакции ядерного синтеза.
Термоядерная бомба и ядерная отличия Идея термоядерного оружия, где ядра атомов сливаются, а не расщепляются, как в атомной бомбе, появилась не позднее 1941 года.
Термоядерная тайна СССР: академик раскрыл секреты создания царь-бомбы - МК Водородная бомба – это термоядерный боеприпас комбинированного действия, использующий оба указанных принципа ядерных реакций.

Последствия взрыва водородной бомбы

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. ядерной бомбы) еще в 1941г. В водородной бомбе применяется не чистый водород, а дейтерид лития-6, содержащий в себе изотоп водорода дейтерий и изотоп лития, служащий для выделения еще одного изотопа водорода – трития.

Чем отличается атомная бомба от водородной

Водородная бомба, также называемая термоядерным оружием или водородной бомбой, является оружием, которое выводит свою взрывную и разрушительную силу из ядерного синтеза. Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. Технически отличия между водородной и ядерной бомбами заключаются в способе генерации и усилении ядерной реакции. Водородная или термоядерная бомба работает на синтезе слиянии ядер дейтерия Н3 выделяется огромное количество м термоядерной бомбы является плутониевая бомба. Ключевое отличие: Основное различие между водородной бомбой и атомной бомбой состоит в том, что атомная бомба использовала ядерное деление для создания энергетического взрыва, тогда как водородная бомба использует ядерный синтез. Атомная (ядерная) и водородная (она же термоядерная) бомбы — это два сокрушительных типа оружия массового поражения, похожие по названию, но разные в принципе действия.

Водородная бомба и ядерная бомба отличия

РДС-6 данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике. Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы 15 Мт на испытательном полигоне на атолле Бикини Тихий океан. Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации. Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза.

Но расчёты и замеры реальных радиоактивных осадков сильно разнились, причём как по количеству, так и по составу. Поэтому в руководстве США было принято решение временно приостановить проектирование данного вооружения до полного изучения его влияния на окружающую среду и человека. Посмотрите также.

Схематически эта реакция показана на рисунке ниже. Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти.

А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба. Как все начиналось Еще летом 1942 г. В США сторонником этого подхода, и даже, можно сказать, его апологетом, был уже упомянутый выше Эдвард Теллер. Для Теллера его увлечение термоядерным синтезом в годы создания атомной бомбы сыграло скорее медвежью услугу. Будучи участником Манхэтенского проекта, он настойчивые призывал к перенаправлению средств на реализацию собственных идей, целью которых была водородная и термоядерная бомба, что не понравилось руководству и вызвало напряженность в отношениях. Поскольку в то время термоядерное направление исследований не было поддержано, то после создания атомной бомбы Теллер покинул проект и занялся преподавательской деятельностью, а также исследованиями элементарных частиц. Однако начавшаяся холодная война, а больше всего создание и успешное испытание советской атомной бомбы в 1949 г.

Он возвращается в Лос-Аламосскую лабораторию, где создавалась атомная бомба, и совместно со Станиславом Уламом и Корнелиусом Эвереттом приступает к расчетам. Принцип термоядерной бомбы Для того чтобы началась реакция слияния ядер, нужно мгновенно нагреть заряд бомбы до температуры в 50 миллионов градусов. Схема термоядерной бомбы, предложенная Теллером, использует для этого взрыв небольшой атомной бомы, которая находится внутри корпуса водородной. Можно утверждать, что было три поколения в развитии ее проекта в 40-х годах прошлого века: вариант Теллера, известный как "классический супер"; более сложные, но и более реальные конструкции из нескольких концентрических сфер; окончательный вариант конструкции Теллера-Улама, которая является основой всех работающих поныне систем термоядерного оружия. Он, по-видимому, вполне самостоятельно и независимо от американцев чего нельзя сказать о советской атомной бомбе, созданной совместными усилиями ученых и разведчиков, работавших в США прошел все вышеперечисленные этапы проектирования. Первые два поколения обладали тем свойством, что они имели последовательность сцепленных "слоев", каждый из которых усиливал некоторый аспект предыдущего, и в некоторых случаях устанавливалась обратная связь. Там не было четкого разделения между первичной атомной бомбой и вторичной термоядерной. В отличие от этого, схема термоядерной бомбы разработки Теллера-Улама резко различает первичный взрыв, вторичный, и при необходимости, дополнительный.

Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Андрей Сахаров в Советском Союзе, по-видимому, независимо придумал аналогичную концепцию, которую он назвал "третьей идеей". Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже. Она имела цилиндрическую форму, с примерно сферической первичной атомной бомбой на одном конце. Вторичный термоядерный заряд в первых, еще непромышленных образцах, был из жидкого дейтерия, несколько позднее он стал твердым из химического соединения под названием дейтерид лития. Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще. По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой.

Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. В ней первичный заряд сплюснут, как арбуз или мяч в американском футболе, а вторичный заряд - сферический. Такие формы гораздо более эффективно вписываются во внутренний объем конических ракетных боеголовок. Последовательность термоядерного взрыва Когда первичная атомная бомба детонирует, то в первые мгновения этого процесса генерируется мощное рентгеновское излучение поток нейтронов , которое частично блокируется щитом нейтронной защиты, и отражается от внутренней облицовки корпуса, окружающего вторичный заряд, так что рентгеновские лучи симметрично падают на него по всей его длине. На начальных этапах термоядерной реакции нейтроны от атомного взрыва поглощаются пластиковым заполнителем, чтобы не допустить чересчур быстрого разогрева топлива.

Рентгеновские лучи вызвают появление вначале плотной пластиковой пены, заполняющей пространство между корпусом и вторичным зарядом, которая быстро переходит в состояние плазмы, нагревающей и сжимающей вторичный заряд. Кроме того, рентгеновские лучи испаряют поверхность контейнера, окружающего вторичный заряд. Симметрично испаряющееся относительно этого заряда вещество контейнера приобретает некоторый импульс, направленный от его оси, а слои вторичного заряда согласно закону сохранения количества движения получают импульс, направленный к оси устройства. Принцип здесь тот же, что и в ракете, только если представить, что ракетное топливо разлетается симметрично от ее оси, а корпус сжимается внутрь. В результате такого сжатия термоядерного топлива, его объем уменьшается в тысячи раз, а температура достигает уровня начала реакции слияния ядер. Происходит взрыв термоядерной бомбы. Реакция сопровождается образованием ядер трития, которые сливаются с ядрами дейтерия, изначально имеющимися в составе вторичного заряда. Первые вторичные заряды были построены вокруг стержневого сердечника из плутония, неофициально называемого "свечой", который вступал в реакцию ядерного деления, т.

В настоящее время считается, что более эффективные системы сжатия устранили «свечу», позволяя дальнейшую миниатюризацию конструкции бомбы. Операция Плющ Так назвались испытания американского термоядерного оружия на Маршалловых островах в 1952 г. Она называлась Плющ Майк и была построена по типовой схеме Теллера-Улама. Ее вторичный термоядерный заряд был помещен в цилиндрический контейнер, представляющий собой термически изолированный сосуд Дьюара с термоядерным топливом в виде жидкого дейтерия, вдоль оси которого проходила «свеча» из 239-плутония. Дьюар, в свою очередь, был покрыт слоем 238-урана весом более 5 метрических тонн, который в процессе взрыва испарялся, обеспечивая симметричное сжатие термоядерного топлива. Контейнер с первичным и вторичным зарядами был помещен в стальной корпус 80 дюймов шириной и 244 дюйма длиной со стенками в 10-12 дюймов толщиной, что было крупнейшим примером кованого изделия до того времени. Внутренняя поверхность корпуса был выстлана листами свинца и полиэтилена для отражения излучения после взрыва первичного заряда и создания плазмы, разогревающей вторичный заряд. Все устройство весило 82 тонны.

Вид устройства незадолго до взрыва показан на фото ниже. Первое испытание термоядерной бомбы состоялось 31 октября 1952 г. Мощность взрыва составила 10,4 мегатонны. Аттол Эниветок, на котором он был произведен, был полностью разрушен. Момент взрыва показан на фото ниже. Из описания выше становится ясно, что американцами на Эниветоке была взорвана собственно не бомба, как вид готового к применению боеприпаса, а скорее лабораторное устройство, громоздкое и весьма несовершенное. Советские же ученые, несмотря на небольшую мощность всего 400 кг, испытали вполне законченный боеприпас с термоядерным топливом в виде твердого дейтерида лития, а не жидкого дейтерия, как у американцев. Кстати, следует отметить, что в составе дейтерида лития используется только изотоп 6 Li это связано с особенностями прохождения термоядерных реакций , а в природе он находится в смеси с изотопом 7 Li.

Поэтому были построены специальные производства для разделения изотопов лития и отбора только 6 Li. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими.

Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже.

Дело в том, что изотопы при ядерном взрыве радиоактивны, и создают загрязнение, особенно опасное при попадании вовнутрь организма с водой, едой, воздухом... При термоядерном же образуется гамма-излучение и нейтроны, последние могут, действуя на материалы бомбы, превращать их в радиактивные изотопы, но соответствующим подбором этого можно избежать. Такая водородная бомба именуется "чистой", хотя ядерный запал некоторое заражение всё же создаёт если существует неядерный запал - то и этого заражения нет. Простое помещение дейтрида лития рядом с атомной бомбой-запалом приведёт к разбросу его без существенного выделения энергии, поэтому он окружается оболочками тяжёлого металла, не допускающими быстрого разлёта.

Основная схема для современных бомб более сложна, и включает в себя металлический цилиндр, в котором находится стержень из дейтрида лития с плутониевым сердечником, окружённый слоем пластмассы. Сбоку от цилиндра находится атомная бомба-"триггер", причём дейтрид лития прикрыт металлической крышкой.

Тонкость же в том, что процесс этот энергетически выгоден то есть протекает с выделением энергии лишь до определённого предела, после чего на создание всё более тяжёлых ядер требуется потратить больше энергии чем выделяется при их синтезе, а сами они становится весьма неустойчивыми. В природе этот процесс нуклеосинтез идёт в звёздах, где чудовищные давления и температуры «утрамбовывают» ядра так плотно, что некоторая их часть сливается, образуя более тяжёлые и выделяя энергию, за счёт которой звезда светит. Термоядерная реакция Ядерная реакция деления она же реакция распада или по-английски nuclear fission — такой вид ядерной реакции, где ядра атомов спонтанно либо под действием частицы «снаружи» распадаются на осколки обычно две-три более лёгкие частицы либо ядра. Ядерная реакция деления В принципе, в обеих типах реакций высвобождается энергия: в первом случае из-за прямой энергетической выгодности процесса, а во втором — высвобождается та энергия, которая во время «смерти» звезды потратилась на возникновение атомов тяжелее железа. Сущностное отличие ядерной и термоядерной бомб Ядерной атомной бомбой принято называть такое устройство взрывного типа, где основная доля высвобождаемой энергии при взрыве выделяется за счёт ядерной реакции деления, а водородной термоядерной — такое, где основная доля энергии произведена посредством реакции термоядерного синтеза.

Похожие новости:

Оцените статью
Добавить комментарий