Новости что такое кубит

Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. Кубит, минимальная единица передаваемой или хранимой квантовой информации, аналогичная биту в классической информации. Поисковые системы интернета переполнены запросами: «наука и технологии новости», «квантовый компьютер новости», «что такое кубит, суперпозиция кубитов?», «что такое квантовый параллелизм?». Возможные значения кубита можно представить как поверхность сферы с единичным радиусом — специалисты называют ее сферой Блоха.

Квантовые вычисления для всех

Например, если измерить кубит, его состояние изменится и его нельзя клонировать. Или шумы, электромагнитные волны, частицы плохо влияют на систему, поэтому большинство платформ охлаждают всю систему до низких температур, чтобы минимизировать влияние шумов и пыли. Но и работать в криогенике намного сложнее. Всё это усложняет создание квантовых компьютеров, поэтому сейчас максимально есть около 130 кубитов. Например, IBM выпустил 128-кубитную систему. Но есть не только физические, но и логические кубиты. В чём разница? Чтобы достичь нужного уровня, — делают логические кубиты, то есть из большого количества физических кубитов делают один логический кубит, программируют на него протоколы коррекции ошибок, алгоритм и получается, что это один кубит с высоким показателем точности. Поэтому, если вернуться к физическим кубитам, на которых и должен делаться квантовый компьютер, — индустрия находится на раннем этапе, примерно на уровне десяти логических кубитов. В ближайшие годы ожидаем, что будет достижим уровень в сто логических кубитов.

Это уже позволит делать интересные вещи — оптимизация маршрутов, клинические тесты, синтетическое создание клинических данных, проксимация квантовых симуляций, оптимизация финансовых портфелей. Для сравнения: чтобы взломать алгоритмы RSA, нужна примерно тысяча логических кубитов. Тут нужно сделать небольшое отступление и сказать, что сегодня в квантовых вычислениях есть ещё один подряд сложностей — пока не придумана квантовая память. Поэтому в ближайшие 10 лет квантовые вычисления будут работать в связке с классическими компьютерами. Стратегическая долгосрочная задача — создание универсального квантового компьютера. Для этого нужно более 10 000 логических кубитов, надёжное управление многокубитными гейтами, квантовая память. Сейчас мы не можем смоделировать даже средние по сложности молекулярные соединения. Поэтому учёные делают синтетические молекулы и постоянно экспериментируют. Моделирование сильно ограничено размерами молекулярных систем и параметрами точности.

Из-за этого создание нового лекарства занимает лет десять. А квантовый компьютер, который способен смоделировать квантовую механическую систему, радикально ускорит процесс. Или фолдинг белка сейчас пытаются сделать рентгеновскими лучами, хитрыми магнитными резонансами. А если будет квантовый компьютер, он сможет смоделировать эту систему, и мы упростим себе жизнь в создании лекарств. Ещё ускорится разработка новых материалов для космических полётов, двигателей, сверхпроводящих систем. Сделать лучше не получается, потому что мы пока плохо моделируем. За одно интервью невозможно даже перечислить все те применения квантовых компьютеров, которые можно придумать. Даже если он просто сможет ускорить считанное количество процессов важных операций типа преобразования Фурье — это уже будет серьёзным прогрессом.

Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. В этом году квантовый вычислитель обещают уже использовать в медицинских целях. Его установят в клинике города Кливленд в США. Он поможет выявлять новые штаммы вирусов и займется поиском лекарств от болезни Альцгеймера. Но есть и опасения по поводу новой технологии. Наталья Малеева, старший научный сотрудник криолаборатории электронных систем НИТУ МИСиС: «Квантовый компьютер — это разложение больших чисел на простые множители, это несортированный поиск. Обе эти задачи часто вспоминаются в приложении к современной криптографии. Недавно китайские ученые заявили, что им хватило десяти кубитов для взлома 48-битного алгоритма шифрования. Подобный метод, хотя и посложнее, применяют в защите наших банковских счетов». Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «В какой-то.

Уж больно неоднозначен сам выбранный принцип действия. Суперкомпьютеры — это очень мощный вариант привычных нам вычислительных устройств. За несколько минут они выполняют то, на что одному человеку потребуется не одна тысяча лет, но этого уже не хватает. Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «Мы хотим добиться решения самых сложных прикладных задач, которые важны для каждого из нас с вами, которые непосильны для классических суперкомпьютеров. Уже сегодня на масштабе города решить все оптимизационные задачи, например, связанные с оптимизацией пробок, трафика до оптимального расписания общественного транспорта. Мы банально будем меньше тратить времени на какие-то вещи, быстрее добираться до работы». Что же предлагают создатели компьютеров будущего? В привычном для нас процессоре информация представлена в виде последовательности нулей и единиц, так называемых битов. Физически это контакты транзисторов. Так называемом кубите. Это значит, что он может быть немножечко 0, но в основном единицей.

Впечатляет, конечно. Особенно, когда вы показывали, что вычисления в обычном режиме, на современных суперкомпьютерах занимали бы чуть ли не столетия, а на квантовых результат достигается за часы или дни, — это, конечно, впечатляет», — оценил разработку Владимир Путин. Проект разработки квантового компьютера был запущен в 2019 году, над ним работали учёные из Российского квантового центра и физического института им. Лебедева РАН при координации Росатома.

Квантовые компьютеры: как они работают — и как изменят наш мир

Конечно же нет. На помощь приходит так называемое квантовое шифрование: оно основано на том, что при попытке «прочесть» квантовое состояние оно разрушается, что делает любой взлом невозможным. Домашний квантовый компьютер Ну и последний вопрос — раз квантовые компьютеры такие классные, мощные и не взламываемые — почему мы ими не пользуемся? Проблема банальна — невозможность реализовать квантовую систему в обычных домашних условиях. Для того, чтобы кубит мог существовать в состоянии суперпозиции бесконечно долго, нужны крайне специфические условия: это полный вакуум отсутствие других частиц , температура, максимально близкая к нулю по Кельвину для сверхпроводимости , и полное отсутствие электромагнитного излучения для отсутствия влияния на квантовую систему.

Согласитесь, создать такие условия дома мягко говоря трудновато, а ведь малейшее отклонение приведет к тому, что состояние суперпозиции исчезнет, и результаты вычислений будут неверными. Вторая проблема — это заставить кубиты взаимодействовать друг с другом — при взаимодействии их время жизни катастрофически уменьшается. В итоге самый максимум на данный день — это квантовые компьютеры с парой десятков кубитов. Однако, есть квантовые компьютеры от D-Wave, которые имеют 1000 кубитов, но, вообще говоря, настоящими квантовыми компьютерами они не являются, ибо не используют принципы квантовой запутанности, поэтому они не могут работать по классическим квантовым алгоритмам: Но все же такие устройства оказываются ощутимо в тысячи раз мощнее обычных ПК, что можно считать прорывом.

Однако заменят пользовательские устройства они ох как не скоро — для начала нам нужно или научиться создавать условия для работы таких устройств дома, или же наоборот, «заставить» работать такие устройства в привычных нам условиях. Шаги во втором направлении уже были сделаны — в 2013 году был создан первый двухкубитный квантовый компьютер на алмазе с примесями, работающий при комнатной температуре. Однако увы — это всего лишь опытный образец, да и 2 кубита — маловато для вычислений. Так что ждать квантовых ПК еще очень и очень долго.

Исследователи также стремятся использовать квантовый компьютер для того, чтобы раздвинуть границы глубокого обучения. Пока ведутся исследования, связанные с проверкой концепции, то есть демонстрации осуществимости квантовых вычислений в интересующих специалистов областях. ИИ и криптосистемы Одна из наиболее перспективных областей, на которую могут повлиять квантовые вычисления, — разработка систем искусственного интеллекта ИИ.

ИИ имеет дело с огромными объемами данных, а неточности в обучении нейронных сетей приводят к значительным погрешностям. Квантовые компьютеры могут улучшить алгоритмы обучения и интерпретации. Предприниматель в области ИИ Гэри Фаулер считает, что большую роль играет способность квантовых компьютеров выходить за рамки привычного двоичного кодирования. Это влияет как на объем анализируемой информации, так и на обработку естественного языка.

ИИ на базе квантового компьютера будет способен глубоко понимать и анализировать текст и речь. Это касается и распознавания образов, то есть искусственный интеллект может научиться видеть предметы и понимать, что находится перед ним, с той же точностью, что человек, и даже лучше. Улучшенное распознавание образов позволит медицинским работникам быстрее диагностировать и лечить заболевания по снимкам МРТ. Некоторые специалисты считают, что сильный ИИ невозможен без квантовых компьютеров.

Современные суперкомпьютеры не обладают мощностью для моделирования человеческого мозга с химическими взаимодействиями между отдельными частями нервных клеток. Даже с учетом закона Мура такие компьютеры не появятся и через миллион лет, однако полноценный квантовый компьютер поможет решить эту проблему. Другой областью, которая значительно изменится с появлением квантовых компьютеров, станет криптография. Специалисты обеспокоены тем, что под ударом окажутся криптосистемы с открытыми ключами.

Злоумышленники, использующие достаточно мощные квантовые компьютеры, могут совершить взлом цифровых подписей и основных интернет-протоколов HTTPS TLS , необходимых для безопасного просмотра онлайн-счетов и совершения онлайн-покупок. Квантовые вычисления также поставят под угрозу безопасность систем симметричной криптографии, которая основана на обмене закрытыми ключами. Чтобы сохранить конфиденциальность данных, обмен ключами должен оставаться безопасным. Считается, что постквантовая криптография, которая неподвластна квантовым компьютерам, остается неуязвимой даже для самых мощных систем.

Специалисты уже работают над решением этой задачи, и NIST Национальный институт стандартов и технологий, США разрабатывает новые стандарты защиты информации, которые будут опубликованы в 2022 году. В то же время подобная криптография требует огромных ресурсов, поэтому квантовые компьютеры могут помочь защитить то, что они же делают уязвимым. Однако уже сейчас существуют прототипы защитных протоколов будущего, доступные для тестирования. Полный переход к ним может затянуться на 15-20 лет.

Квантовые компьютеры изменят мир и общество Квантовые компьютеры способны привести к резкому прорыву в открытии и разработке новых лекарств, давая ученым и врачам возможность решать задачи, которые невозможно решить сейчас. Специалисты швейцарской фармацевтической компании Roche надеются, что квантовое моделирование ускорит разработку вакцин для защиты от инфекций, подобных COVID-19, лекарств от гриппа, рака и даже болезни Альцгеймера.

Ожидается, что они смогут совершить следующую революцию в мире вычислительной техники. Компьютеры на основе квантовых битов смогут производить вычисления значительно быстрее даже самых мощных современных компьютеров. В разработке принимали участие специалисты из Московского физико-технического института, Российского квантового центра, Национального исследовательского технологического университета МИСиС и ряда других научных учреждений. О разработке сообщается в пресс-релизе.

Единицей памяти современных компьютеров являются биты. Они могут принимать только одно значение: 0 или 1.

Чем больше кубитов, тем сложнее поддерживать их запутанное состояние без искажений данных. На сегодняшний день исследователи используют различные технологии для создания кубитов, такие как сверхпроводники, ультрахолодные атомы и ионы, оптические системы и другие. Однако, пока нет конкретного ответа на вопрос, какая технология является наиболее перспективной. Кроме того, важно найти способ масштабирования квантовых систем, чтобы они могли функционировать в реальных условиях.

В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный

Российские ученые изготовили и испытали первый в нашей стране сверхпроводящий кубит. Настоящий уровень развития технологий позволяет создать большое количество кубитов, сложность возникает с устойчивостью такой системы. Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности. Кубиты, даже находящиеся в специально созданных условиях (вакуум, охлаждение до сверхнизких температур), разрушаются за доли секунды. К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии. Недавно исследователи разработали флюксониевый кубит, способный сохранять информацию в течение 1,43 миллисекунды, что в десять раз дольше, чем предыдущие технологии создания кубитов.

Почему от квантового компьютера зависит национальная безопасность и когда он появится в России

Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0. Кубит может хранить намного больше информации, чем классический бит. Начнем с понятия кубита и его отличий от бита классических компьютеров.

Что такое кубит в квантовом компьютере человеческим языком

Технологии квантовых компьютеров в 2022: достижения, ограничения Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации.
Что такое квантовый компьютер Именно необычное свойство кубита, его способность одновременно становиться и нулём, и единицей, даёт квантовому компьютеру потрясающую вычислительную мощность.
Что такое кубит? Если же взять, к примеру, десять кубитов, то будет уже 1024 классических состояния.
Что такое квантовый компьютер и как он работает IBM объявила о выпуске квантового процессора Eagle с рекордным количеством кубитов (127).

Технологии квантовых компьютеров в 2022: достижения, ограничения

Суперпозиция кубита может быть представлена вероятностной функцией |ψ, которая зависит от амплитуды кубита в гильбертовом пространстве α и β. Квантовая интегральная микросхема (КИМС) содержит пять кубитов, один из которых в данном эксперименте не использовался. И делают кубиты на сверхпроводниках, которым нужны экстремально низкие температуры. Один кубит – это атом или фотон – мельчайшая частица вещества или энергии. Если же взять, к примеру, десять кубитов, то будет уже 1024 классических состояния. С другой, кубиты откликаются не только на управляющее поле, но и на слабые электрические поля, присутствующие вокруг и создающие шумы.

Как работает квантовый компьютер: простыми словами о будущем

В качестве примера можно привести человека. В случае обычного компьютера он может находиться только в одной из двух точек, допустим, это Северный или Южный полюс. В квантовом же мире с некоторой вероятностью человек может находиться в Москве, Владивостоке, на Шри-Ланке или в Дубае. Такими свойствами, расширяющими возможности, могут обладать ионы, фотоны, атомы цезия, лития или рубидия. Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «Ловим атом, каждый в специальную ловушку. Выстраиваем эти атомы в определённом порядке это может быть такая двумерная решетка И при помощи возбуждения заставляем их взаимодействовать. Так наш квантовый компьютер будет инициализировать состояния, выполнять операции. Дальше мы производим считывание. То есть мы считываем состояние атомов. Если он был возбуждён или если он не был возбужден.

И в зависимости от этого получаем ответ на поставленный вопрос».

Благодаря этому квантовый процессор может выполнять несоизмеримо больше операций за один такт. Как работает квантовый компьютер Как мы отметили ранее, квантовый компьютер использует два классических понятия из квантовой механики: принцип суперпозиции и спутанность. Суперпозиция — это способность квантовой частицы находиться сразу в нескольких состояниях одновременно. У суперпозиции есть интересное свойство: она тут же «схлопывается» при появлении наблюдателя.

Представьте, что вы подбросили монету и смотрите, как она вращается. Вы не можете точно сказать, что она сейчас вам показывает — орла или решку, всё вращается, ничего не понятно, остановите это кто-нибудь. Но стоит вам только «прихлопнуть» монетку на ладони, всё становится ясно. Точно так же ведёт себя и кубит — пока вы не воздействуете на него измерительным прибором, он так и будет пребывать сразу во всех состояниях между нулём и единицей. Звучит странно, но это одна из главных заповедей квантовой механики.

Вокруг суперпозиции вообще ведётся много споров в научных кругах — взять хотя бы знаменитый парадокс кота Шрёдингера, который то ли жив, то ли мёртв, то ли вообще живёт сразу в нескольких параллельных вселенных. Читайте также: Кот Шрёдингера: что это за эксперимент и в чём его смысл Мало нам суперпозиции — чтобы вычисления совершались, кубиты должны быть связаны между собой. И если в обычной машине эту роль берут на себя токопроводящие дорожки, в квантовой нас выручает квантовая спутанность. Например, в лабораторных условиях мы можем получить несколько фотонов в спутанном состоянии — и тогда, где бы эти фотоны ни оказались, хоть на разных концах Вселенной, они будут связаны между собой. Если изменить состояние одной, тут же изменятся и другие спутанные с ней частицы.

Звучит совсем как магия, но это реальный физический закон: с его помощью учёные научились телепортировать квантовое состояние на многие километры. Чем квантовый компьютер лучше обычного Благодаря тому, что кубиты находятся сразу в нескольких состояниях и связаны между собой, квантовые машины могут параллельно перебрать сразу все варианты решения — в отличие от обычных компьютеров, которые перебирают варианты последовательно и довольно медленно. Можно условно сравнить это с калейдоскопом: если с обычным компьютером вам нужно покрутить прибор, чтобы получить разные картинки, то квантовый уже давно всё «покрутил» и сложил в одно большое полотно — осталось как-то достать из него нужный фрагмент. И здесь уже начинаются сложности — дело в том, что квантовые компьютеры выдают не точные результаты, а вероятностные, то есть приближённые к реальности. Поэтому для их интерпретации нужны особые, квантовые алгоритмы.

Такие алгоритмы уже существуют — но заточены они на решение узких математических задач, а потому мало применимы в реальной жизни. Переложить реальные человеческие задачи на квантовый язык непросто — отчасти поэтому такие машины ещё нескоро станут массовыми. Другая сложность — декогеренция. Это когда частица теряет свои свойства при столкновении с внешним миром.

Суперпозиция и даёт ту параллельность в вычислениях, которая ускоряет работу алгоритмов в разы. Вся сложность в том, что результат работы квантового компьютера — это правильный ответ с какой-то долей вероятности. И нужно строить алгоритмы таким образом, чтобы максимально приблизить вероятность правильного ответа к единице. Рабочая температура внутри таких компьютеров — минус 273 градуса по Цельсию Как делают кубиты и в чём сложность Максимально упрощённо: чтобы получить рабочий кубит, нужно взять один атом, максимально его зафиксировать, оградить от посторонних излучений и связать с другим атомом специальной квантовой связью. Чем больше таких кубитов связано между собой, тем менее стабильно они работают. Для достижения «квантового превосходства» над обычным компьютером нужно не менее 49 кубитов — а это очень неустойчивая система.

Основная сложность — декогеренция. Это когда много кубитов зависят друг от друга и на них может повлиять всё что угодно: космические лучи, радиация, колебания температуры и все остальные явления окружающего мира. Такой «фазовый шум» — катастрофа для квантового компьютера, потому что он уничтожает суперпозицию и заставляет кубиты принимать ограниченные значения. Квантовый компьютер превращается в обычный — и очень медленный. С декогеренцией можно бороться разными способами. Например, компания D-Wave, которая производит квантовые компьютеры, охлаждает атомы почти до абсолютного нуля, чтобы отсечь все внешние процессы. Поэтому они такие большие — почти всё место занимает защита для квантового процессора. Квантовый процессор на девяти кубитах от Google Зачем нужны квантовые компьютеры Одно из самых важных применений квантового компьютера сейчас — разложение на простые числа. Дело в том, что вся современная криптография основана на том, что никто не сможет быстро разложить число из 30—40 знаков или больше на простые множители.

Квантовое превосходство подразумевает способность квантовых вычислительных устройств решать те проблемы, которые не могут решить классические компьютеры. По заявлению компании, Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз. Самому мощному суперкомпьютеру Summit для той же задачи понадобилось бы около 10 тыс. Компания утверждала, что Summit справится с задачей для Sycamore в худшем случае за 2,5 дня, но полученный ответ будет точнее, чем у квантового компьютера. Это позволил предположить теоретический анализ. В России квантовые технологии также привлекают внимание исследователей. Так, в 2010 году для проведения исследовательских работ в этой области был организован Российский квантовый центр. В 2019 году была разработана сначала единая дорожная карта, а после — дорожная карта на каждое отдельное направление: квантовые вычисления, квантовые коммуникации и квантовые сенсоры. Руслан Юнусов, руководитель проектного офиса по квантовым технологиям госкорпорации «Росатом», говорит, что создание квантовых процессоров стало одной из основных задач дорожной карты, утвержденной в июле 2020 года. По его словам, работа ведется в нескольких плоскостях: развитии фундаментальной науки и первых прикладных внедрениях квантовых продуктов. Россия стала одним из 17 технологически развитых государств с официально утвержденной квантовой стратегией. Индустрия 4. На реализацию дорожной карты предусмотрено финансирование в размере 23,7 млрд рублей. Как работает квантовый компьютер Квантовые компьютеры для вычислений используют такие свойства квантовых систем, как суперпозиция и запутанность. В суперпозиции квантовые частицы представляют собой комбинацию всех возможных состояний, пока не произойдет их наблюдение и измерение. Запутанные кубиты образуют единую систему и влияют друг на друга. Измерив состояние одного кубита, возможно сделать вывод об остальных. С увеличением числа запутанных кубитов экспоненциально растет способность квантовых компьютеров обрабатывать информацию. Биты и кубиты Фото: Журнал Яндекс Практикума Базовым элементом, выполняющим логические операции в классическом компьютере, является вентиль.

Как работает квантовый компьютер: простыми словами о будущем

Сверхпроводящие схемы состоят из крошечных витков сверхпроводящего провода, охлажденных почти до нуля. Схемы становятся сверхпроводящими при чрезвычайно низких температурах, что подразумевает, что они имеют нулевое электрическое сопротивление. Это свойство позволяет электронам перемещаться по цепям без потери энергии. Для выполнения операций с кубитами квантовые компьютеры используют серию квантовых вентилей, похожих на логические вентили, используемые в классических вычислениях. Квантовые вентили управляют состояниями кубитов, позволяя квантовым компьютерам выполнять такие операции, как суперпозиция, запутывание и измерение. Поддержание когерентности кубитов является критической и трудной задачей при построении квантового компьютера.

Когерентность — это свойство, которое позволяет кубитам сохранять свои свойства суперпозиции и запутанности с течением времени. Любые помехи, такие как шум окружающей среды или нежелательные взаимодействия с другими кубитами, могут привести к потере когерентности кубитов и сделать вычисления ненадежными. Чтобы преодолеть эту проблему, квантовые компьютеры используют коды исправления ошибок, которые могут обнаруживать и исправлять ошибки в вычислениях. Насколько публикация полезна? Нажмите на звезду, чтобы оценить!

Отправить оценку Средняя оценка 1. Количество оценок: 2 Оценок пока нет.

Как и следовало ожидать, частицы проходили через одну доступную щель и оставляли следы на экране в виде одной тонкой полоски. После этого Юнг открыл для частиц света обе щели. Он ожидал, что частицы станут проходить через них, а на экране появится две полоски.

Внезапно учёный обнаружил, что на экране появилось целое множество полосок. Увидев это, Юнг предположил: одна частица света проходит через две щели одновременно. Примерно такую картину интерференции волн наблюдал Томас Юнг. Свойство частиц находиться одновременно во всех состояниях и называется суперпозицией. Оно активно используется в квантовых вычислениях, которые основаны на кубитах с частицами.

Чем полезна суперпозиция в квантовых процессорах Особенность суперпозиции квантовых частиц принимать все доступные значения в один момент времени позволяет значительно ускорить работу процессоров. Теперь им не нужно раз за разом перебирать последовательности нулей и единиц, чтобы найти верное решение поставленной задачи. Эти последовательности уже существуют здесь и сейчас. Именно поэтому квантовые компьютеры работают быстрее обычных. Выше мы писали о Google Sycamore — она справилась со сложнейшими вычислениями за 200 секунд.

На выполнение той же задачи у суперкомпьютера IBM ушло бы 10 000 лет. Суперкомпьютер Google. Как кубит может принимать все значения разом Вы можете спросить: как так вышло, что в предыдущем параграфе кубит принимает значения 0 и 1 одновременно, а в этом — одновременно все возможные состояния, которые могут находиться и на промежутке от 0 до 1? Это справедливое замечание. Дело в том, что у частиц есть ещё одно примечательное свойство: они находятся в состоянии суперпозиции до тех пор, пока не окажутся под наблюдением, но как только кто-то начинает наблюдать их, они принимают полярное значение в множестве возможных — либо 0, либо 1.

Принцип работы квантового компьютера Давайте вернемся к нашей задачке про трех людей и две машины и рассмотрим ее с точки зрения квантового компьютера: Для решения подобной системы нам понадобится компьютер с 3 кубитами. Помните, что классический компьютер должен был пройти все варианты один за одним? Так вот поскольку кубиты одновременно имеют состояния «1» и «0», то и пройти через все варианты он сможет, фактически одновременно! Знаю, что прозвучит максимально странно, но представьте, что в данной ситуации наши три кубита создают 8 различных параллельных миров, в каждом из которых существует одно решение, а потом они все собираются в один! Реально «Мстители» какие-то! Но что же получается? Он выдает все варианты сразу, а как получить правильный?

Для этого существуют специальные математические операторы, например оператор Грувера, который позволяет нам определять правильные результаты вычислений квантовых систем! Это специальная функция, которая среди всех возможных вариантов находит нужный нам. Помните задачку про 100 человек в 2 автобуса, которую не смогли бы решить все современные компьютеры вместе взятые? Для квантового компьютера со 100 кубитами эта задачка все равно что семечку щелкнуть! То есть компьютер находится одновременно в 2 в 100 степени состояний, а именно: 1,267,650,600,228,229,401,496,703,205,376 — вот столько состояний одновременно! Столько параллельных миров! Думаете, что всё это звучит слишком хорошо, чтобы быть правдой?

Да, вы правы. Есть куча нюансов и ограничений. Например, ошибка. Проблема в том, что кубиты, в отличие от обычных битов, не определены строго. У них есть определенная вероятность нахождения в состоянии 1 или 0. Поэтому есть вероятность ошибки и чем больше кубитов в системе, тем больше суммарная вероятность, что система выдаст неправильный ответ. Поэтому зачастую надо провести несколько расчетов одной и той же задачи, чтобы получить верный ответ.

Ну то есть как верный? Он всегда будет содержать в себе минимальную возможность ошибки вследствие своей сложной квантовой природы, но ее можно сделать ничтожно малой, просто прогнав вычисления множество раз!

Что такое кубит? Схема очень упрощенная, но именно так и получают кубиты. Сложность удержания системы растет вместе с числом кубитов. Зачем он нужен нам? Попытки уменьшать размеры транзисторов и дальше сталкиваются с физическими ограничениями. Да и скорость передачи данных в них быстрее скорости света не сделать.

Ужимать скоро будет некуда, значит пора искать другие пути решения. Один из них дает квантовая физика. Квантовые компьютеры не создаются для замены привычных транзисторных.

Похожие новости:

Оцените статью
Добавить комментарий