К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии. Ознакомьтесь с вводными сведениями о кубитах и принципами их работы, включая информацию о различиях между кубитами и двоичными битами, а также о том, как кубиты формируют основу для квантовых вычислений.
Рекомендации
- Эти несовершенные кубиты
- Куквартная химия: что может 16‑кубитный и 20‑кубитный квантовый компьютер
- Квантовые компьютеры. Почему их еще нет, хотя они уже есть? -
- Что такое квантовый компьютер? Разбор
- Кульбит кубита. Новейший сверхкомпьютер может победить рак или погубить мир
- В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
Революция в ИТ: как устроен квантовый компьютер и зачем он нужен
Для достижения превосходства требуется машина с 50—60 кубитами и, что важно, достаточно малой декогеренцией, то есть в состоянии, при котором ничто извне не будет мешать кубитам находиться в квантовой запутанности между собой. Здесь, в частности, и возникает сложность в реализации полноценного квантового компьютера. Дело в том, что сами по себе кубиты очень чувствительны к окружающей среде и воздействию шумов. Кроме того, чем больше кубитов, тем более «хрупким» становится их запутанное состояние. Даже малейшие возмущения могут привести к ошибкам в квантовых вычислениях, искажению данных. И хотя физически кубит может быть реализован разными способами кубиты создают с использованием специально выращенных сверхпроводниковых структур, ультрахолодных атомов и ультрахолодных ионов, с помощью оптических систем и так далее , единого ответа о наиболее перспективной реализации у исследователей пока нет — сегодня эксперименты по созданию квантовых вычислителей ведутся на основе разных технологий.
В 2021 году был представлен прототип компьютера на ионах с четырьмя кубитами. Впоследствии ученые расширили платформу, заменив кубиты на кудиты. Это позволило увеличить разрядность каждого кубита без увеличения их физического количества, что в свою очередь повысило производительность. В этом году система стала насчитывать уже 16 кубитов, и ученые обещают представить 20-кубитовый процессор уже в следующем году. Если будет использовано увеличение разрядности через кудиты, то план развития квантовых технологий в России не только будет выполнен, но может быть даже превышен. Проект запустили в 2019 году.
Из школьного курса информатики мы помним, что современные компьютеры работают в двоичной системе. Единицей информации в них служат биты, которые могут принимать два значения: 0 и 1. Логические операции с битами и творят всю компьютерную магию: вы слушаете песню, смотрите видео или генерируете картинки с котами в нейросети. Физически бит выглядит как крохотный транзистор, который устроен на редкость примитивно: он умеет лишь включаться и выключаться, как лампочка в новогодней гирлянде. Но делает это настолько быстро и в такой тесной взаимосвязи с другими «лампочками», что это позволяет компьютеру выполнять сложнейшие вычисления практически со скоростью света. Читайте также: Революция транзисторов: от механических машин до суперкомпьютеров будущего Такая система прекрасно себя зарекомендовала — на транзисторах работают практически все современные устройства: от умных часов до смартфонов, от домашних ПК до суперкомпьютеров. Однако и она не лишена недостатков — существуют задачи, которые с виду кажутся простыми, но на их решении «сыпятся» даже самые мощные машины. Классический пример. Представьте, что вы работаете разъездным торговцем: зарабатываете на жизнь тем, что ходите по домам и продаёте мультиварки. Вам нужно придумать кратчайший маршрут, который позволит заехать в несколько крупных городов хотя бы по одному разу и вернуться домой. Перед вами — знаменитая задача коммивояжёра, и она гораздо хитрее, чем кажется на первый взгляд. Если городов в условии будет больше 66, обычному компьютеру понадобится несколько миллиардов лет, чтобы решить её простым перебором. И тут на помощь приходят квантовые компьютеры, которые могут решать такие задачи в миллионы раз быстрее обычных. Дело в том, что вместо привычных битов у квантовых компьютеров — кубиты. Физически это уже не транзисторы, а квантовые частицы — обычно фотоны или протоны. В отличие от бита, кубиты могут не только равняться 0 или 1, но и принимать любые значения между ними. Благодаря этому квантовый процессор может выполнять несоизмеримо больше операций за один такт. Как работает квантовый компьютер Как мы отметили ранее, квантовый компьютер использует два классических понятия из квантовой механики: принцип суперпозиции и спутанность. Суперпозиция — это способность квантовой частицы находиться сразу в нескольких состояниях одновременно. У суперпозиции есть интересное свойство: она тут же «схлопывается» при появлении наблюдателя. Представьте, что вы подбросили монету и смотрите, как она вращается. Вы не можете точно сказать, что она сейчас вам показывает — орла или решку, всё вращается, ничего не понятно, остановите это кто-нибудь. Но стоит вам только «прихлопнуть» монетку на ладони, всё становится ясно.
Деликатная природа квантовых вычислений также является причиной того, что слепое добавление кубитов в систему не обязательно сделает ее мощнее. Отказоустойчивость тщательно исследуется в области квантовых вычислений: по логике, добавление кубитов может компенсировать некоторые проблемы, но для создания единого, надежного кубита для переноса данных потребутся миллионы корректирующих ошибки кубитов. А у нас их сегодня не больше 128. Возможно помогут умные алгоритмы, которые также разрабатываются. Имитация квантового с помощью квантовых компьютеров Поскольку большие данные сейчас горячая тема, можно было бы ожидать, что квантовые компьютеры будут лучше обрабатывать крупные наборы данных, чем классические. Но это не так. Вместо этого, квантовые компьютеры будут особенно хороши в моделировании природы. Например, квантовые вычисления можно было бы использовать для более эффективного построения молекул лекарств, потому что они в основном работают на той же основе, что и молекулы, которые они пытаются смоделировать. Вычисление квантового состояния молекулы — невероятно сложная задача, которая почти непосильна нашим компьютерам, но квантовые компьютеры справятся с ней на ура. Точно так же квантовые вычисления могут перевернуть область материаловедения или передачи информации. Благодаря запутанности, кубиты, физические разделенные большим расстоянием, могут создать канал для передачи информации, который с научной точки зрения будет безопаснее наших существующих каналов. Квантовый интернет вполне осуществим. Но самое интересное вот что: мы даже не знаем всего разнообразия удивительных вопросов , которые могут попытаться решить квантовые компьютеры. Просто имея коммерческий квантовый компьютер и позволяя людям с ним работать, мы могли бы наметить новые интересные области, подходящие для этой потрясающей новой технологии.
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
Чтобы создать кубит, ученые должны найти место в материале, где они могут получить доступ к этим квантовым свойствам и управлять ими. или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. Еще одна хорошая новость — логические операции с большим массивом кубитов всегда можно представить в виде последовательности двухкубитных операций. Удерживать кубиты в нужном состоянии, учитывая количество внешних факторов, крайне сложно — именно поэтому они работают при абсолютном нуле.
Революция в ИТ: как устроен квантовый компьютер и зачем он нужен
Еще одна хорошая новость — логические операции с большим массивом кубитов всегда можно представить в виде последовательности двухкубитных операций. Ознакомьтесь с вводными сведениями о кубитах и принципами их работы, включая информацию о различиях между кубитами и двоичными битами, а также о том, как кубиты формируют основу для квантовых вычислений. Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. С другой, кубиты откликаются не только на управляющее поле, но и на слабые электрические поля, присутствующие вокруг и создающие шумы. Именно благодаря тому, что кубит находится во всех состояниях одновременно до тех пор, пока его не измерили, компьютер мгновенно перебирает все возможные варианты решения, потому что кубиты связаны между собой. Кроме того, кубиты могут быть квантово запутаны друг с другом, что позволяет проводить параллельные вычисления и работать с большими объёмами информации.
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
Поэтому применение квантовых компьютеров позволит улучшить риск-модели и ускорить обработку больших данных, рассказал квантовый энтузиаст, директор по цифровому развитию Делобанка Антон Семенников. Когда же технология получит широкое распространение, можно ожидать снижения ставок в экономике за счет более качественного расчета рисков, добавил он. Требуется не только создать действующий квантовый компьютер, но и разработать соответствующие алгоритмы и программное обеспечение. У России большой научный потенциал в области математики, программирования, физики и квантовой механики», — считает Семенников. На квантовый мир мы смотрим с позиции разработчика, рассказал заместитель генерального директора холдинга Т1 по технологическому развитию Антон Якимов. Квантовый объем 100-200 кубитов не кажется недостижимым для 2025 г. Однако, по его мнению, вопрос больше в практической плоскости: через какое время такие облачные вычислительные мощности станут доступны для рынка на понятных условиях по модели Quantum-Computing-as-a-Service.
Имеется в виду то, над чем сейчас работает РКЦ. Как же это работает Какие же свойства так привлекают исследователей со всего света? В классическом компьютере единицей хранения информации является бит, который в зависимости от наличия или отсутствия напряжения принимает значение 0 или 1. В КК роль основной единицы в квантовых вычислениях играют квантовые биты, или кубиты. Они отличаются от обычных битов тем, что могут равняться 0, 1 или находиться в суперпозиции. Что такое квантовая суперпозиция, чаще всего объясняют на примере подброшенной в воздух монетки.
Пока она летит, для бросавшего монета находится в суперпозиции: ее значение и орел, и решка. Суперпозиция сохраняется, пока монетку не поймали и не определили, что выпало. Еще один пример — кот Шредингера. Суперпозиция — это состояние кота, пока не открыли крышку ящика, то есть кот жив и мертв одновременно. В КК суперпозиция сохраняется, пока не производится вычисление кубита, или измерение его состояния: 0 или 1. Именно благодаря этому свойству расчеты на КК производятся быстрее, чем на классических компьютерах.
Однако для выполнения сложных алгоритмов на КК важно, чтобы значения одних кубитов были связаны со значениями других. В этом помогает такое явление, как квантовая запутанность.
Одним из главных игроков на этом рынке является компания D-Wave Systems, чьи устройства уже включают в себя пять тысяч кубитов. В 2020 году D-Wave начала предлагать коммерческий доступ через облако к специализированным квантовым компьютерам Advantage с пятью тысячами кубитов, которые пока пригодны для решения сложных оптимизационных задач. IBM представила коммерчески доступный IBM Quantum System One, пригодный для решения более широкого круга задач, в том числе моделирования материалов для систем хранения энергии, оптимизации портфелей финансовых активов и улучшения параметров стабильности в инфраструктуре энергоснабжения.
Исследователи также стремятся использовать квантовый компьютер для того, чтобы раздвинуть границы глубокого обучения. Пока ведутся исследования, связанные с проверкой концепции, то есть демонстрации осуществимости квантовых вычислений в интересующих специалистов областях. ИИ и криптосистемы Одна из наиболее перспективных областей, на которую могут повлиять квантовые вычисления, — разработка систем искусственного интеллекта ИИ. ИИ имеет дело с огромными объемами данных, а неточности в обучении нейронных сетей приводят к значительным погрешностям. Квантовые компьютеры могут улучшить алгоритмы обучения и интерпретации.
Предприниматель в области ИИ Гэри Фаулер считает, что большую роль играет способность квантовых компьютеров выходить за рамки привычного двоичного кодирования. Это влияет как на объем анализируемой информации, так и на обработку естественного языка. ИИ на базе квантового компьютера будет способен глубоко понимать и анализировать текст и речь. Это касается и распознавания образов, то есть искусственный интеллект может научиться видеть предметы и понимать, что находится перед ним, с той же точностью, что человек, и даже лучше. Улучшенное распознавание образов позволит медицинским работникам быстрее диагностировать и лечить заболевания по снимкам МРТ.
Некоторые специалисты считают, что сильный ИИ невозможен без квантовых компьютеров. Современные суперкомпьютеры не обладают мощностью для моделирования человеческого мозга с химическими взаимодействиями между отдельными частями нервных клеток. Даже с учетом закона Мура такие компьютеры не появятся и через миллион лет, однако полноценный квантовый компьютер поможет решить эту проблему. Другой областью, которая значительно изменится с появлением квантовых компьютеров, станет криптография. Специалисты обеспокоены тем, что под ударом окажутся криптосистемы с открытыми ключами.
Злоумышленники, использующие достаточно мощные квантовые компьютеры, могут совершить взлом цифровых подписей и основных интернет-протоколов HTTPS TLS , необходимых для безопасного просмотра онлайн-счетов и совершения онлайн-покупок. Квантовые вычисления также поставят под угрозу безопасность систем симметричной криптографии, которая основана на обмене закрытыми ключами. Чтобы сохранить конфиденциальность данных, обмен ключами должен оставаться безопасным. Считается, что постквантовая криптография, которая неподвластна квантовым компьютерам, остается неуязвимой даже для самых мощных систем. Специалисты уже работают над решением этой задачи, и NIST Национальный институт стандартов и технологий, США разрабатывает новые стандарты защиты информации, которые будут опубликованы в 2022 году.
В то же время подобная криптография требует огромных ресурсов, поэтому квантовые компьютеры могут помочь защитить то, что они же делают уязвимым. Однако уже сейчас существуют прототипы защитных протоколов будущего, доступные для тестирования.
Каждая частица в квантовом процессоре находится в суперпозиции, но теперь её значение в момент наблюдения зависит ещё и от другой частицы, с которой она взаимодействует.
Это — огромный калейдоскоп, в котором до того момента, как в него посмотрит человек, одновременно выстраиваются все возможные узоры во всех вероятных положениях цветных стёклышек. Соответственно, вычислить, существует ли узор Х из многочисленных последовательностей стёкол, теперь можно гораздо быстрее и проще, чем если крутить футляр калейдоскопа до тех пор, пока не найдётся искомый результат. Что такое квантовое декогеренцирование Итак, мы знаем, что кубит находится в суперпозиции до тех пор, пока не измерить его значение.
Во время наблюдения кубит принимает полярные значения — условные 0 или 1. При этом частицы изменяют своё поведение в зависимости от других частиц. Но ведь мир состоит из этих частиц, верно?
К примеру, на состояние кубита могут повлиять частицы света вокруг него, а также окружающие его молекулы и атомы. Именно эта проблема и называется декогеренцированием. Она актуальна, и учёные ещё не нашли простого способа снизить её эффект на кубиты.
У неё есть два самых известных решения: снизить температуру кубита до абсолютного нуля и окружить кубит суперпроводником, который защищает частицу от внешнего влияния. Во всяком случае, пока что. Зачем разрабатывать квантовые процессоры Несмотря на то, что квантовые вычисления могут быть ошибочными, а поддерживать кубиты стабильными — непростая задача, которую ещё предстоит решить, есть несколько причин, по которым технологию не оставили: Современные компьютеры ограничены в возможностях, а квантовые — нет.
Даже сегодня суперкомпьютеры могут тратить десятки тысяч лет на решение сложнейших задач, когда квантовый компьютер может решить её за секунды. Некоторые из таких задач включают факторизацию больших чисел, оптимизацию, моделирование сложных систем и анализ больших данных. Квантовые компьютеры помогают лучше понимать мир.
Хотя нам кажется, что человечество достигло небывалых высот за последние 50 лет, в действительности мы мало знаем о частицах, их природе и физике. Как бы это ни было парадоксально, строительство квантовых компьютеров помогает изучить квантовую физику.
На практике это означает, что такие задачи не могут быть решены ни сейчас, ни в каком-либо обозримом будущем при поступательном развитии технологий вычислений. Поэтому для расчёта химических реакций применяются приближённые методы. Сначала они были относительно простыми и не очень точными, но со временем их точность повышалась, а сложность росла.
Их изучением и развитием занимается вычислительная квантовая химия. Сейчас каждый год собираются огромные конференции, на которых тысячи учёных делятся последними достижениями в этой области. И хотя компьютеры могут уже очень многое — вплоть до предсказания эффективности действия инновационного лекарства — последнее слово, как и 100 лет назад, остаётся за экспериментами. Все вычисления будут делать квантовые симуляторы, и будут делать их точнее и быстрее, чем мы». Чего же так боятся квантовые химики?
Идея квантовых симуляторов восходит к статье знаменитого физика Ричарда Фейнмана, опубликованной в 1982 году. В ней нобелевский лауреат высказал относительно простую мысль. Если у нас будут квантовые компьютеры, то есть компьютеры, которые совершают вычисления по квантовым законам, то было бы вполне естественно в первую очередь использовать их для вычислений, связанных с квантовыми системами, — в частности, для вычислений в квантовой химии. И действительно, как показали дальнейшие исследования, это возможно. И более того, такие вычисления смогут в полной мере задействовать уникальные возможности квантовых компьютеров, то есть они будут выполняться значительно быстрее, чем на компьютерах обычных.
Это позволит решать задачи точного расчёта химических реакций за разумное время и заменить дорогостоящие прямые эксперименты на более дешёвые вычисления. Более того, одна из проблем квантовых компьютеров — разрушающее действие окружающей среды, не позволяющее подолгу сохранять квантовую суперпозицию, — в квантовых симуляторах может быть использовано для пользы дела. Ведь реальные квантовые системы тоже находятся в окружении других тел, которые точно так же разрушают квантовые эффекты в них. Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора. Применение квантовых симуляторов Сейчас уже созданы первые, самые простые квантовые симуляторы.
Так, в 2010 году группа экспериментаторов из Квинслендского университета в Австралии и Гарвардского университета в США сообщила, что им удалось рассчитать свойства самой простой молекулы — молекулы водорода — с достаточной для химиков точностью при помощи квантового симулятора, кубиты которого были основаны на «частицах» света — фотонах.
Что такое квантовое превосходство
- Содержание
- Кубит — Википедия с видео // WIKI 2
- Что такое кубит в квантовом компьютере человеческим языком | Электромозг | Дзен
- Квантовые компьютеры. Почему их еще нет, хотя они уже есть?
Онлайн-курсы
- Рекорд Китая
- Квантовые компьютеры | Наука и жизнь
- Российские разработки отстают на 5 лет
- Как работает квантовый компьютер: простыми словами о будущем - Hitecher
- В России создан первый сверхпроводящий кубит
- Что такое кубит в квантовом компьютере человеческим языком
Квантовые вычисления для всех
IBM объявила о выпуске квантового процессора Eagle с рекордным количеством кубитов (127). это элементарная единица информации в квантовых вычислениях. Кубиты, даже находящиеся в специально созданных условиях (вакуум, охлаждение до сверхнизких температур), разрушаются за доли секунды. При успешной реализации планов, квантовый компьютер на базе 12 сверхпроводящих кубитов станет крупнейшим достижением российских ученых в этом направлении.
Биты перешли в кубиты: что такое квантовые компьютеры и квантовые симуляторы
или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. Если же взять, к примеру, десять кубитов, то будет уже 1024 классических состояния. Для кубитов IBM и Google безошибочная работа кубитов означает, что каждый логический кубит должен состоять из 1000 физических кубитов. — Мы модернизировали систему считывания: раньше могли считывать восемь ионов одновременно, теперь 10, что соответствует 20 кубитам. Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака). Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности.