Новости искусственный интеллект в медицине и здравоохранении

Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением. Внедрение искусственного интеллекта (ИИ) в систему мирового здравоохранения во многом обязано американским IT-гигантам, которые с начала XXI в. инвестировали в эту сферу миллиарды.

Перспективы применения ИИ

  • Применение искусственного интеллекта в медицине | ComNews
  • Цифровой ассистент: как искусственный интеллект помогает московским врачам // Новости НТВ
  • Столичные алгоритмы
  • Искусственный интеллект в медицине и здравоохранении
  • Как передовые технологии изменили медицину в 2023 году

Цифровой ассистент: как искусственный интеллект помогает московским врачам

Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей. Разрабатываем решения для медицины будущего с искусственным интеллектом. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования.

Машины лечат людей: как нейросети используют в российской медицине

Недостаточная точность и ошибки в диагностике: в настоящее время алгоритмы ИИ могут допускать ошибки, иногда весьма серьезные, в диагностике и предсказании болезней. Это создает потенциальные риски для пациентов и требует дальнейшего усовершенствования технологий. Зависимость от качества данных: эффективность ИИ во многом зависит от качества и объема входных данных. Плохие или неадекватные данные могут привести к неточным или даже опасным выводам.

Юридическая ответственность: определение юридической ответственности в случае ошибок или недочетов, связанных с использованием ИИ, остается сложным вопросом. Это создает правовую неопределенность и потенциальные риски для медицинских учреждений. Сопротивление со стороны медицинского сообщества: некоторые врачи и медицинские работники могут испытывать сопротивление новым технологиям, возможно, из-за опасений относительно замещения человеческого труда или потери профессиональной автономии.

Необходимость обучения и адаптации: для эффективного внедрения ИИ необходимо обучение медицинского персонала работе с новыми технологиями, что может занять значительное время и ресурсы. Кибербезопасность: поскольку ИИ, как правило, зависит от сетей передачи данных, системы ИИ подвержены рискам безопасности. Более того, ИИ может активно использоваться для атаки на многочисленные компании.

Перспективы применения ИИ в медицине будущего Уже сейчас понятно, что интенсивное внедрение ИИ в медицинскую практику будет только нарастать. Возможно появление новых методов диагностики и лечения заболеваний с использованием ИИ, а также расширение областей применения роботизированной хирургии. Кроме того, ИИ может внести значительный вклад в исследования в области медицины, ускоряя процесс разработки новых лекарств и терапий.

Все это в совокупности будет способствовать эволюции медицинской отрасли: Сокращение времени и затрат на исследования: ИИ может значительно сократить время и затраты на разработку новых лекарств, предсказывая потенциальную эффективность отдельных компонентов и помогая в оптимизации процессов клинических испытаний.

Использование этих систем может значительно улучшить диагностику, ускорить процесс лечения и сделать медицинские услуги более доступными и персонализированными для пациентов. Со ссылкой на последние исследования и данные становится очевидной тенденция усиления значимости искусственного интеллекта в обеспечении здоровья нации. В этих целях всем медицинским организациям в субъектах РФ в 2024 году предписано внедрить не менее трех решений с ИИ , об этом сообщил заместитель министра здравоохранения РФ Павел Пугачев.

Концерны не слишком часто инвестируют средства в поиски лекарств от таких болезней. Время окупаемости таких исследований составит десятки лет, если они вообще когда-нибудь окупятся.

Основная сложность лечения редких болезней не в синтезе лекарств и лабораторных тестированиях, а в недостатке клинических данных. Поэтому компания Healx с помощью нейросетей создает полную информационную базу 7 000 редких болезней, в которой собирает все ведомости из научных материалов, баз данных пациентов и исследований лекарств. Созданная база помогла при разработке лекарства от синдрома Мартина-Белл. За 18 месяцев команда смогла создать препарат, который уже успешно прошел две фазы клинических исследований. Для сравнения, в обычных условиях разработка и тестирование лекарственного препарата занимает от пяти до десяти лет. При этом затраты на его создание просто на порядки меньше классических.

В части поиска информации и ее классификации нейросети показывают отличные результаты. Они способны относительно быстро сканировать интернет на всех существующих языках, собирая данные, которые касаются конкретной темы. Добиться такой эффективности при работе вручную не получится. Искусственный интеллект и персонифицированная медицина Для большинства наиболее распространенных болезней разработаны терапевтические схемы приема лекарственных препаратов. Для лечения некоторых болезней например, туберкулеза или онкологии единственными эффективными препаратами выступают довольно токсичные вещества. Из-за низкой селективности такие лекарства оказывают побочные действия, пагубно влияют на печень, почки и сердечно-сосудистую систему.

И если ранее альтернатив не существовало и применение агрессивных препаратов считалось допустимым с причинением ущерба для здоровья в процессе лечения, то сейчас методика меняется. Развитие медицины и медицинской химии позволяет работать не только над поиском принципиально новых лекарств, но и над подбором оптимальных схем лечения по уже известным методикам. Индивидуальная дозировка препаратов, имеющих сильные побочные эффекты, могла бы снизить негативное влияние на пациентов, но сложность расчетов не позволяет проводить их массово. К тому же их нужно проводить несколько раз в день.

С этого года в столичных клиниках использование искусственного интеллекта при исследованиях по ОМС стало обязательным. Касается это маммографии. Юрий Васильев, директор Центра диагностики и телемедицины: «Наша научная составляющая — это понимание того, как работает система ИИ. Два года назад было непонятно: что-то он выявляет или что-то он не выявляет. И на этом все. На сегодняшний день мы смотрим на ИИ с разных сторон. Абсолютно постоянно изучаю то, что может он делать, то, где он может принести для нас пользу или эффект». Базу для технологического прогресса в области медицины создают московские ученые. В День российской науки в Центре диагностики и телемедицины медики рассказывают еще об одной разработке. Там создали отечественные фантомы. Эти изделия имитируют органы и ткани тела человека. Нужны они в первую очередь для обучения студентов-медиков. Ученые показывают фантомы мозга, простаты, сосудов кровеносной системы, молочной железы.

Машины лечат людей: как нейросети используют в российской медицине

О том в каких областях медицины уже сейчас искусственный интеллект максимально точен и уже абсолютно необходим разговор в программе «Утро России» с заместителем министра здравоохранения Российской Федерации Павлом Пугачевым. Роль искусственного интеллекта в генетической диагностике Искусственный интеллект (ИИ) — это область компьютерных наук, которая занимается разработкой компьютерных систем, способных самостоятельно обучаться и принимать решения на основе полученных данных, что. Нормативное регулирование искусственного интеллекта в медицине. Министр здравоохранения РФ Михаил Мурашко рассказал корреспонденту "Известий" Виктору Синеоку, как искусственный интеллект внедряют в сферу здравоохранения. Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине.

Тайны искусственного интеллекта и сhatGPT в медицине

Созданная база помогла при разработке лекарства от синдрома Мартина-Белл. За 18 месяцев команда смогла создать препарат, который уже успешно прошел две фазы клинических исследований. Для сравнения, в обычных условиях разработка и тестирование лекарственного препарата занимает от пяти до десяти лет. При этом затраты на его создание просто на порядки меньше классических. В части поиска информации и ее классификации нейросети показывают отличные результаты. Они способны относительно быстро сканировать интернет на всех существующих языках, собирая данные, которые касаются конкретной темы. Добиться такой эффективности при работе вручную не получится. Искусственный интеллект и персонифицированная медицина Для большинства наиболее распространенных болезней разработаны терапевтические схемы приема лекарственных препаратов. Для лечения некоторых болезней например, туберкулеза или онкологии единственными эффективными препаратами выступают довольно токсичные вещества.

Из-за низкой селективности такие лекарства оказывают побочные действия, пагубно влияют на печень, почки и сердечно-сосудистую систему. И если ранее альтернатив не существовало и применение агрессивных препаратов считалось допустимым с причинением ущерба для здоровья в процессе лечения, то сейчас методика меняется. Развитие медицины и медицинской химии позволяет работать не только над поиском принципиально новых лекарств, но и над подбором оптимальных схем лечения по уже известным методикам. Индивидуальная дозировка препаратов, имеющих сильные побочные эффекты, могла бы снизить негативное влияние на пациентов, но сложность расчетов не позволяет проводить их массово. К тому же их нужно проводить несколько раз в день. Нейросети способны проводить такие расчеты быстро и качественно. AI для комбинационной терапии раковых больных с помощью искусственного интеллекта. Уже во время первого тестирования система показала свою эффективность.

Для пациента с прогрессирующим раком простаты система рассчитывала индивидуальную комбинацию препаратов на протяжении всего курса лечения.

Зачастую эпилептики — очень метеозависимые люди. Циклолептическое течение эпилепсии встречается довольно часто, и система очень быстро научается прогнозировать интервалы этих циклов. Если у ребёнка приступы происходят, например, каждые пять дней, система это спрогнозирует. Напомнит родителям, что сегодня с большой вероятностью будет обострение, и попросит быть внимательнее к своему чаду. Современная медицина не обладает такими средствами. Но, как я уже сказал, к приступу можно будет подготовиться, чтобы он нанёс минимальный вред. В этот день ребёнок должен быть дома и избегать активностей, которые могут быть опасны в случае потери сознания.

То есть родители не должны пускать его на горку, на качели, в бассейн и так далее. Почему «Джейн» оказалась не у дел — Почему мы говорим о «Джейн» в прошедшем времени? Всё, что я вам рассказываю, связано с опытной эксплуатацией «Джейн» врачами одной московской больницы, специализирующимися на эпилепсии. Врачи ей пользовались под моим контролем. Наши алгоритмы помогли уточнить диагнозы и скорректировать лечение десятка пациентов. Однако в определённый момент мы столкнулись с проблемой — чтобы продолжать использовать систему, требовалось сертифицировать её в качестве медицинского изделия. Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят.

А делать такую сложную систему просто так, для себя, смысла не было. Поэтому я решил сосредоточиться на развитии других проектов. У нас был чат-бот, у нас была веб-версия, система «крутилась» на сервере. Если бы я не остановил разработку, то следующий модуль, который мы делали, обеспечивал бы вывод по аналогии. Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет.

Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике. Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей.

Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты.

Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года.

Доверяют ли коммерческие организации ИИ, как новые решения справляются с поставленными задачами и есть ли будущее у искусственного интеллекта в радиологии — в материале для Бизнес-секретов. ИИ в области здравоохранения: общий взгляд Говорить о внедрениях технологий искусственного интеллекта в медицине в целом и в радиологии в частности открыто начали всего несколько лет назад, в период пандемии коронавируса. Зарубежные компании начали исследования в данной области раньше и уже предлагали готовые решения. В РФ первые решения на рынок пришли в конце 10-х годов, но при этом оказались более чем конкурентоспособны. Искусственный интеллект в рентгенологии: ландшафт рынка к концу 2023 года Однако, если брать ИИ в отрасли здравоохранения, то это всего лишь небольшой процент от всего сектора.

На сегодняшний день технология применяется лишь в рентгенографии, анализе медицинских карт, распознавании врачебной речи и наблюдении за пациентами в стационарах. Это было единогласное решение руководства центра Оценка решений на основе ИИ и критерии их выбора Разработка медицинских решений на базе искусственного интеллекта — это коммерческая отрасль. Вендоры имеют свой взгляд на рынок, создают конкурентоспособные продукты, выполняющие разный спектр задач и различающиеся характеристиками. Не последней в очереди идёт и стоимость решения, а также условия внедрения и поддержки. Гайд для предпринимателей по созданию медицинского приложения Опыт внедрения ИИ в «МеркуриМед» показал, что выбор должен строиться на двух основных критериях. Решения для отрасли здравоохранения должны проходить обязательную процедуру регистрации в Росздравнадзоре с получение удостоверения, а также находиться в реестре Минкомсвязи, то есть изделие должно относится к категории отечественного ПО.

Кроме того, стоит вопрос стандартизации этой технологии: ИИ потребуется признавать медицинской программой для того, чтобы работать со здоровьем населения». Участник дискуссии, доктор медицинских наук, профессор Владислав Шафалинов считает, что в ситуации с применением ИИ в существующей системе здравоохранения первичным должен быть вопрос безопасности , а уже потом — эффективности. Важно, чтобы его использование не навредило пациентам. Несмотря на то, что ИИ сегодня является технологией будущего для здравоохранения и персонализированной медицине, важно правильно оценивать риски его применения и разделять зоны ответственности.

Сможет ли ИИ давать рекомендации относительно таких сложных тем, как например, проведение эвтаназии, во многом это будет зависеть и от корректно прописанных алгоритмов нейросетей.

ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране

Министр здравоохранения РФ Михаил Мурашко рассказал корреспонденту "Известий" Виктору Синеоку, как искусственный интеллект внедряют в сферу здравоохранения. Решения с использованием искусственного интеллекта в медицине внедряют 70 российских регионов, сообщил заместитель министра здравоохранения РФ Павел Пугачев, выступая на форуме "Биотехмед". Команда ученых из Калифорнийского технологического института создала систему SAIS на базе искусственного интеллекта для тренировки хирургических навыков. В фокусе: технологии искусственного интеллекта (ИИ) в здравоохранении и системы поддержки принятия врачебных решений (СППВР). Искусственный интеллект приносит значительные инновации в медицину в России.

Эксперт объяснил провал искусственного интеллекта в медицине

Искусственный интеллект существенно улучшает точность аппаратной диагностики в медицине благодаря нескольким ключевым аспектам. Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями.

Похожие новости:

Оцените статью
Добавить комментарий