I", выражение "Христа II й век" могли записывать как "X. II" и т. Не исключено, что именно из этих сокращений возникли принятые сегодня обозначения веков. Расшифровка римских цифр в веках. I", выражение "Христа II й век" могли записывать как "X. II" и т. Не исключено, что именно из этих сокращений возникли принятые сегодня обозначения веков. день, месяц, тысячелетие; еще реже – час, минута.
7. Даты и время дня
С этого момента написание с двумя буквами "с" стало господствующим. Российская империя 1721-1917 2 ноября 22 октября по старому стилю 1721 года, после победы русских в Северной войне, царь Петр I принял новый титул "отец Отечествия, император Всероссийский, Великий". При этом в имперский период в качестве равнозначных названий государства использовались наименования "Российская империя", "Российское государство" и "Россия". В частности, при Николае I, правившем в 1825-1855 годах, в Полном собрании законов и Своде законов термины "Российская империя" и "Российское государство" использовались как тождественные. В Основных государственных законах 1906 года употреблялись в качестве равнозначных наименования "Государство Российское", "Российская империя" и "Россия". Российская республика 1917-1918 В ходе Февральской революции 1917 года монархия в России прекратила свое существование. Созданное 15 2 марта 1917 года Временное правительство приняло "формулу умолчания", согласно которой новый государственный строй должно было определить Учредительное собрание. Однако спустя полгода, 14 1 сентября 1917 года, правительство, не дожидаясь выборов в Учредительное собрание, провозгласило Россию республикой.
Соответствующее постановление подписали председатель кабинета Александр Керенский и министр юстиции Александр Зарудный. В тот же день парламент был разогнан вооруженными отрядами большевиков. В годы Гражданской войны одновременно действовали советское правительство, созданное большевиками, и Всероссийское правительство, сформированное силами их противников в том числе депутатами Учредительного собрания. Обе стороны декларировали собственные названия государства, которые сосуществовали в 1918-1922 годах. Однако вплоть до июля 1918 года единообразия в написании официального наименования страны не существовало.
Могли иметь место и экономические причины изменения времени вставки в календарь месяца расплаты. О конкретном грядущем календаре население республики оповещалось жрецами в конце февраля. Об этом запутанном древнеримском календаре через много лет Вольтер сказал: «Римские полководцы всегда побеждали, но они никогда не знали, в какой день это случилось». Юлианский календарь Гай Юлий Цезарь Его установил в 46 году до нашей эры своим указом римский диктатор и верховный жрец, полководец и государственный деятель Гай Юлий Цезарь 100—44 до н.
Юлий Цезарь произвел реформу календаря, прежде всего опираясь на свои права верховного жреца. За основу он взял египетский александрийский солнечный календарь. Семь месяцев стали иметь длительность по 31 дню, четыре месяца — по 30 дней. А один месяц имел 28 дней, но раз в четыре года — 29 дней. В году стало 365 или, раз в четыре года, 366 дней. Это соответствовало солнечному году в 365,25 суток. Добавочным днем раз в четыре года было не 29 февраля, как мы привыкли, а вставной день между 24 и 25 февраля, или по римскому календарю — между шестым и пятым днем до 1 марта. Он получил официальное название «дважды шестой до мартовских календ» — bis sectum Kal. Вот это самое bis sectum и превратилось для нас в слово високосный, а соответствующие годы стали впоследствии называться високосными годами.
Начало года было перенесено Цезарем с 1 марта на 1 января. Вот собственно и вся реформа. Ее четкость и простота так восхитили измученных своим календарем римлян, что в благодарность в том числе и за военные заслуги римский сенат переименовал месяц Квинтилис в Юлиус в этом месяце родился Цезарь. Юлианский календарь Через год, в мартовские иды 44 года до новой эры, Цезарь был убит заговорщиками во главе с Брутом. Началась борьба за власть между полководцами Антонием и Октавианом. Жрецы воспользовались неразберихой во власти и некоторое время продолжали «командовать» календарем по своему усмотрению, изменяя порядок високосных лет и вставку добавочного дня. И только через 50 лет юлианский солнечный календарь наконец заработал так, как это было задумано Цезарем. Это сделал полководец Октавиан, за военные и гражданские заслуги получивший от сената пожизненный «империй» чрезвычайные права, которые раньше давались полководцу на короткое время военных действий. Это означало фактическое превращение республики в империю.
Октавиану сенат присвоил титул императора и имя Август «преумножающий». Август сделал юлианский календарь государственным, обязательным на всей огромной территории Римской империи с 1 января 4 года нашей эры. Месяц септилий был переименован в август и было подправлено чередование длинных и коротких месяцев — оно стало таким, как сейчас. А сейчас по нему живет только ортодоксальная православная христианская церковь. Необходимость изменения юлианского календаря Так зачем же нужно было заменять юлианский календарь? Причина этого — чисто арифметическая. Юлианский календарь основан на том, что период солнечного цикла, так называемый календарный год, составляет 365,25 суток. Но с календарем должен быть связан так называемый тропический год, длительность которого чуть-чуть меньше — 365,2424 суток. В первые века нашей эры, когда стал общепринятым юлианский календарь, казалось, что маленькая разность этих периодов несущественна и не мешает календарю.
Как нетрудно определить, она приводит к сдвигу календаря на одни сутки за 128 лет. Когда постепенно исчезала власть Римской империи и потом, в «темные столетия» раннего Средневековья, этот сдвиг мало кого интересовал. Но в XVI веке, в эпоху «осени Средневековья», которую чаще называют эпохой Возрождения, человеческий быт и общественное сознание так изменились, что многие общественные деятели и ученые стали выражать беспокойство по поводу неточности календаря. В христианском европейском мире документальным началом отсчета считается четвертый век нашей эры, когда указом римского императора Константина христианство стало государственной религией. За прошедшие после этого 12 веков сдвиг юлианского календаря составил уже больше 9 дней. Одной из причин беспокойства стало перемещение дня весеннего равноденствия с 21 марта на 12 марта. А с этим днем было связано начало многих сельскохозяйственных работ, и время подготовки к ним существенно сократилось. Весна по календарю наступала все раньше и раньше. Но была и еще одна причина беспокойства.
Она имела религиозное обоснование. В христианских общинах Римской империи к началу IV века установился обычай отмечать как самый светлый праздник ставшую легендарной дату воскресения Христа. События, связанные с казнью Христа, происходили в Иерусалиме, столице римской провинции Иудеи, в дни, являвшиеся важным иудейским праздником, называвшимся «песах». Начиная с 12 века до нашей эры в иудейской религии этот праздник отмечался как память о благополучном исходе евреев из Египта, где они считались низшей расой. В начале нашей эры как, впрочем, и сейчас в Иудее продолжал действовать лунно-солнечный календарь, согласно которому весенний месяц Нисана перемещается относительно природного календаря, например относительно дня весеннего равноденствия. К последним дням песаха приурочивались и казни преступников, как праздничное «развлечение» для народа. На основании устных преданий и, по-видимому, не дошедших до нашего времени письменных свидетельств, четыре античных историка зафиксировали, что казнь Христа произошла 13 Нисана, а его воскресение — 15 Нисана 30-го года нашей эры. В ранних христианских общинах и установился обычай ежегодно отмечать 15 Нисана еврейского календаря как праздник Светлого Воскресения. Почти во всех европейских языках этот день получил название «пасха», очень похожее на еврейское «песах».
Естественно, что еврейское 15 Нисана в юлианском календаре приходилось на разные дни. В уточняющих эту дату устных преданиях говорилось о том, что это было после дня весеннего равноденствия и первого после этого полнолуния. И в 325 году первый христианский собор съезд всех епископов — руководителей христианских общин империи , организованный императором Константином в городе Никея и поэтому получивший имя Никейского собора, установил каноном празднование Пасхи в первое воскресенье после первого новолуния после весеннего равноденствия. По юлианскому календарю разброс дня Пасхи составил 36 дней — с 20 марта по 25 апреля.
Мусульмане датировали начальный год таким событием как Хиджра — переселение пророка Мухаммеда и мусульман из Мекки в Медину. В Израиле именноот сотворения мира велся отсчет времени.
В древности на Руси историческое летоисчисление претерпевало значительные изменения, до Крещения Руси люди вели счет времени по 4 сезонам. После христианизации Руси в 988 г. И только в 1700 г. Как ведется счет лет в истории сейчас? В современном летоисчислении, по-другому христианским, дата рождения Иисуса Христа по праву считается нулевым годом. Для большинства людей этот человек считался Спасителем, Сыном Божьим, перенесшим многочисленные страдания во имя спасения человечества.
Поэтому год его рождения для христиан был настолько важным событием, что они решили с него отсчитывать время. До этой даты происходили иные явления и происшествия, поэтому период до Рождества Христова стали называть до нашей эры до н. Историческая лента времени С целью наглядного рассмотрения временных промежутков применяют хронологическую ленту времени. Как нарисовать ленту времени? Ее представляют в виде прямой, на ней обозначаются различные события, подкрепленные датами: год, век, период, эра. Все события на данной линии изображают по хронологии - слева направо.
Отрезки времени, изображаемые на ленте времени, представляют 5 крупных периодов, происходивших в прошлом человечества. Самым длительным из них считается Первобытный мир, в эпоху которого люди пытались только осознать временное пространство. Необходимо правильно обозначать даты: начиная с 0 года, даты идут в строгой последовательности — от более раннего события к более позднему. До Рождества Иисуса Христа время идет в противоположную сторону.
Полторы тысячи лет никто не мог предложить этой системе достойной аналогии. В чем заключалось отличие Юлианского и Григорианского календаря, если разницы в количестве дней по ним не наблюдалось? Високосным годом теперь уже не считался каждый четвертый год по умолчанию, как в Юлианском календаре. Согласно Григорианскому календарю, если год заканчивался на 00, но при этом не делился на 4, високосным он не был. Так 2000 был високосным, а 2100 високосным уже не будет. Папа Григорий XIII основывался на том, что Пасха должна праздноваться только в воскресенье, а по Юлианскому календарю Пасха каждый раз выпадала на разные дни недели. Работу над календарем, в числе прочих, вел орден иезуитов. Юлианский и Григорианский календари — какой популярнее? Юлианский и Григорианский календари продолжили существовать вместе, но в большинстве стран мира используют именно Григорианский календарь, а Юлианский остается для расчета христианских праздников. Россия приняла реформу в числе последних. В 1917 году, сразу после Октябрьского переворота «мракобесный» календарь заменили на «прогрессивный».
С какого года начался 21 век: с 2000 или с 2001?
XXI века2023 (две тысячи двадцать третий) год по григорианскому календарю — невисокосный год, начинающийся в воскресенье. Обозначения веков простыми словами. Многие считают, что наш век — это время метаморфоз, когда мир продолжает эволюционировать в невиданных прежде направлениях. Простая путаница с обозначением дат в силу их схожести, разных языков и протяжённости во времени. Часто, читая историческую статью о событиях, происходивших до 1918 года, видим такие даты: «Бородинская битва произошла 26 августа (7 сентября) 1812 года». Почему две даты?
7. Даты и время дня
*Именно поэтому абсолютно неверно утверждение о том, что в 2020 году Россия вступила в новое десятилетие XXI века. Именно такой способ обозначения веков позволяет учитывать границы временных периодов и упорядочивать исторические события по хронологии. Для определения века по дате следует прибавить единицу к первым двум цифрам, если год обозначен четырьмя цифрами, и к одной первой, если год обозначен тремя цифрами. Римские цифры удобно ставить рядом с арабскими – если написать век римскими цифрами, а затем год – арабскими, то в глазах не будет рябить от обилия одинаковых знаков. Простая путаница с обозначением дат в силу их схожести, разных языков и протяжённости во времени. Почему сокращение веков обозначается вв.
Vll какой это век
XXI (21-й) век по Григорианскому календарю — текущий век. Начался 1 января 2001 года и продлится до 31 декабря 2100 (часто встречаются неправильные границы века. Для определения века по дате следует прибавить единицу к первым двум цифрам, если год обозначен четырьмя цифрами, и к одной первой, если год обозначен тремя цифрами. Для определения века по дате следует прибавить единицу к первым двум цифрам, если год обозначен четырьмя цифрами, и к одной первой, если год обозначен тремя цифрами. Таблицы соотношения столетий веков годов тысячелетий между собой за период с 12-го тысячелетия до нашей эры по 3-е тысячелетие нашей эры. I", выражение "Христа II й век" могли записывать как "X. II" и т. Не исключено, что именно из этих сокращений возникли принятые сегодня обозначения веков. Обозначения веков простыми словами.
Летоисчисление в древности
- все века как пишутся
- Исторические Века: Какими цифрами обозначаются?
- Значение слова ВЕК. Что такое ВЕК?
- Нужно ли писать века римскими цифрами?
Календарь событий 2024
XVII – десятка одна, пятерка одна и две единички в конце записи, т.е. 10 + 5 + 1 + 1 = 17 – обозначение семнадцатого века. Век Век Очень давно люди договорились использовать точку отсчёта времени. Ее обозначили на линии времени нулём и стали считать началом нашей эры. Новый век, именуемый XXII век, принес с собой важные изменения в различных сферах жизни общества. Так 100 лет составляют столетие или 1 век, а 10 веков = 1 тысячелетию. *Именно поэтому абсолютно неверно утверждение о том, что в 2020 году Россия вступила в новое десятилетие XXI века.
Римские цифры: как в них разобраться
Именно это сделали новостильники греческие в 1923 году ,по их вине произошел страшный раскол православных в Греции,на Афоне и эта рана кровоточит до сих пор. Ответить Алексей 3 месяца назад Ну, тут я бы не использовал столь предерзостную интонацию об установлении календаря Свыше. Тайна Благодатного огня на то и тайна, чтобы просто благоговейно ее принимать. А вдруг это чудо совершается не по календарю, а по молитвам верных?
И перейди Православие соборно на новоюлианский, и Благодатный огонь сходил бы? А вот то, что календарная неурядица точно превращена в соблазн для многих христиан - это бесспорно. И все те, кто сейчас будут говорить, что это нормально, и нечего в пост праздновать - "налагают вериги неудобоносимые" на всё население России.
Ради календаря придумали соблазн для миллионов. У нас и так Русь никогда не была особо святой и сильно православной. Ответить Вячеслав 1 год назад Не совсем так.
Между километром и милей есть точное соответствие, которое не меняется со временем. А вот между Юлианским и Григорианским календарями разница растет. Так что через некоторое время празднование православного рождества будет приходиться на летние месяцы.
Следующее увеличение разрыва будет в 2100 году. Ответить Кузнецов Михаил 2 года назад Это зависит от того, какой календарь Вы используете. Например, существуют разные меры длин и весов.
Также римские цифры используются в циферблатах часов под старину. Важные числа, такие, как год олимпиады или номер научного закона, могут также фиксироваться при помощи римских цифр: II мировая, V постулат Евклида. В разных странах римские цифры употребляются немножко по-разному: в СССР было принято указывать с помощью них месяц года 1.
На западе римскими цифрами часто пишут номер года в титрах фильмов или на фасадах зданий. В части Европы, в особенности в Литве, нередко можно встретить обозначение римскими цифрами дней недели I — понедельник и так далее. В Голландии римскими цифрами иногда обозначают этажи.
А в Италии ими отмечают 100-метровые отрезки пути, отмечая, в то же время, арабскими цифрами каждый километр. В России при письме рукой принято подчеркивать римские числа снизу и сверху одновременно. Однако часто в других странах подчеркивание сверху значило увеличение регистра числа в 1000 раз или 10000 раз при двойном подчеркивании.
Существует распространенное заблуждение о том, что современные западные размеры одежды имеют некую связь с римскими цифрами.
Крупнейшие бунты в истории России. Даты правления всех правителей России 18 века. Даты правления монархов России 18 века. Даты правления всех правителей России от Петра 1.
Правители 18-19 века в России. Показатели численности населения России по годам. Динамика роста населения России 2022. Таблица изменения численности населения. Динамика численности населения таблица.
Достижения 20 лет правления Путина. Достижения Путина за 20 лет в цифрах. Правление Путина годы правления. Россия при Путине. Самый старый город древней Руси.
Города Руси в 10 веке. Названия древнерусских городов. Название старинных городов России. Территория Российской империи на карте мира. Альтернативная история Российской империи карта.
Территория Российской империи в 1866. Альтернативная карта России. Пасха в 2022 году какого числа. Пасха в 2021 году. Пасха Дата празднования.
Расписание экзаменов ЕГЭ В 2021 году. График проведения ЕГЭ В 2021 году. Расписание проведения ЕГЭ 2021. Учебный график 2022-2023. Годовой календарный график на 2022-2023 учебный год.
Календарный учебный график внеурочной деятельности 2022-2023. Год и век. Год век тысячелетие Эра. Високосные года с 2000. Славянский Даарийский календарь Круголет Числобога.
Славянский Круголет Числобога по годам. Славянский Круголет таблица. Славянский Круголет Числобога Дата рождения. Годы принятия Конституции. Конституция год.
Год принятия первой Конституции. Лента времени до нашей эры. Лета времени по истории. Выборы президента России 2024. Кандидаты в президенты России 2024.
Президент России 2024 года. Выборы 2024 года в России президента кандидаты. История флагов России за всю историю. Российские государственные флаги история. Первый флаг в истории России.
Альтернативная карта мира. Альтернативная география. Карты альтернативных миров. Альтернативная история карты. Российская Республика карта 1917 карта.
Российская Империя максимальная территория карта. Карта развала Российской империи 1917. Отрок Вячеслав пророчества. Отрок Вячеслав пророчества о последних временах. Вершина богов.
Отрок Вячеслав пророчества о царе. В каком веке мы живем. Карта России. Карта расселения русских.
И мне стало любопытно, каково распределение по частоте использования букв в математике. Потому я исследовал сайт MathWorld , в котором содержится большое количество математической информации — более 13 500 записей, и посмотрел, каково распределение для различных букв [к сожалению, эту картинку, сделанную Стивеном, не удалось осовременить — прим. Можно увидеть, что "e" — самая популярная. И весьма странно, что "a" занимает второе место. Это очень необычно. Я немного рассказал об обозначениях, которые в принципе можно использовать в математике.
Так какая нотация лучше всего подходит для использования? Большинство людей, использующих математическую нотацию, наверняка задавались этим вопросом. Однако для математики нет никакого аналога, подобного "Современному использованию английского языка" Фаулера для английского языка. Была небольшая книжка под названием Математика в печати, изданная AMS, однако она в основном о типографских приёмах. В результате мы не имеем хорошо расписанных принципов, аналогичным вещам наподобие инфинитивов с отдельными частицами в английском языке. Если вы используете StandardForm в Mathematica, вам это больше не потребуется. Потому что всё, что вы введёте, будет однозначно интерпретировано. Однако для TraditionalForm следует придерживаться некоторых принципов. К примеру, не писать , потому что не совсем ясно, что это означает. Будущее Чтобы закончить, позвольте мне рассказать немного о будущем математической нотации.
Какой, к примеру, должна бы быть новая нотация? В какой-нибудь книге символов будет содержаться около 2500 символов, популярных в тех или иных областях и не являющимися буквами языков. И с правильным написанием символов, многие из них могли бы идеально сочетаться с математическими символами. Для чего же их использовать? Первая приходящая на ум возможность — нотация для представления программ и математических операций. В Mathematica, к примеру, представлено довольно много текстовых операторов, используемых в программах. И я долгое время считал, что было бы здорово иметь возможность использовать для них какие-то специальные символы вместо комбинаций обычных символов ASCII [последние версии Mathematica полностью поддерживают Unicode — прим. Оказывается, иногда это можно реализовать весьма просто. Поскольку мы выбрали символы ASCII, то часто можно получить некоторые символы, очень близкие по написанию, но более изящные. И это всё реализуемо за счёт того, что парсер в Mathematica может работать в том числе и со специальными символами.
Я часто размышлял о том, как бы расширить всё это. И вот, постепенно появляются новые идеи. Обратите внимание на знак решётки , или номерной знак, или, как его ещё иногда называют, октоторп, который мы используем в тех местах, в которые передаётся параметр чистой функции. Он напоминает квадрат с щупальцами. И в будущем, возможно, он будет обозначаться симпатичным квадратиком с маленькими засечками, и будет означать место для передачи параметра в функцию. И он будет более гладким, не похожим на фрагмент обычного кода, чем-то вроде пиктограммы. Насколько далеко можно зайти в этом направлении — представлении вещей в визуальной форме или в виде пиктограмм? Ясно, что такие вещи, как блок-схемы в инженерии, коммутативные диаграммы в чистой математике, технологические схемы — все хорошо справляются со своими задачами. По крайней мере до настоящего момента. Но как долго это может продолжаться?
Не думаю, что уж очень долго. Думаю, некоторые приближаются к некоторым фундаментальным ограничениям людей в обработке лингвистической информации. Когда языки более или менее контекстно-свободные, имеют древовидную структуру, с ними можно многое сделать. Наша буферная память из пяти элементов памяти и что бы то ни было спокойно сможет их разобрать. Конечно, если у нас будет слишком много вспомогательных предложений даже на контекстно-свободном языке, то будет вероятность исчерпать стековое пространство и попасть впросак. Но, если стек не будет заходить слишком глубоко, то всё будет работать как надо. Но что насчёт сетей? Можем ли мы понимать произвольные сети? Я имею в виду — почему у нас должны быть только префиксные, инфиксные, оверфиксные операторы? Почему бы операторам не получать свои аргументы через какие-то связи внутри сети?
Меня особенно интересовал этот вопрос в контексте того, что я занимался некоторыми научными вопросами касательно сетей. И мне действительно хотелось бы получить некоторое языковое представление для сетей. Но не смотря на то, что я уделил этому вопросу довольно много времени — не думаю, что мой мозг смог бы работать с подобными сетями так же, как с обычными языковыми или математическими конструкциями, имеющими одномерную или двумерную контекстно-свободную структуру. Так что я думаю, что это, возможно, то место, до которого нотация не сможет добраться. Вообще, как я упоминал выше, это частый случай, когда язык или нотация ограничивают наше пространство мыслимого. Итак, что это значит для математики? В своём научном проекте я разрабатывал некоторые основные обобщения того, что люди обычно относят к математике. И вопрос в том, какие обозначения могут быть использованы для абстрактного представления подобных вещей. Что ж, я не смог пока что полностью ответить на этот вопрос. Однако я обнаружил, что, по крайней мере в большинстве случаев, графическое представление или представление в виде пиктограмм гораздо эффективнее обозначений в виде конструкций на обычных языках.
Возвращаясь к самому началу этого разговора, ситуация напоминает то, что происходило тысячи лет в геометрии. В геометрии мы знаем, как представить что-то в графическом виде. Ещё со времён древнего Вавилона. И чуть более ста лет назад стало ясно, как можно формулировать геометрические задачи с точки зрения алгебры. Однако мы всё ещё не знаем простого и ясного способа представлять геометрические схемы в обозначениях на естественном языке. И моя догадка состоит в том, что практически все эти математические вещи лишь в небольшом количестве могут быть представлены в обозначениях на естественном языке. Однако мы — люди — легко воспринимаем лишь эти обозначения на естественном языке. Так что мы склонны изучать те вещи, которые могут быть представлены этим способом. Конечно, подобные вещи не могут быть тем, что происходит в природе и вселенной. Но это уже совсем другая история.
Так что я лучше закончу на этом. Большое спасибо. Примечания В ходе обсуждения после выступления и во время общения с другими людьми на конференции возникло несколько моментов, которые следовало бы обсудить. Эмпирические законы для математических обозначений При изучении обычного естественного языка были обнаружены различные историко-эмпирические законы. Пример — Закон Гримма , которые описывает переносы в согласных на индоевропейских языках. Мне было любопытно, можно ли найти подобные историко-эмпирические законы для математического обозначения. Дана Скотт предложила такой вариант: тенденция к удалению явных параметров. Как пример, в 60 годах 19 века часто каждый компонент вектора именовался отдельно. Но затем компоненты стали помечать индексами — как ai. И вскоре после этого — в основном после работ Гиббса — векторы стали представлять как один объект, обозначаемый, скажем, как или a.
С тензорами всё не так просто. Нотацию, избегающую явных индексов, обычно называют координатно-свободной. И подобная нотация — частое явление в чистой математике. Однако в физике данный подход считается слишком абстрактным, потому явные индексы используются повсеместно. В отношении функций так же имеется тенденция явно не упоминать параметры. В чистой математике, когда функции рассматриваются через сопоставления, они часто упоминаются лишь по своему имени — просто f, без каких-либо параметров. Однако это будет хорошо только тогда, когда у функции только один параметр. Когда параметров несколько, обычно становится непонятно, как будут работать те потоки данных, которые ассоциированы с параметрами. Однако, ещё в 20-х годах 20 века было показано, что можно использовать так называемые комбинаторы для определения подобных потоков данных без какого-либо явного указания параметров. Комбинаторы не использовались в основных течениях математики, однако время от времени становились популярными в теории вычислений, хотя их популярность заметно поубавилась из-за несовместимости с идеей о типах данных.
Комбинаторы довольно легко задать в Mathematica через задание функции с составным заголовком. Никакие переменные не требуются. Проблема заключается в том, что выражения получаются непонятными, и с этим ничего не поделать. Я пытался найти какие-то способы для более ясного представления их и сопряжённых с ними вычислений. Я добился небольшого прогресса, однако нельзя сказать, что задача была решена. Печатные обозначения против экранных Некоторые спрашивали о разнице в возможностях печатных и экранных обозначений. Чтобы можно было понимать обозначения, они должны быть похожими, и разница между ними не должна быть очень большой. Но есть некоторые очевидные возможности. Во-первых, на экране легко можно использовать цвет. Можно было бы подумать, что было каким-то образом удобно использовать разные цвета для переменных.
Мой опыт говорит о том, что это удобно для разъяснения формулы. Однако всё станет весьма запутанным, если, к примеру, красному x и зелёному x будут соответствовать разные переменные. Другая возможность состоит в том, чтобы иметь в формуле какие-то анимированные элементы. Полагаю, что они будут столь же раздражающими, как и мигающий текст, и не будут особо полезными. Пожалуй, идея получше — иметь возможность скрывать и разворачивать определённые части выражения — как группы ячеек в ноутбуке Mathematica. Тогда будет возможность сразу получить представление обо всём выражении, а если интересны детали, то разворачивать его далее и далее. Письменные обозначения Некоторые могли бы подумать, что я уж слишком много времени уделил графическим обозначениям. Хотелось бы прояснить, что я нахожу довольно затруднительным графические обозначения обычных математических действий и операций. В своей книге A New Kind of Science я повсеместно использую графику, и мне не представляется никакого другого способа делать то, что я делаю. И в традиционной науке, и в математике есть множество графических обозначений, которые прекрасно работают, пускай и в основном для статичных конструкций.
Теория графов — очевидный пример использования графического представления. К ним близки структурные диаграммы из химии и диаграммы Фейнмана из физики. В математике имеются методы для групповых теоретических вычислений, представленные отчасти благодаря Предрагу Цвитановицу, и вот они основаны на графическом обозначении. И в лингвистике, к примеру, распространены диаграммы для предложений, показывающие дерево лингвистических компонентов и способы их группировки для образования предложения. Все эти обозначения, однако, становятся малопригодными в случаях исследования каких-то очень крупных объектов. Однако в диаграммах Фейнмана обычно используется две петли, а пять петель — максимум, для которого когда-либо были сделаны явные общие вычисления. Шрифты и символы Я обещал рассказать кое-что о символах и шрифтах. В Mathematica 3 нам пришлось проделать большую работу чтобы разработать шрифты для более чем 1100 символов, имеющих отношение к математической и технической нотации. Получение правильной формы — даже для греческих букв — часто было достаточно сложным. С одной стороны, мы хотели сохранить некоторую традиционность в написании, а с другой — сделать греческие буквы максимально непохожими на английские и какие бы то ни было другие.
В конце концов я сделал эскизы для большинства символов. Вот к чему мы пришли для греческих букв. Мы разработали Times-подобный шрифт, моноширинный наподобие Courier, а сейчас разрабатываем sans serif. Разработать шрифт Courier было непростой задачей. Нужно, к примеру, было придумать, как сделать так, чтобы йота занимала весь слот под символ. Так же сложности были со скриптовыми и готическими фактурными шрифтами. Часто в этих шрифтах буквы настолько непохожи на обычные английские, что становятся абсолютно нечитаемыми. Мы хотели, чтобы эти шрифты вписывались в соответствующую им тему, и, тем не менее, обладали бы теми же габаритами, что и обычные английские буквы. Вот, что у нас получилось: Веб сайт fonts. Поиск математических формул Некоторые люди спрашивали о поиске математических формул [после создания Wolfram Alpha появился гигантский объем баз данных, доступных в языке Wolfram Language, теперь можно получить огромный массив информации о любых формулах с помощью функции MathematicalFunctionData — прим.
Очевидно легко сказать, что же такое поиск обычного текста. Единственная вопрос заключается в эквивалентности строчных и прописных букв. Для математических формул всё сложнее, потому что есть ещё много различных эквивалентностей. Если спрашивать о всех возможных эквивалентностях, то всё станет слишком сложным. Но, если спросить об эквивалентностях, которые просто подразумевают замену одной переменной другой, то всегда можно определить, эквивалентны ли два выражения. Однако, для этого потребуется мощь обнаружителя одинаковых паттернов Mathematica. Мы планируем встроить возможности по поиску формул в наш сайт functions. Невизуальные обозначения Кто-то спрашивал о невизуальных обозначениях. Первая мысль, которая у меня возникла, заключалась в том, что человеческое зрение даёт гораздо больше информации, чем, скажем, слух. В конце концов, с нашими глазами соединён миллион нервных окончаний, а с ушами лишь 50 000.
В Mathematica встроены возможности по генерации звуков начиная со второй версии, которая была выпущена в 1991 году. И были некоторые моменты, когда эта функция оказывалась полезной для понимания каких-то данных. Однако я никогда не находил подобную функцию полезной для чего-то, связанного с обозначениями. Доказательства Кто-то спрашивал о представлении доказательств. Самая большая проблема заключается в представлении длинных доказательств, которые были автоматически найдены с помощью компьютера. Большое количество работы было проделано для представления доказательств в Mathematica. Примером является проект Theorema. Самые сложные для представления доказательства — скажем, в логике — представляют из себя некоторую последовательность преобразований. Отбор символов Я хотел бы кое-что рассказать о выборе символов для использования в математической нотации. Существует около 2500 часто используемых символов, которые не встречаются в обычном тексте.
Некоторые из них слишком картинны — скажем, обозначение для хрупких предметов. Некоторые слишком витиеватые. Некоторые полны чёрной заливки, так что они будут слишком сильно выделяться на странице символ радиации, например. Но некоторые могут быть вполне приемлемыми. Если заглянуть в историю, часто можно наблюдать картину, как со временем написание некоторых символов упрощается. В литературе по логике NAND обозначается по-разному: Ни одно из этих обозначений мне особо не нравилось. В основном они наполнены тонкими линиями и недостаточно цельны для того, чтобы представлять бинарные операторы. Однако они передают своё содержание. Я пришёл к следующему обозначению для оператора NAND, который основан на стандартном, однако имеющим улучшенную визуальную форму. Вот текущая версия того, к чему я пришёл: Частотное распределение символов Я упоминал о частотном распределении греческих букв в MathWorld.
В дополнение к этому я также посчитал количество различных объектов, именуемых с помощью букв, которые появляются в словаре физических терминов и математических сокращений. Вот результаты. В более ранних образцах математической нотации, скажем, в 17 веке, обычные слова шли вперемешку с различными символами. Однако всё более в таких сферах, как математика и физика, проявлялась тенденция к исключению слов из обозначений и именования переменных одной или двумя буквами. В некоторых областях инженерии и социальных наук, куда математика дошла не так давно и не является слишком абстрактной, обычные слова гораздо чаще можно встретить в качестве имён переменных. Та же история с современными тенденциями в программировании. И всё работает хорошо, пока формулы достаточно просты. Однако по мере усложнения формул нарушается их визуальный баланс, и становится уже сложно разглядеть их общую структуру. Части речи в математической нотации В разговоре о соответствии языка математики и обычного языка я хотел упомянуть вопрос частей речи. Насколько я знаю, во всех обычных языках есть глаголы и существительные, и в большинстве из них есть прилагательные, наречия и др.
В математической нотации можно представлять переменные как существительные и глаголы как операторы. А что насчёт других частей речи? Вещи наподобие иногда играют роль союзов, как и в обычных языках примечательно, что во всех языках есть отдельные слова для AND и OR, однако ни в одном нет слова для NAND. А в качестве префиксного оператора может рассматриваться как прилагательное. Однако не до конца ясно, в какой мере различные виды лингвистических структур, связанные с частями речи на обычном языке, отражены в математическом обозначении. По вопросам о технологиях Wolfram пишите на info-russia wolfram.
Юлианский и Григорианский календари: сходства и различия
И если в году мы насчитываем 365 дней или 366 — в високосном , «меряя» его также сезонами: от весны до осени, от лета до зимы, то сами годы складываются в десятилетия, а потом — в столетия, которые мы и называем веками. Началом века считается год, в котором последними двумя цифрами являются 01. Два нуля в конце определяют завершающий год века. Так, 1801 — это старт 19-го столетия, а 1900 — его конец. Следующий, 1901-й, год уже начинает отсчет 20-го века. В большинстве стран принят отсчет годов и веков «от рождества Христова». Именно первый год от этого события и является началом нашей эры.
Считать Сегодня на дворе 21-й век, следовательно, от рождества Христова прошло 20 столетий, и сейчас длится 21-е. А вот все, что предшествовало данной дате, принято определять термином «до нашей эры». Здесь счет идет словно в обратном порядке: к примеру, за 5-м годом следует четвертый. И если мы хотим узнать, сколько лет назад случилось то или иное событие, произошедшее до нашей эры, нужно просто к текущему году прибавить номер года, в котором произошло интересующее нас событие. Так, например, от 2019-го до 184-го года до н.
При этом следует помнить, что переход на григорианский календарь происходил в разных странах в разное время: если католические страны почти сразу же ввели «папский» календарь, то Великобритания приняла его только в 1752 году, Швеция — в 1753-м. Однако ситуация меняется, когда речь заходит о событиях русской истории.
Следует учитывать, что в православных странах при датировании того или иного события уделялось внимание не только собственно числу месяца, но и обозначению этого дня в церковном календаре празднику, памяти святого. Между тем церковный календарь не подвергся никаким изменениям, и Рождество, к примеру, как праздновалось 25 декабря 300 или 200 лет назад, так празднуется в этот же день и теперь. Иное дело, что в гражданском «новом стиле» этот день обозначается как «7 января». Например: перенесение мощей святителя Филиппа, митрополита Московского, празднуется 3 июля ст. Но именно теоретически: в то время эту разницу могли бы заметить и зафиксировать разве что послы иностранных государств, уже перешедших на «папский» календарь. Позднее связи с Европой стали более тесными, и в XIX — начале XX века в календарях и периодических изданиях ставили двойную дату: по старому и новому стилю. Но и здесь при исторических датировках приоритет должен отдаваться юлианской дате, так как именно на нее ориентировались современники.
А поскольку юлианский календарь как был, так и остается календарем Русской Церкви, нет никаких оснований переводить даты иначе, чем это принято в современных церковных изданиях, — то есть с разницей в 13 дней независимо от даты конкретного события. Примеры Русский флотоводец Федор Федорович Ушаков скончался 2 октября 1817 года.
Однако ситуация меняется, когда речь заходит о событиях русской истории. В православных странах при датировании того или иного события уделялось внимание не только собственно числу месяца, но и обозначению этого дня в церковном календаре празднику, памяти святого. Между тем церковный календарь не подвергся никаким изменениям, и Рождество, к примеру, как праздновалось 25 декабря 300 или 200 лет назад, так празднуется в этот же день и теперь. Иное дело, что в гражданском «новом стиле» этот день обозначается как «7 января». При исторических датировках приоритет должен отдаваться юлианской дате, так как именно на нее ориентировались современники.
Примеры Русский флотоводец Федор Федорович Ушаков скончался 2 октября 1817 года.
Продолжительность века равняется ста годам, поэтому, наравне с термином век часто используется термин столетие. В литературе столетие принято записывать, используя как арабские, так и римские цифры и использовать сокращения: в. Десять столетий составляют тысячелетие. Одна из проблем, часто возникающих у начинающих изучать историю, заключается в необходимости соотнести дату и событие, выраженных в годах, со столетием и тысячелетием. Составим таблицу соотношений дат: год - столетие — тысячелетие.