Новости карлики звезды

Путешествие к Звёздам. 1:39:02. KOSMO. Онлифанщица-карлик с двумя вагинами рассказала об особом правиле их использования. Но все это очень нетипично для белых карликов — остатков сгоревших звезд, обладающих зашкаливающей плотностью. Всё о Дзене Вакансии Все статьи Все видео Все каналы Все подборки Все видеоигры Все фактовые ответы Все рубрики новостей Все региональные новости Все архивные новости.

Две звезды объединились в массивный белый карлик

Они похожи на классические новые звёзды в том плане, что белый карлик участвует в периодических вспышках, но механизмы вспышек разные: в классических новых звёздах. «Жэньминь жибао он-лайн»: китайские астрономы обнаружили уникальные звёзды-карлики с высоким содержанием лития. Специалисты наблюдали LP 890-9 — ближайшую карликовую звезду M спектрального класса M6V, используя спутник НАСА для исследования транзитных экзопланет (TESS). Вырожденные звезды и вырожденное вещество - Что представляют собой белые карлики. Пример белого карлика GD 362 показывает, что жизнь после смерти действительно возможна. Астрономы подтвердили редкость появления экзопланет, похожих на Юпитер, у маломассивных красных карликов, не найдя ни одного такого объекта у 200 близких к Солнцу звезд.

Красный карлик станет последним домом для жизни во Вселенной

Затем в глубине ядра детонирует углерод… Но это лишь «псевдосверхновая». Сбросив в пространство остатки водорода и потеряв три четверти начального вещества, гипергигант превращается в сравнительно стабильную ведь с потерей массы снижается и давление в недрах звезду Вольфа-Райе — пылающий шар, состоящий по большей части из гелия. Температура фотосферы звезды может быть очень высока, но наблюдателю она кажется багровой. Образующийся при сгорании гелия углерод заполняет хромосферу поглощающими свет тучами сажи.

Завершается карьера гипергиганта впечатляющим взрывом гиперновой, лишь вдесятеро менее мощным, чем в случае коллапса нейтронной звезды в кварковую. Природа этого взрыва неизвестна, результатом же оказывается образование чёрной дыры в 5—15 солнечных масс. Все звёзды Масса предопределяет судьбу звезды не полностью.

Влияние на эволюцию светила могут оказывать скорость вращения или взаимодействие с другими телами. Обмен веществом в двойных системах практически неизбежен. Встречаются и переменные типа W Большой Медведицы — пары настолько тесные, что звёзды в них сливаются в единое гантелеобразное тело.

В плотных же скоплениях не редки «голубые отставшие» звёзды, получившие дополнительный водород, поглотив один из компонентов «кратной» системы. Отдельную категорию составляют звёзды химически-пекулярные необычные — углеродные, бариевые, ртутно-марганцевые, а также «кремниевые» Ar-звёзды и Amзвёзды, в спектре которых усилены линии сразу нескольких тяжёлых металлов. Конечно же, «ртутные» звёзды состоят отнюдь не из ртути.

Доля этого металла в их массе не выше, чем в составе большинства прочих светил. Просто некие факторы — обмен массой, замедленное вращение, слишком сильное магнитное поле — таким образом влияют на движение вещества в конвективной зоне, что в фотосферу попадают тяжёлые химические элементы, которые в нормальной ситуации должны «тонуть». Ахернар — в полтора раза сплющенная бешеным вращением бело-голубая звезда в семь раз массивнее Солнца.

Лёгкие гиганты не оставляют после себя достаточно плотное облако, тяжёлые же — взрываются в конце эволюции В современном космосе взрывы сверхновых — самые масштабные и, следовательно, наиболее интересные с точки зрения науки события. Проблема лишь в том, что из четырёх катастрофических процессов, объединяемых под названием «сверхновая», научное объяснение имеет только один, самый слабый, — термоядерная детонация углерода на белом карлике. События, предшествующие рождению нейтронной звезды, понятны лишь в общих чертах.

При синтезе железа из кремния выделение энергии ничтожно, а давление излучения не позволяет остановить дальнейшее сжатие звезды. Ядра же железа, сливаясь, порождают ещё более тяжёлые, а затем и сверхтяжёлые и нестабильные элементы. И тут-то пресловутый конфликт теории относительности и квантовой механики переходит в фазу силового противостояния.

Гигантское ядро должно немедленно распасться… а ему некуда! Гравитационное сжатие вынуждает материю принимать состояния, запрещённые с точки зрения квантовой механики… Из самых общих соображений ясно: что-то будет! Но что конкретно?

Язык математики бессилен описать столкновение непреодолимой силы с несокрушимым препятствием. Или коллапс нейтронной звезды. Конечно, превращение нуклонов в кварк-глюонную плазму вполне возможно.

В первые сто секунд после Большого взрыва случалось ещё и не такое! Но где Большой взрыв, а где нейтронная звезда с её смешными с позиций физики высоких энергий миллионами кельвинов? Гипотеза, впрочем, всё равно считается убедительной.

Ибо альтернативные пути получения такого же количества лучистой энергии подразумевают что-то вроде столкновения обычной звезды со звездой из антиматерии. А это уже перебор даже с точки зрения астрофизиков, способных воображать самые невероятные процессы. Если слабые «углеродные» сверхновые производят преимущественно кремний и кислород, то более мощные «нейтронные» обогащают галактический газ в первую очередь железом и никелем Наконец, с образованием чёрных дыр тоже не возникает вопросов — но лишь при рассмотрении проблемы на упрощённом уровне «сферического коня в вакууме».

Современные модели гравитационного коллапса, включая и самые экстравагантные, трактуют материю как бесконечно сжимаемый идеальный газ. А чтобы вторая космическая скорость сравнялась со скоростью света и возник горизонт событий, плотность тела массой 3 — 15 солнечных должна превысить плотность гипотетической кварковой звезды, вещество которой ведёт себя как несжимаемая жидкость… И ничего, если бы проблема ограничивалась этим. Увы, при коллапсе сверх- и гипергигантов кварковая материя сжиматься не может даже теоретически.

Ибо не образуется. Иначе взрывалось бы на пару порядков сильнее. Странно ли, что необъяснимые и даже невозможные с точки зрения науки объекты всё-таки видны?

Для астрономии это норма. Знание ограничено, Вселенная бесконечна. Орбитальные и наземные обсерватории неутомимо просеивают мириады светил, отыскивая новые загадки космоса.

Это не самое быстрое вращение белых карликов, но оно есть. Эти характеристики указывают на слияние в прошлом. Нейтронные звезды — даже более плотные, чем белые карлики, и поддерживаемые давлением нейтронного вырождения — образуются, когда звезда, масса которой в 8—30 раз превышает массу Солнца, достигает конца своей жизни. Команда надеется их найти. Как генерируется магнитное поле и почему есть ли такое разнообразие напряженности магнитного поля среди белых карликов? Исследование опубликовано в журнале Nature.

Из-за этого белый карлик крайне нестабилен и продолжает сжиматься. Вскоре внутреннее давление может превысить критический уровень и тогда тело взорвётся как сверхновая звезда в результате термоядерной реакции с участием кислорода.

До недавнего времени такая схема развития ELM-звезды оставалась гипотетической. Однако в 2020 году благодаря данным космического телескопа «Гея» учёные обнаружили 21 кандидата в ELM-звёзды. Их можно полноправно считать белыми карликами с экстремально низкой массой. Таким образом, астрономам впервые удалось подтвердить существование давно теоретически предполагавшихся звёзд. Также исследователи нашли ещё 29 объектов, которые в дальнейшем могут получить статус ELM-карликов.

Астрономы обнаружили звезду нового типа

Напоминающая глаз форма туманности образуется благодаря тому, что мощные струи газа отделяются от яркой центральной звезды — белого карлика — со скоростью около 350 000. Астрономы обнаружили необычную тройную звездную систему HIP 81208, которая состоит из голубого гиганта, красного и коричневого карликов. Белые карлики представляют собой остатки звезд главной последовательности, например, Солнца. Общепринятая теория происхождения звезд не дает ответа и на вопрос, как образуются коричневые карлики. Карликовыми называют небольшие звезды со свечением, ученые разделяют их на несколько классов. Белые карлики — это выгоревшие ядра потухших звезд, которые по мере угасания раздувались, превращаясь в красного гиганта, но по окончании этой фазы не обладали достаточной массой.

Все виды звёзд. Сверхновые, карлики, нейтронные и прочие

Вырожденные звезды и вырожденное вещество - Что представляют собой белые карлики. Так, ученые считают, что структура белых карликов схожа со структурой пульсаров — нейтронных звезд, которые являются остатками мертвых звезд. Оранжевые карлики почти в три-четыре раза более распространены, чем звёзды, подобные солнцу, что облегчает поиски.

Найдена самая холодная карликовая звезда

Весь год астрофизики пребывали в напряжении — наблюдали, подсчитывали, анализировали. И теперь сообщили новый прогноз: минует! Ошибка прошлого вывода допущена из-за сильнейшего магнитного поля этого небесного тела.

Благодаря невысокой по сравнению с обычными звездами температуре звезды, на планете в системе красного карлика, которая вращается близко к звезде, потенциально может существовать жидкая вода и, следовательно, жизнь. Однако найти эти обитаемые миры очень сложно. Красные карлики малы и излучают немного света по сравнению с большинством других звезд, таких как наше Солнце. Тем не менее существует инструмент, с помощью которого можно внимательно изучать красные карлики и их планеты — телескоп SAINT-EX, расположенный в Мексике. Недавно он увидел две экзопланеты в системе звезды TOI-1266. По сравнению с планетами в нашей Солнечной системе, планеты TOI-1266 b и c находятся намного ближе к своей звезде — им требуется всего 11 и 19 дней соответственно, чтобы сделать полный оборот вокруг нее.

Об открытии сообщается в статье, опубликованной 4 мая на сервере препринтов arXiv.

Коричневые карлики являются промежуточными объектами между планетами и звездами, занимая диапазон масс между 13 и 80 массами Юпитера 0,012 и 0,076 масс Солнца.

Равновесная температура LP 890-9 b равна 396 кельвинов К. Экзопланета удалена от звезды на 0,04 а. Равновесная температура планеты оценивается на уровне 272 К. Родительская звезда LP 890-9 имеет радиус около 0,15 радиуса Солнца и массу 0,12 массы Солнца.

Астрономы нашли необычный белый карлик из разных половинок

Единственным источником энергии в тот момент было гравитационное сжатие, то есть превращение потенциальной энергии падающих к общему центру пылинок в кинетическую, а значит и тепловую энергию. Засияло оно холодным, малиновым цветом, но неслабо, так как по размеру соответствовало современной орбите Марса, что обеспечивало колоссальную излучающую поверхность. Затем наше светило вошло в бурную стадию молодой звезды. В сердцевине центрального утолщения размером с орбиту Меркурия, окружённого холодным пылевым диском, материя уже спрессовалась до жидкого состояния, но давление ещё не достигло необходимого для запуска термоядерных реакций уровня. Тем не менее, водород время от времени «вспыхивал», так как неравномерность осаждения вещества из диска создавала эффект имплозии — столкновения ударных волн, направленных от периферии к центру. Детонации в свою очередь порождали встречную ударную волну, срывающую и выталкивающую в пустоту внешние оболочки звезды. Но гравитация каждый раз торжествовала, и сжатие возобновлялось.

Лишь когда водород в ядре формирующейся звезды перешёл в «металлическую фазу», протекание термоядерных реакций стало непрерывным. С этого момента выделение энергии смогло уравновесить потери на излучение, и сжатие почти прекратилось. Четыре с половиной миллиарда лет назад наше Солнце достигло зрелости, вступив на главную последовательность. Судьбы светил Классификация звёзд в астрономии традиционно проводится на основании спектра излучения — единственной характеристики, которую можно измерить непосредственно. Абсолютная светимость и масса звезды вычисляются уже на её основе. Вся эта сортировка по «цветам», «ветвям» и «трекам» кажется невразумительной для неспециалиста — и неудивительно.

Ведь в реальности спектр — характеристика вторичная, меняющаяся с возрастом и зависящая от массы звезды. Величественную картину космоса проще расшифровать, предварительно поставив с ног на голову. Свойства и судьбы солнц определяются принадлежностью к одной из девяти «весовых категорий». Облако газа и пыли вокруг коричневого карлика иллюстрация Бурые карлики — самые лёгкие из светил. Лишь недавно стало известно, что тела массой 0,012 — 0,077 солнечных или от 12 до 77 «юпитеров» можно считать настоящими звёздами, обладающими термоядерным источником энергии. Давления в их недрах недостаточно для запуска синтеза гелия, но его хватает для протекания реакций с самым низким порогом.

Термоядерным горючим для коричневых карликов служат дейтерий и литий. Бурые карлики изображён T-карлик не просто настоящие звёзды, а самая многочисленная категория звёзд. Планеты на орбитах бурых карликов уже обнаружены, но может ли там кто-то обитать — вопрос Тем не менее, отличия бурых карликов от звёзд главной последовательности велики. Температура и светимость более крупных звёзд постоянно возрастают по мере того, как водород превращается в более плотный гелий и давление в ядре увеличивается. Когда запасы горючего истощаются окончательно, карликовая звезда превращается в увеличенный аналог Юпитера. Другая любопытная особенность этих светил — неполная ионизация вещества.

В их атмосферах присутствуют соединения кислорода и водорода: главным образом угарный газ и метан. Ко второй категории относятся наименьшие из звёзд главной последовательности — красные и частично оранжевые карлики массой от 0,077 до 0,5 «солнц», уже достаточной для того, чтобы четыре ядра водорода сливались в ядро гелия. Однако горение водорода в телах такой массы ещё нестабильно. Звезда пульсирует. Сжатие ведёт к увеличению давления и возрастанию интенсивности реакций, но повышенное выделение энергии влечёт за собой нагрев ядра, расширение, снижение давления и резкое замедление синтеза. Наименее стабильные карлики именуются «вспыхивающими звёздами» и считаются самой многочисленной разновидностью переменных.

Несмотря на неравномерность горения, с возрастом красные и оранжевые звёзды непрерывно наращивают температуру и светимость, пока наконец не сменят цвет. Свою карьеру звезда лёгкого веса завершает уже как голубой карлик. Правда, для этого требуется невероятно много времени: от 50 миллиардов до триллиона лет. Карлики очень экономно расходуют водородное горючее, но в безмерно удалённом будущем догорят и они, превратившись в гелиевые шары, покрытые водородным панцирем. К третьей категории принадлежат оранжевые, жёлтые и жёлто-белые звёзды среднего веса — до 2,5 солнечных масс. В них водород горит стабильно, а светимость и спектр с возрастом меняются незначительно.

За срок от 1 до 50 миллиардов лет с увеличением массы долговечность светила падает стремительно оранжевая звезда станет жёлтой, а жёлтая побелеет. Впечатляющие и замысловатые метаморфозы начнутся, когда водород в ядре будет израсходован. Тогда твёрдая сердцевина звезды начинает сжиматься. Выдавленные из ядра «тонущим» гелием на границу конвективной зоны остатки водорода на короткое время возобновляют реакцию, вследствие чего внешние слои вещества выталкиваются наружу, а звезда раздувается в 2,5 раза, превращаясь в яркий субгигант. Ядро же по закону сохранения импульса испытывает дополнительное сжатие — имплозию, благодаря которой температура в центре звезды кратковременно подскакивает до 100 миллионов кельвинов. А этого уже достаточно для начала термоядерных реакций с участием гелия.

Эти звезды славны в первую очередь впечатляющим снижением яркости с нерегулярными интервалами. Открытая командой из Оклахомы система хороша еще и тем, что в ходе вращения белые карлики периодически закрывают друг друга для земного наблюдателя. Происходят затмения, период которых постепенно уменьшается из-за сближения звезд.

Астрономы надеются, что это уменьшение окажется заметным при последующих наблюдениях уже в нашу эпоху.

Звезду заметили вместе с тремя другими быстро движущимися звездами, которые, как считается, стали результатами сверхновой типа Ia — одного из самых сильных взрывов во Вселенной. Такие сверхновые происходят, когда две звезды, одна из которых разрушенный белый карлик, падают на орбиту вокруг друг друга. В этом случае белый карлик начинает отбирать водород у звезды, вокруг которой он вращается по спирали. Реакция заканчивается гигантским термоядерным взрывом. Впрочем, простого взрыва звезды недостаточно для достижения такой скорости.

В соответствии с характеристиками изменения светимости, карликовые новые могут быть разделены на три типа: звёзды типа SS Лебедя SS Cygni, UGSS , для которых характерно увеличение яркости на 2-6m звёздных величин в течение 1-2 дней и возвращение к своей первоначальной яркости в течение нескольких последующих дней.

Их нормальные короткие вспышки аналогичны звёздам типа SS Лебедя, а «сверхмаксимумы» ярче на 2m звёздные величины и продолжаются более чем в пять раз дольше, но происходят они в несколько раз реже. В «сверхмаксимуме» яркости кривые блеска имеют наложение периодических «супергорбов», чьи периоды близки к орбитальным, а изменения амплитуды составляют около 0. Их орбитальные периоды короче, чем 0,1 дня; и они имеют спутника спектрального класса M. Значения их периодов переменности от 10 до 40 дней, в то время как амплитуды изменения блеска от 2m до 5m звёздных величин. Карликовые новые отличаются от классических новых звёзд и в других отношениях.

Астрономы открыли самую маленькую звезду из всех известных

Но в редких случаях существует вероятность, что она разовьётся в так называемого белого карлика с экстремально низкой массой ELM. Однако ранее такие звёзды не были обнаружены, и их существование было исключительно гипотетическим и парадоксальным. Парадокс состоял в том, что их возраст превышал бы возраст Вселенной, а это значит, что они невозможны. Однако есть путь, по которому эти ELM-звёзды могли бы формироваться, не нарушая при этом фундаментальных законов. Для этого им нужна звезда-компаньон.

Используя другие наблюдения, астрономы могут определить диаметр, плотность планеты и даже состав атмосферы. Ученые намерены продолжить наблюдения и изучение планеты TOI-2257 b. Они также надеются получить новые данные с помощью космического телескопа «Джеймс Уэбб». Екатерина Гура.

Он очень слабый в некоторых длинах волн, что говорит о температуре ниже точки кипения воды. Из этого следует, что объект довольно старый. При этом в других длинах волн «Несчастный случай» светится ярче.

А это уже предполагает более высокую температуру. Ученые решили объяснить это противоречие и обратилась к другому инфракрасному диапазону длин волн. Однако наземная обсерватория Кека, расположенная на пике горы Мауна-Кеа на Гавайях, не обнаружила этого объекта.

Это еще раз подтвердило низкую температуру «Несчастного случая». Другим ключом к разгадке могло стать расстояние обнаруженного объекта от Солнечной системы — его слабость могла бы объяснить дальность расположения. Стоит также отметить, что «Несчастный случай» очень быстро перемещается по галактике.

Его скорость около 207,4 километра в секунду. Любая другая звезда подобного рода проигрывает ему на четверть.

Как пишет газета «Жэньминь жибао он-лайн» , девять таких звёзд удалось найти при помощи крупнейшего в стране оптического телескопа LAMOST. Данное открытие уже назвали настоящим прорывом в астрономических исследованиях, учитывая, что до этого было известно лишь четыре подобных звезды. Согласно результатам исследования, которое проводила научная группа Национальной астрономической обсерватории при Академии наук КНР, содержание лития в этих звёздах в 4 раза больше, чем в Солнце.

Кроме того, исследователи выяснили, что 7 из 9 обнаруженных звёзд имеют высокую скорость вращения вокруг оси — более 9 км в секунду.

Поиск сужается: экзопланеты вблизи карликовых звёзд оказались непригодными для жизни

Она вращается вокруг красного карлика, а температура на ней кардинально меняется в течение 35 дней. Художественная иллюстрация, отображающая процесс слияния двух белых карликов, в результате которого образовался новый тип Reindl/CC BY SA 4.0. «огарки» звёзд: белые карлики, нейтронные звёзды, чёрные дыры.

Астрономы открыли самую маленькую звезду из всех известных

Данные показали, что две звезды вращаются друг вокруг друга с периодом 1,9 часа — это самая тесная близость, зарегистрированная у коричневого карлика. Белые карлики представляют собой остатки звезд главной последовательности, например, Солнца. Оранжевые карлики почти в три-четыре раза более распространены, чем звёзды, подобные солнцу, что облегчает поиски.

Китайские астрономы обнаружили уникальные звёзды-карлики

Источник изображения: K. Одним из первых обнаруженных белых карликов был 40 Эридан B 40 Eridani B , плотность которого превышала плотность Солнца в 25 000 раз, при этом его размеры были сопоставимы с размерами Земли. Это наблюдение казалось астрономам невозможным. Второй обнаруженный белый карлик, Сириус B Sirius B , оказался ещё более плотным — примерно в 200 000 раз плотнее Земли. Такая экстремальная плотность обусловлена необычным механизмом, обеспечивающим внутреннее давление звезды, необходимое для противостояния силе гравитации. В обычных звёздах энергия высвобождается за счёт ядерного синтеза, но в белых карликах этот процесс уже остановлен. В результате гравитация сжимает всю массу звезды настолько сильно, что электроны в ней сближаются, образуя вещество с электронной дегенерацией. Это происходит из-за квантовой механики, в частности, принципа запрета Паули, согласно которому каждый электрон в атоме должен иметь уникальный набор квантовых чисел. В условиях экстремальной плотности, как в белых карликах, все возможные состояния электронов заполняются, создавая силу, противостоящую дальнейшему сжатию звезды.

При критической массе около 13 юпитеров коричневый карлик может сжигать атомы дейтерия, более тяжелого изотопа водорода. Однако этот синтез происходит при более низких давлениях и температурах, чем синтез водорода в звездах. С другой стороны, планеты формируются в результате другого процесса, постепенно накапливая материал, оставшийся после образования звезды.

Объекты, которые образуются в результате гравитационного коллапса, но не имеют достаточной массы для термоядерного синтеза, часто называют субкоричневыми карликами, коричневыми карликами с планетарной массой или планетами-изгоями. Группа астрономов под руководством Кевина Лумана из Университета штата Пенсильвания поставила перед собой задачу найти самый маленький из таких объектов. Их задача состояла в том, чтобы ответить на фундаментальный вопрос: "Какие звезды самые маленькие?

Открытая командой из Оклахомы система хороша еще и тем, что в ходе вращения белые карлики периодически закрывают друг друга для земного наблюдателя. Происходят затмения, период которых постепенно уменьшается из-за сближения звезд. Астрономы надеются, что это уменьшение окажется заметным при последующих наблюдениях уже в нашу эпоху.

Дальнейшее изучение карлика с помощью спектрометра на обсерватории Кека на Гавайских островах позволило выявить странную двуликую природу этого объекта. Выяснилось, что одна половина поверхности белого карлика состоит водорода, линии которого видны, когда карлик повернут к Земле этой стороной, другая — из гелия. Что привело к такому разделению белого карлика, который назвали Янус в честь древнеримского бога, ученые точно не знают. По одной из версий, астрономы стали свидетелями редкой фазы эволюции белого карлика. Известно, что после образования белых карликов тяжелые элементы в их составе опускаются вглубь, легкие, в том числе водород и гелий — поднимаются.

Похожие новости:

Оцените статью
Добавить комментарий