Косые проекции считаются ламинарными, потому что большинство патологий, которые изображены на них. Скачать бесплатно презентацию на тему "O S A CB 1 1 D Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией.
Что такое наклонная и проекция наклонной рисунок
Гончарова Изложена методика построения проекций усеченных геометрических тел, полых геометрических тел с отверстиями и вырезами, а также выполнения рациональных разрезов и построения наклонных сечений; рассмотрены способы создания твердотельных моделей геометрических тел разнообразной формы с помощью системы автоматического проектирования и черчения Auto CAD 2007; приведены варианты заданий для выполнения графических работ. Для студентов машиностроительных специальностей вузов. Это и многое другое вы найдете в книге Инженерная графика: проецирование геометрических тел Г.
Пороги выше, особенно при малом расстоянии до центра веера.
Иллюзия больше у наблюдателя S3 как и в первом эксперименте. При попарном сравнении величин иллюзий у каждого наблюдателя в первом и втором экспериментах достоверных различий не выявлено. Величина иллюзии практически совпадает в первом и втором экспериментах для больших расстояний до центра веера у всех наблюдателей и отличается только для малого расстояния у наблюдателя S3.
Можно заметить, что инвариантность в восприятии при малых размерах изображений — в нашем случае это соответствует малому расстоянию — отсутствует и в других зрительных задачах [ 25 ]. Для иллюстрации на рис. Для вогнутых и выпуклых линий иллюзия в среднем больше в первом эксперименте, для прямых — во втором.
Оценка кривизны для мысленно проведенных через точки на веере линий во втором эксперименте. А и Б — пороги и иллюзии различения кривизны, угл. Все обозначения аналогичны рис.
В — сравнение усредненных по данным трех наблюдателей иллюзий, полученных в первом 1 и втором 2 экспериментах, угл. Данные усреднены для одинаковых поворотов дополнительной линии по часовой и против часовой стрелки относительно референтной линии. Пороги различения ориентации линий в зависимости от ориентации дополнительной линии приведены на рис.
Крайние точки слева — пороги различения ориентации стимула, состоящего только из одной короткой линии. Пороги разные у наблюдателей S1, S2 и S3 и практически одинаковы в случаях присутствия дополнительных линий по сравнению с порогами различения ориентации одиночных линий. Оценка ориентации линий в иллюзии наклона.
А и Б — пороги и иллюзии различения ориентации линий соответственно. Ось абсцисс — разница между ориентациями референтной и дополнительной линий, град. Ось ординат — пороги различения ориентации А и разница в воспринимаемой и физической ориентации линий Б , град.
Крайние точки слева — величины различения ориентации одиночных линий, не имеющих добавочных наклонных. Данные наблюдателей S1, S2 и S3. Обозначения те же, что и на рис.
С увеличением разности в ориентациях иллюзия постепенно исчезает. Полученные данные противоречат высказанной гипотезе о вкладе иллюзии наклона в иллюзию Геринга в том варианте, в каком она представлена во введении. Напомним, что согласно предположению, угол при малой разнице в ориентациях должен переоцениваться рис.
Данные по оценке вертикальной составляющей наклонных линий приведены на рис. Пороги близки у всех наблюдателей. Искажения в оценке вертикальной составляющей наклонных линий рис.
Они отсутствуют для вертикальных линий. Данные двух наблюдателей согласуются с иллюзией Геринга по искажению кривизны прямой линии, у наблюдателя S2 даже по форме зависимость похожа на выпуклую кривую. В настоящее время нельзя ответить на вопрос, с чем связаны такие расхождения в оценках наблюдателей.
Особенно, если учесть, что другие зависимости у них были схожими. Попарное сравнение оценок длин проекций наклонных и вертикальных линий у каждого наблюдателя выявило достоверные различия при их разнице в 1. Для вычисления этой статистики мы анализировали суммарные ответы по каждым пяти опытам.
Оценка вертикальной составляющей наклонных линий. А и Б — пороги и иллюзии различения вертикальной проекции наклонных линий. Оси абсцисс — ориентация линий относительно горизонтали, град.
Оси ординат — пороги и разница в воспринимаемой и физической длине вертикальной проекции, угл. В ней было проведено четыре разных эксперимента. Остановимся сначала на сравнении полученных данных.
В первом и втором экспериментах при использовании модифицированных версий иллюзии Геринга наблюдали практически одинаковые искажения в восприятии кривизны как реальных линий, так и мысленно проведенных линий через точки пересечения с веером. Максимальная по силе иллюзия возникала в случае использования вогнутых линий. Меньшая иллюзия наблюдалась для прямых линий.
Иллюзия практически отсутствовала для выпуклых линий. Для реальных линий иллюзия оказалась одинаковой вне зависимости от расстояния до центра веера. Пороги различения кривизны были выше при замене линий точками.
В первоначальном исследовании S. Coren [ 9 ] при замене прямых линий точками получил большую по силе иллюзию, чем в классическом варианте. Мы сравнили иллюзии каждого из наблюдателей при использовании прямых линий на разном расстоянии до центра веера.
В пяти случаях из девяти иллюзия для мысленно проведенных интерполирующих линий оказалась больше.
Прямую, пересекающую плоскость и не являющуюся перпендикуляром к плоскости , называют наклонной к этой плоскости рис. Рассмотрим следующий рисунок 3.
Теорема доказана.
Примечание В таком виде эти теоремы даются в школьных учебниках, но прохождение прямой через основание наклонной — не является обязательным условием. Более короткая и простая формулировка теорем: Лежащая в плоскости прямая будет перпендикулярна наклонной к данной плоскости, если она перпендикулярна проекции этой наклонной.
Прямая, лежащая в плоскости и перпендикулярная наклонной, будет перпендикулярна и проекции наклонной на плоскость. Если прямая не проходит через основание наклонной, то прямая и наклонная будут скрещиваться, а прямая и проекция наклонной — пересекаться. Примеры решения задач Теоремы о трех перпендикулярах имеют широкое применение.
Перпендикуляр, наклонная, проекция наклонной на плоскость
19 июля отмечаем 130-летие Владимира Маяковского и открываем выставку-инсталляцию «ПРОекция» — оммаж творчеству поэта, использующий приёмы непрямого цитирования для. Тринадцать лазерных проекторов Barco G60 изображают сцены битвы 700-летней давности на панно, которые скользят по витражам часовни в родном городе производителя Кортрейке. В эксперименте по оценке длин вертикальных проекций наклонных линий получены индивидуальные искажения. Тринадцать лазерных проекторов Barco G60 изображают сцены битвы 700-летней давности на панно, которые скользят по витражам часовни в родном городе производителя Кортрейке. это наклонная проекция, которая представляет собой параллельную проекцию, в которой линии проекции не ортогональны плоскости.
Наклонная к прямой
В этом бывшем мавзолее фламандских графов теперь располагается бесплатная иммерсивная проекционная инсталляция, пересказывающая историю 1302 года. В начале каждого представления панели, изготовленные на заказ, закрывают витражи часовни, образуя холст, на котором тринадцать лазерных проекторов Barco G60 воплощают в жизнь историю «Золотых шпор». G60 имеет высокое качество и долговечность, и раз за разом впечатляет посетителей. Для компании Barco, расположенной в Кортрейке, большая честь участвовать в этом проекте. Для культурного погружения, где качество является приоритетом номер один, проекторы Barco — лучший выбор, поскольку обеспечивают высокое качество изображения и служат максимально долго. Именно то, что нужно для этого шоу».
Однако ортогональные проекции обладают ещё некоторыми свойствами. Свойства ортогонального проецирования: 1. Длина отрезка равна длине его проекции, делённой на косинус угла наклона отрезка к плоскости проекций.
Кроме того, для ортогонального проецирования будет справедлива теорема о проецировании прямого угла: Теорема: Если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в натуральную величину. По построению прямая ВС к проецирующему лучу ВВ 1. По условию прямая В 1 С 1 ВС , поэтому тоже к плоскости b , т. Ортогональное проецирование обеспечивает простоту геометрических построений при определении ортогональных проекций точек, а так же возможность сохранять на проекциях форму и размеры проецируемой фигуры. Эти достоинства обеспечили ортогональному проецированию широкое применение в техническом черчении. Рассмотренные методы проецирования позволяют решить прямую задачу начертательной геометрии, т. Полученные таким образом проекции на одну плоскость дают неполное представление о предмете, его форме и положении в пространстве, т. Чтобы получить обратимый чертеж, то есть чертеж дающий полное представление о форме, размерах и положении оригинала в пространстве, однокартинный чертеж дополняют.
В зависимости от дополнения существуют различные виды чертежей.
Вертикальная перспективная проекция, показывающая ровно одну треть поверхности Земли, с Индикатриса Тиссо деформации. В Общая перспективная проекция это картографическая проекция. Когда Земля фотографируется из космоса, камера записывает вид как перспективную проекцию. При наведении в других направлениях результирующая проекция называется наклонной перспективой. Перспектива и использование Вертикальная перспектива связана с стереографическая проекция , гномоническая проекция , и орфографическая проекция. Все это правда перспективные прогнозы , что означает, что они возникают в результате просмотра земного шара с некоторой выгодной точки.
Они также азимутальный проекции, означающие, что поверхность проекции является плоскостью, касательной к сфере. Это приводит к правильным направлениям от центра ко всем остальным точкам.
Ориентацию короткой линии в стимуле сравнивали с ориентацией одиночной тестовой линии такой же длины, предъявляемой одновременно с ней справа от центра экрана. В четвертом эксперименте использовали две линии рис. Референтными были наклонные линии.
Длины их проекций на вертикаль составляли 2. Длины вертикальных тестовых линий меняли случайным образом в большую и меньшую сторону в пределах 0. Как и в первых двух экспериментах тестовая и референтная линии могли появляться справа или слева от центра экрана. Программное обеспечение разработали на языках программирования Python и Delphi. Использовали методы вынужденного выбора и константных стимулов.
На экране одновременно предъявляли тестовый и референтный стимул. Расстояние между ними варьировалось в диапазоне 5—7 см по горизонтали случайным образом. Задача наблюдателя в первом и втором экспериментах заключалась в сравнении кривизны линий. В третьем эксперименте наблюдатель указывал, повернута ли линия справа по часовой или против часовой стрелки относительно короткой линии, расположенной слева. В четвертом — надо определить, справа или слева проекция на вертикаль длиннее.
Для ответа использовали клавиши-стрелки на клавиатуре. Для каждого референтного стимула взяли по 9—13 тестовых изображений. Все эксперименты проходили в одни и те же дни в случайном порядке. Кроме того, в первом и втором экспериментах в один день проводили в случайном порядке три серии, отличающиеся расстоянием между центром веера и горизонтальными линиями референтного стимула. Данные, полученные в разные экспериментальные дни, суммировали.
Всего каждую пару стимулов тестовый с различной величиной и референтный предъявляли 50 раз. Точку фиксации не использовали. Наблюдение было бинокулярным с расстояния 115 см до экрана. Угловые размеры веера в первом и втором экспериментах составляли 6. Время предъявления стимулов 1 с.
Ритм предъявления изображений на экране задавал сам наблюдатель, но после предыдущего предъявления проходило не менее 1 с. Для каждого наблюдателя построили как суммарные психометрические функции для ответов по всем опытам, так и по каждым 10 предъявлениям стимулов по пяти опытам. Для определения порогов использовали пробит-анализ. С помощью метода наименьших квадратов психометрические функции приблизили к функциям нормального распределения. Величины средних значений у нормальных распределений соответствуют тем параметрам, при которых наблюдатели считают референтные стимулы равными тестовым — так называемые точки субъективного равенства.
Они используются для оценки искажений восприятия. В экспериментах приняли участие трое наблюдателей с нормальной или скорректированной остротой зрения, имеющие опыт участия в психофизических экспериментах. На рис. Величины среднеквадратичного отклонения взяты в качестве порогов различения кривизны. Видны индивидуальные различия в восприятии.
Пороги практически одинаковы для каждого наблюдателя во всех случаях. Оценка кривизны сплошных линий в первом эксперименте. А — пороги различения кривизны в угл. Приведены данные наблюдателей S1, S2 и S3. Разности между средними величинами полученных нормальных распределений и физической кривизной стимулов в зависимости от расстояния до линий в референтном стимуле и их кривизны приведены на рис.
Они отражают величину возникшей иллюзии. Разности выражены также в угловых минутах, то есть демонстрируют величину разности между кажущимся удалением от прямой в середине кривой и физическим рис. Порядок представления данных такой же, как и на рис. Здесь также как и на рис. Максимальные по величине иллюзии наблюдаются для вогнутых линий, они меньше для прямых линий и практически отсутствуют для выпуклых линий.
Таким образом, иллюзия оказалась инвариантной по отношению к расстоянию между линиями и центром веера и сильнее по величине для вогнутых линий. Результаты второго эксперимента приведены на рис. Представление данных аналогично рис. В этом эксперименте наблюдается больший разброс данных, чем в первом эксперименте. Пороги выше, особенно при малом расстоянии до центра веера.
Иллюзия больше у наблюдателя S3 как и в первом эксперименте. При попарном сравнении величин иллюзий у каждого наблюдателя в первом и втором экспериментах достоверных различий не выявлено.
Похожие презентации
- Перпендикуляр, наклонная, проекция наклонной на плоскость
- Наклонная проекция в OnDemand3D Dental | Видео
- Наклонная проекция в OnDemand3D Dental
- Косая проекция Меркатора - Oblique Mercator projection - Википедия
- Наклонная проекция - Oblique projection
- Содержание
Презентация "Перпендикуляр и наклонная" 7 класс
урок№39 Перпендикуляр, наклонная, проекция наклонной 7 классСкачать. Косая проекция Меркатора в версии Хотина точка-азимут устаревший вариант основана на математических вычислениях, используемых для проекции, в версиях до ArcGIS Pro. Космическая косая проекция Меркатора является обобщением наклонной проекции Меркатора. Если наклонные расположены по одну сторону от перпендикуляра, чтобы найти расстояние между основаниями наклонных, надо найти разность между длинами их проекций.
Проекции на окнах часовни воссоздают битву Золотых шпор
Новости Первого канала. Видео о Наклонная проекция в OnDemand3D Dental, Обзор программы Ondemand3d Dental, OnDemand3D. Перпендикулярность проекций доказывает перпендикулярность наклонных, и в итоге скат крыши — прямоугольный треугольник.