Новости спинной мозг новости

Однако, новое исследование — это настоящий прорыв. Немецкие ученые научились восстанавливать спинной мозг: последние новости 2021 года Немецкие ученые в значительной степени продвинулись в вопросах генной инженерии. С начала 2023 года в клинике реабилитации ФГБУ «НМХЦ им. Н.И. Пирогова» МЗ РФ проводится исследование: «Эффективность функциональных и силовых тренажеров Ильясова в реабилитации пациентов после травмы шейного отдела спинного мозга». Исследователи из Калифорнийского университета (University of California) опубликовали результаты своих экспериментов — им удалось восстановить целостность спинного мозга крыс с помощью нейронов, полученных из стволовых клеток.

Научный прорыв, ставший возможным благодаря инновационной методологии

  • Израильская компания представила инновационный метод лечения травм спинного мозга
  • СВЯЗАТЬСЯ С РЕДАКЦИЕЙ
  • Как лечить парализованных больных: открытие ученых | 360°
  • Автор обзора
  • Технологии Долголетия, новости – Telegram
  • Спинной мозг подсоединили к головному и вернули человеку с травмой позвоночника подвижность

В России проведена операция по установке нейростимулятора в спинной мозг

Работа лишь одной субпопуляции нейронов спинного мозга помогла пациентам с параличом снова двигаться. Для терапии травм спинного мозга авторы статьи, использовали электростимуляцию клеток поясничного отдела. Исследователи из Калифорнийского университета (University of California) опубликовали результаты своих экспериментов — им удалось восстановить целостность спинного мозга крыс с помощью нейронов, полученных из стволовых клеток. Что происходит во время травмы? До начала разработки импланта изначально они обнаружили новое место для стимуляции, которое располагается очень близко к важнейшим мотонейронам спинного мозга и одновременно доступно без хирургического вмешательства. Потому что через так называемый гематоэнцефалический барьер, который отделяет мозг от кровотока, проникают не все противовирусные лекарства.

Травматическое повреждение спинного мозга (Continuum, февраль 2024)

ВАЖНЫЕ МОМЕНТЫ: Травматическое повреждение спинного мозга - это сложное и разрушительное состояние, которое приводит к долгосрочному неврологическому дефициту с глубокими физическими, социальными и профессиональными последствиями, приводящими к снижению качества жизни, особенно у пациентов с тяжелыми последствиями. Изначальное лечение травматических повреждений спинного мозга требует комплексной междисциплинарной помощи для устранения потенциально катастрофических мультисистемных последствий. Текущие усилия направлены на оптимизацию и адаптацию изначальных подходов к лечению и разработку эффективных методов лечения для нейропротекции и нейрорегенерации для улучшения долгосрочного функционального восстановления. Алгоритм принятия решения об иммобилизации и методах визуализации пациентов, перенесших травматическое повреждение шейного отдела спинного мозга.

Юрий Палатенко, коммерческий директор «Медбиотех»: «Нам часто задают вопрос, почему мы не работаем с западными странами, с западными фирмами. Ответ очень простой: имея рядом такой огромный рынок, как Россия, было бы смешно уходить на сторону». Уральские производители оборудования горды своей продукцией настолько, что готовы открыто и заслужено хвалиться. Дмитрий Егоров, заместитель генерального директора уральского завода «ООО Медин-Урал» : «Все сделано из наших российских материалов, а данный компрессор и дистрактор сделаны их уральского титана, вся продукция Уральского региона.

Можно сказать, даже узко, не российский, а уральский производитель». Российской ассоциации почти 15 лет. Продвинулись далеко. Сами признаются, что земля и небо в сравнении с началом 2000-х. Пока в Бурденко идет съезд, работа института, конечно, не останавливается. Наталья, которой операцию сделали два дня назад, лежит в палате в соседнем от места проведения съезда корпусе.

Ученые восстановили разрушенный спинной мозг Автор — Неврология Международная команда ученых из Калифорнийского университета в Лос-Анджелесе, Гарвардского университета и Швейцарского федерального технологического института сообщили, что разработали метод регенерации спинного мозга , позволяющего восстановить его после полного повреждения.

Эксперименты проводились на грызунах. Целью исследователей было заставить расти в нужном направлении аксоны — отростки нервных клеток, которые и составляют спинной мозг. Необходимо было добиться, чтобы они не только выросли в заданном направлении, но и могли передавать электрические импульсы через поврежденные ткани и образовавшиеся рубцы. Без этого животное или человек с полностью разорванным спинным мозгом будет оставаться парализованным.

Об открытии рассказали в Минобрнауки РФ.

Метод основан на использовании пузырьков, состоящих из мембраны клеток - внеклеточных везикул, которые участвуют в различных процессах внутри организма. Сами везикулы были получены из мезенхимных стволовых клеток свиньи, которой они потом и вводились. Была проведена качественная оценка этих везикул, определены их размер и ультраструктура, - рассказала "Газете. Ru" ведущий научный сотрудник OpenLab "Генные и клеточные технологии" КФУ, руководитель научной группы "Молекулярные и клеточные механизмы нейрорегенерации" Яна Мухамедшина.

Новое открытие учёных о спинном мозге

Научная статья опубликована в Progress in Brain Research. Они предложили пересмотреть сложившуюся практику терапии спастического синдрома. Это одно из главных осложнений после тяжелых травм позвоночника с частичным перерывом спинного мозга, которое приводит к ухудшению состояния пациента и сильно ограничивает возможности реабилитации. Реклама Более 800 тысяч человек в мире каждый год получает сочетанную травму позвоночника с перерывом спинного мозга.

Как работает технология? Руководитель проекта в комиссии Гийом Шарве рассказал, что имплантаты используют "адаптивный искусственный интеллект" для декодирования намерений мозга о движении в режиме реального времени. После того как ИИ идентифицирует сигналы, они преобразуются в последовательности электрической стимуляции спинного мозга, которые активируют мышцы ног и вызывают желаемое движение. Примечательно, что у пациента наблюдались улучшения в сенсорном восприятии и двигательных навыках, которые сохранялись даже после отключения "цифрового моста", что позволило ему ходить с костылями. По словам профессора Грегуара Куртина, это говорит о том, что цифровой мост не только восстановил спинной мозг пациента, но и поспособствовал росту новых нервных связей. Оскам — пока что единственный пациент, на котором испытали "цифровой мост". В будущем технологию планируют применить для восстановления функций рук и кистей у пострадавших.

Средний возраст участников с когнитивными симптомами составил 48 лет по сравнению с 39 годами в контрольной группе. У пациентов с «мозговым туманом» ученые обнаружили в образцах повышенный уровень белка, что говорит о воспалении в мозгу. Также и в крови, и в спинномозговой жидкости исследователи нашли антитела: это говорит о том, что процесс системный, то есть протекает во всем организме. Хотя цель этих антител неизвестна, вполне возможно, что это могут быть антитела-перебежчики, атакующие сам организм. Чтобы подтвердить, что у участников эксперимента есть когнитивные нарушения, исследователи дали им стандартные тесты.

Схема спинномозгового имплантата Два кортикальных имплантата состоят из 64 электродов. Электронные компоненты окружены корпусом из титанового сплава. Этот материал биологически инертен и практически невидим для иммунной системы. Внутренняя поверхность имплантата плоская. Она несёт матрицу из 64 платиново-иридиевых электродов диаметром в 2 мм с шагом в 4,5 мм. Так обеспечивается первый этап: запись сигнала, его регистрация и модуляция. Подробнее об этих вопросах будет рассказано в следующей части статьи. Программная составляющая кодирует и модулирует сигналы. Впоследствии они отправляются к имплантируемому генератору импульсов. Имплантируемый генератор импульсов общается с пояснично-крестцовым отделом позвоночника с помощью 16 электродов. Они выполняют селективную активацию скелетной мускулатуры. Кортикальный имплантат состоит из 2 блоков по 64 электрода. Носимый процессор выступает электрическими мозгами системы. Многие сложные процедуры обработки данных выполняются именно этой частью нейроимплантата. Здесь видны данные МРТ. Красным обозначены кортикальные поля, ответственные за движение. Справа можно увидеть две круглые структуры. Так выглядят кортикальные имплантаты, «сидящие» на головном мозге. Для эффективной установки спинального имплантата нужно знать особенности индивидуальной анатомии. Красными прямоугольниками обозначены 16 электродов, стоящие на уровне 11 грудного и 1 поясничного позвонка. Мозговая бионика имеет свои особенности. Организм воспринимает имплантат как чужеродного агента, запуская реакции воспаления. Этот недостаток обходится путём использования биологически инертных материалов. Иридий, титан и платина относятся именно к ним. Следующий вопрос: как обеспечить бесперебойное питание электроники и её связь с внешней гарнитурой? Провода использовать нельзя. Любая магистраль, идущая к мозгу через кости черепа и твёрдую оболочку, будет выступать открытыми воротами для инфекции. Инженерная проблема была решена с помощью двух антенн, спрятанных в силиконовый кожух. Первая, использующая частоту в 13,56 МГц, питает имплантированную электронику по механизму индуктивной связи. Похожим образом работают беспроводные зарядки современных смартфонов. Напомним, что электрическое и магнитное поле не существуют друг без друга. Это всё грани единого электромагнитного поля. При прохождении электрического тока через индукционную катушку появляется магнитное поле. Одновременно с этим параллельно ему формируется электрическое поле. Параллельно электрическому полю возникает магнитное — и так со скоростью света в бесконечность. Технически продвинутый читатель уже догадался, что речь идёт о волне. Живые ткани прозрачны для многих видов электромагнитных волн. Естественно, их можно и нужно ловить, как это делают имплантированные модули нейростимулятора. Вторая, ультравысокочастотная антенна на 405 МГц, общается с базовой станцией и блоком обработки данных в режиме реального времени. Таким образом сигналы с коры попадают на компьютерную периферию, где осуществляется интерпретация нервных импульсов на язык электроники, а также «предсказываются» будущие движения. Подробнее о том, как это происходит, будет сказано чуть ниже. Программное обеспечение процессора анализирует декодированные сигналы с коры головного мозга. Серьёзная проблема всей бионики — это шум. Нервная система порождает огромное количество сигналов, и далеко не каждый из них имеет отношение к делу. Прежде чем декодировать сигнал, следует сперва отделить «мух от котлет». Алгоритмы потоковой обработки данных сортируют поступившую информацию согласно её релевантности. За счёт использования современных материалов и правильного исполнения нейрохирургической операции величина входного приведённого шума составляет всего лишь 0,7 мкВ по среднеквадратичному отклонению. Схожие системы применяют для стимуляции головного мозга у пациентов, страдающих болезнью Паркинсона. Научная группа модифицировала устройство, добавив к нему модули беспроводной связи. Задержка между импульсом с головного мозга и эпидуральной стимуляцией составляет 100 мс. С учётом того, что технология предназначена для восстановления привычных движений, такой «лаг» не выглядит слишком долгим. В конце концов, речь идёт не о спортивных рекордах, а возможности встать с койки. Аппаратный и программный модуль работают как единая интегрированная цепочка. Между головным и спинным мозгом образуется цифровой мост. Последний участник звена — имплантируемый генератор импульсов Specify 5-6-5, состоящий из массива на 16 электродов. Корковые сигналы проходят через процедуры модуляции, преобразуясь в аналоговые команды. Имплантат проводит их к задним корешкам спинного мозга. Уже оттуда сформированная команда достигает мышц нижних конечностей. Программная часть. Аспекты декодирования Электрическую активность сенсомоторной коры головного мозга регистрируют по 32 каналам с частотой 586 Гц. Диапазоном полосовой фильтрации стал промежуток между 1 и 300 Гц. Именно в нём скрыты данные, необходимые для иннервации нижних конечностей. Как выявить намерение к движению? Эту работу выполняет алгоритм рекурсивной экспоненциально-взвешенной мультилинейной модели марковского переключения. В её состав входит классификатор скрытой марковской модели и набор независимых регрессионных моделей. При возникновении намерения к движению происходит активация сенсомоторной коры головного мозга, которую возможно считать с помощью электродов. Каждая из регрессионных моделей осуществляет контроль над целыми группами степеней свободы конечностей. Дело в том, что нога или рука — не просто рычаг.

Результаты исследований

  • О разработке:
  • Информация
  • Нейрохирурги ВКО поделились опытом имплантации нейростимулятора в спинной мозг
  • В России проведена операция по установке нейростимулятора в спинной мозг -

Нейроинтерфейс между спинным и головным мозгом позволил ходить паценту с травмой позвоночника

Ученые Курчатовского института с коллегами из Казанского федерального университета разработали модель, которую можно использовать для создания нейропротезов для пациентов с повреждением спинного мозга. Ученые предложили чаще использовать нейростимуляцию спинного мозга электричеством с помощью небольшого вживляемого стимулятора. Российские учёные работают над особым типом клеток, на основе которых может быть создан инновационный клеточный продукт, который поможет пациентам с травмами спинного мозга, особенно в ситуациях, когда сформировались постравматические кисты. Шейные позвонки зажали спинной мозг.

Новое открытие учёных о спинном мозге

Что происходит во время травмы? Z-новости. В РФ создали препарат со стволовыми клетками для лечения травмы спинного мозга. Новости Казахстана. Ученые-медики вживляют "умный" имплантат в поврежденный участок спинного мозга, из-за которого происходит паралич нижних конечностей. Израильские ученые разработали имплант спинного мозга из человеческих клеток для парализованных мышей.

Похожие новости:

Оцените статью
Добавить комментарий