Новости термоядерная физика

Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия. И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость.

Что такое токамак?

  • Эра термоядерного синтеза
  • Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае
  • Ракетчики начали строить термоядерный двигатель
  • Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
  • Американские физики повторно добились термоядерного зажигания

Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды

Эра термоядерного синтеза Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние.
ядерная физика, все новости – «ВЗГЛЯД.РУ» Физик объяснил важность создания прототипа российского термоядерного реактора.
Термоядерный синтез вышел на новый уровень: подробности - Hi-Tech Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость.
Термоядерный синтез вышел на новый уровень: подробности - Hi-Tech Зачем на самом деле строится самый большой термоядерный реактор.

Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы

познакомьтесь с новейшими разработками, впечатляющими функциями и глубоким анализом ядерной физики. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. Хорошие новости продолжают поступать в области исследований ядерного синтеза. Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза.

Последние комментарии

  • ядерная физика, все новости – «ВЗГЛЯД.РУ»
  • Термоядерный запуск. Как Мишустин нажал на большую красную кнопку | Аргументы и Факты
  • Российские физики рассказали о приручении термоядерного синтеза
  • Российские учёные разработали новый материал для термоядерного реактора
  • Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя

Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии

Росатом поддержит популяризаторов ядерной физики во Всероссийской премии «За верность науке». Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". Росатом поддержит популяризаторов ядерной физики во Всероссийской премии «За верность науке». И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире. Физик объяснил важность создания прототипа российского термоядерного реактора.

Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца

В качестве следующего шага планируется создание на его основе будущего китайского испытательного термоядерного реактора CFETR , который рассматривается как «искусственное солнце» нового поколения и который станет первым в мире демонстрационным термоядерным реактором. В свою очередь в Германии было объявлено о собственном прорывном достижении в области термоядерного синтеза. Учёные из Института физики плазмы имени Макса Планка IPP нашли способ значительно уменьшить расстояние между горячей плазмой в устройствах ядерного синтеза и стенкой корпуса.

Так что, в науку я попал неслучайно В школе я любил алгебру, геометрию и физику. С девятого класса я учился в специализированном лицее с физико-математическим уклоном. А потом поступил на кафедру экспериментальной ядерной физики в Политехнический тогда еще институт в Санкт-Петербурге. Преддипломную практику я проходил на токамаке «Глобус-М» в Физико-техническом институте им. Иоффе в группе лазерной диагностики плазмы.

Экспериментальная работа на термоядерной установке настолько меня увлекла, что после окончания института я решил связать свою жизнь с наукой!

В Китае прототип промышленной термоядерной электростанции был продемонстрирован пару лет назад. Что же касается той новости, которую вы пересказываете сейчас, то это типичная армия Венка, которая вот-вот придет и спасет Берлин;.

Концепция «потеющей стенки»: российские учёные разработали новый материал для термоядерного реактора Российские учёные разработали новый материал для термоядерного реактора 28 апреля 2023, 10:00 Надежда Алексеева, Екатерина Кийко Российские учёные смогли объединить свойства двух металлов — вольфрама и меди — в одной конструкции методом газофазного осаждения. Это позволит решить одну из серьёзных проблем термоядерного синтеза — защитить стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, не допустив при этом попадания в неё ненужных примесей. По словам учёных, методика позволяет создавать покрытие из тугоплавкого вольфрама, лишённое пор. Оно наносится на медную подложку, которая позволяет отводить тепло от стенки реактора с участием лёгкого металла лития.

Термоядерная установка «Глобус-М», сооружённая в Физико-техническом институте им. Изобретение уже получило патент.

Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака

Работа физиков из Ливерморской национальной лаборатории Лоуренса в Калифорнии была опубликована в журнале Physical Review Letters. Термоядерная реакция позволяет звездам генерировать огромные объемы энергии, однако на Земле ее крайне трудно воспроизвести, так как для поддержания такой реакции требуется чрезвычайно высокоэнергетическая среда. Для этого ученым необходимо обеспечить стабильное "зажигание", которое выводит реакцию на самоподдерживающийся уровень. Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент.

В связи с этим хотелось бы понять, на какие типы реакторов сейчас делают ставку ученые во всем мире и в России. В отличие от ядерной энергетики, которую человечество «приручило» для мирных целей всего через пять лет после создания и испытания ядерной бомбы, термояд — аналог солнечных реакций — оказался не так прост. Со времени взрыва первой водородной термоядерной бомбы в 1953 году прошло уже 68! Не получается у людей «зажечь» свое земное «солнце», чтобы питало бесплатной энергетикой весь мир. Ходят, конечно, разговоры, что это просто невыгодно нефтяным магнатам — вот термоядерные технологии и не продвигаются вперед. Но отбросим конспирологию.

Тем более что ископаемых запасов углеводородов осталось менее чем на полвека, а потому, как ни крути, надо доводить до ума мирный атом. Как объединить необъединяемое Если в ядерных реакциях ядрам урана, плутония, тория выгодней распадаться для запуска цепной взрывной реакции, то при термоядерном варианте, наоборот, балом правит реакция объединения легких ядер изотопов водорода, гелия и бора. Зачем нам вообще понадобилась термоядерная энергия, если у нас есть уже атомные станции, работающие на принципе распада ядерного вещества? Во-первых, термоядерный синтез более безопасный, во-вторых, перспективный — на земле неисчерпаемые запасы дейтерия, который можно бесконечно добывать в Мировом океане. Классическая термоядерная реакция происходит следующим образом: берется ядро дейтерия изотоп водорода, состоящий из 1 протона и 1 нейтрона и ядро трития 1 протон и 2 нейтрона. Оба положительно заряжены и друг от друга, естественно, отталкиваются. Но физики народ упрямый — им надо во что бы то ни стало их объединить, принудительно разогнать до сверхскоростей при высочайшей температуре и сблизить настолько, чтобы было преодолено электростатическое отталкивание. Тогда и возникнет ядерная реакция с выделением энергии. Атомы трития и дейтерия ионизируются и образуют плазму, которую до определенного времени нужно поддерживать в активном состоянии при очень высоких температурах, измеряемых в сотнях миллионов градусов, а в идеале прийти к тому, что реакция будет энергетически поддерживать саму себя.

Цель — получить «положительный выход», чтобы выделившейся энергии в итоге оказалось больше, чем вы получили от розетки на разогрев той самой плазмы. Реактор должен дать больше, чем взял. И этого до сих пор, за десятки лет работы ядерщиков, не достиг еще никто ни в одной стране мира. Токамак или дырка от бублика? Ученые постоянно находятся в поиске. Возьмем, к примеру, изобретенный в России самый традиционный способ получения плазмы — в устройстве под названием токамак тороидальная, или бубликообразная, камера с магнитными катушками. Кстати, слово «токамак» — это один из немногих русизмов, уже вошедший в обиход ученых всего мира. Плазма в этом реакторе удерживается в торе магнитным полем, не контактируя с материальной стенкой. По принципу токамака с начала 90-х годов прошлого века создается самый большой термоядерный реактор в мире — IТER.

Огромное площадью около 1 квадратного километра сооружение на окраине французского города Кадараш стоит почти 20 миллиардов долларов. Россия вносит 10 процентов от этой суммы, но не деньгами. Мы, к примеру, создаем устройства для нагрева плазмы, магнитную систему и прочие необходимые компоненты этого реактора.

Ничего такого страшного. Ни ядерной зимы, которую все боятся. Ни чудовищной радиации, которая убьет всех вокруг, а кого не убьет, то те умрут в течение десяти лет от онкологии. Этого ничего не будет. А что будет — так это будет выведена из строя вся радиоэлектроника.

Вся цифра, все спутники». Вот эта камера, на которую меня сейчас снимают, вот этот телефон, который рядом со мной лежит. Мы вернемся с вами в год этак какой-нибудь 93-й. Проводные телефоны. Двушечка или не двушечка, я не помню, в телефоне-автомате. Я вам скажу: чудесно же жили. Вот право. Я даже обрадуюсь.

Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет. Я запрещаю своим детям иметь гаджеты. Это отдельная тема. Сейчас не об этом. Но как минимум вот это будет гора с плеч. Каждый раз, когда дети возвращаются из школы: «Вот, у всех есть телефоны, айпады, а у нас нет, почему у нас нет? То есть эта опция, она остается. И это еще самая гуманная, самая такая, знаете, травоядная опция.

Я не вижу никакого исхода, кроме приблизительно такого.

Причем не только в денежном или техническом плане, но и в интеллектуальном. А практическая польза - это освоение здесь, на родине, новых технологий и производства высочайшего качества. ИТЭР - это легитимная возможность "приземлить" у себя дома современные, в том числе уникальные зарубежные технологии, в создание которых вложились ведущие мировые разработчики. Мы получаем законное право использовать их в национальных целях. Сегодня ИТЭР - реальный драйвер технологического развития. И я искренне рад, что мировое термоядерное сообщество оказалось способным отделить решение глобальной задачи человечества от сиюминутной политической риторики. Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд. Заголовок в газете "Солнце в морозильнике" - это не сильное преувеличение к тому, что всем миром строят и обещают показать во французском Кадараше? Виктор Ильгисонис: Имеется в виду, полагаю, сравнение температур горячей плазмы внутри токамака и сверхпроводника в его магнитной системе?

Если так, то это образное сравнение серьезно не дотягивает до итэровских реалий: плазма ИТЭРа должна быть в десять раз горячее солнечного ядра, а температура в его криостате - в тридцать раз ниже, чем в морозильнике! А в космосе, если сумеем "приручить" термояд, он какие открывает для человека возможности? Виктор Ильгисонис: Здесь вы, что называется, бьете в самую точку. Я уверен, что истинное место термояда - как раз в космосе. Просто его там будет легче осуществить! Нам не понадобятся ни громоздкие вакуумные камеры со сложной системой откачки, ни дорогостоящий криостат со всеми сопутствующими системами. Да, придется несколько отойти от привычных для Земли схем, понадобятся идеи и эксперименты, но это будет совершенно новый уровень энергооснащения наших космических аппаратов. Судите сами, сегодня на МКС потребителям доступны лишь несколько десятков киловатт мощности, которых, конечно же, недостаточно для серьезной работы на орбите и тем более для межпланетных полетов. Эту тему надо начинать разрабатывать как можно скорее, не дожидаясь осуществления "земного" термояда. В одном из наших первых интервью вы сказали, что термоядерный синтез - вопрос самолюбия для человечества.

А сегодня к этому что могли бы добавить? Виктор Ильгисонис: Самолюбие пока не удовлетворено. А задора по мере преодоления трудностей с каждым годом прибавляется.

Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии

Установка находится в городе Хэфэй провинции Аньхой. EAST к представляет собой установку в форме бублика для магнитного удержания плазмы. Термин «токамак» придумал советский физик Игорь Головин еще в конце 1950-х годов. Сейчас экспериментальный усовершенствованный сверхпроводящий токамак называют «искусственным солнцем». В своей работе он имитирует реакцию ядерного синтеза, питающую настоящее Солнце. Первый пуск EAST состоялся в 2006 году.

Установку построили на основе модифицированного реактора HT-7. Радиус ее внешнего корпуса составляет 1,7 метра. В мае 2021 года ученым удалось установить первый рекорд. Тогда реактор нагрелся до 120 миллионов градусов по Цельсию, но проработал всего 101 секунду 1,6 минуты.

Тем не менее, двое людей, знакомых с результатами эксперимента, сказали, что выход энергии был больше, чем ожидалось, что привело к повреждению некоторого измерительного оборудования, что усложнило анализ. Прорыв уже широко обсуждался учеными, добавили источники. Если результаты подтвердятся, это будет означать, что исследователями из Ливерморской лаборатории удалось добиться цели, недостижимой в течение десятилетий. Ранее в этом году, в ходе оглашения стратегии развития термоядерной энергии, один из американских конгрессменов заявил, что технология является «святым граалем» чистой энергетики и потенциально способна избавить большее число людей от бедности, чем открытие огня. Большинство исследований пока связаны с т. Если ранее термоядерной энергетикой занимались преимущественно государственные учреждения, то в последнее время инвестиции в соответствующую отрасль потекли и в частные компании, обещающие создать работоспособные технологии к 2030-м годам.

Однако во второй половине 1944 года связь оказалась прервана: Фукс был переведён в Лос-Аламосскую лабораторию со строжайшими мерами секретности. Там он работал в группе Ганса Бете и добился выдающихся научных результатов. Восстановить связь советской разведке удалось только в январе 1945 года, до конца года состоялись три встречи, на которых Фукс передал исключительно важную информацию как о ходе работ, так и о первом испытании атомной бомбы, в котором он лично участвовал. Читайте также В Суоми решили исключить из истории Ленина, чтобы снова стать чьим-то областным центром? Финляндия тонко намекает, что может вновь стать частью Российской Империи В 1945—1946 годах Фукс участвовал в теоретических работах по разработке водородной бомбы, в анализе результатов применения атомных бомб в Хиросиме и Нагасаки, в разработке программы исследований со взрывами атомных бомб на атолле Бикини. В июле 1946 года с другими британскими участниками проекта вернулся в Великобританию, где стал начальником отдела теоретической физики Научно-исследовательского атомного центра в Харуэлле. С 1947 года связь с Фуксом вёл заместитель резидента по технической разведке А. Феклисов, которому Фукс передал информацию о производстве плутония в США, о реакторах британского атомного центра в Уиндскейле, принципиальную схему водородной бомбы, результаты испытаний ураново-плутониевой бомбы на атолле Эниветок, данные о британо-американском атомном сотрудничестве и многое другое. Между тем над головой Клауса начали сгущаться тучи. Среди выданных Гузенко оказался и британский физик-ядерщик Алан Мэй. Он был арестован в марте 1946 года, а уже 1 мая того же года приговорён к 10 годам каторжных работ. Предъявить что-либо конкретное Фуксу британская контрразведка не могла, но за ним была установлена открытая слежка. Фукса допрашивал лучший британский следователь из МИ-5 — Скардон, тот самый, который пытался расколоть и некоторых членов Кембриджской пятёрки. Но и он уже было решил отказаться от бесполезных допросов Клауса Фукса. И тут совершенно неожиданно Фукс сломался. Читайте также 89 — много. А сколько регионов нужно России для счастливой жизни?

Термоядерная реакция позволяет звездам генерировать огромные объемы энергии, однако на Земле ее крайне трудно воспроизвести, так как для поддержания такой реакции требуется чрезвычайно высокоэнергетическая среда. Для этого ученым необходимо обеспечить стабильное «зажигание», которое выводит реакцию на самоподдерживающийся уровень. Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент. Чтобы добиться эффекта «зажигания», команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча.

Эра термоядерного синтеза

Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. Росатом поддержит популяризаторов ядерной физики во Всероссийской премии «За верность науке».

FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв

Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние. Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час. Европейский токамак обновил рекорд по количеству полученной в ходе термоядерной реакции энергии. Исследования в области термоядерного синтеза и физики плазмы ведутся более чем в 50 странах, и термоядерные реакции были успешно запущены в ходе многих экспериментов.

Что такое термоядерный синтез и зачем он нужен?

На комплексе, в основном, проводятся исследования с мишенями непрямого облучения. Направления этих исследований: лазерный термоядерный синтез, взаимодействие лазерного излучения с плотной плазмой, физические процессы в горячей и плотной плазме и магнитосферных бурях. Асимметрия создавалась нарушением однородности рентгеновского поля на поверхности сферически симметричной стеклянной капсулы. Проведенное сравнение полученных экспериментальных результатов с результатами газодинамических расчетов сжатия центральных капсул по программе МИМОЗА-НД, с параметрами мишени и рентгеновского импульса, соответствующими эксперименту, позволяет констатировать качественное и количественное согласие между экспериментальными и расчетными данными в широком диапазоне изменения асимметрии рентгеновского поля. Наблюдается удовлетворительное согласие расчетных и экспериментальных значений нейтронного выхода во всем исследованном диапазоне сдвигов. Эти результаты показывают, что, несмотря на чрезвычайно широкий диапазон изменения характера газодинамического течения, наблюдается удовлетворительное согласие расчетного и экспериментального значений нейтронного выхода и времени сжатия капсулы с DT-газом. Впоследствии данная установка получила название "УФЛ-2M".

Установка предназначена для проведения углубленных исследований в широком круге направлений физики высоких плотностей энергии. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Мишени прямого облучения представляют собой полую стеклянную или полимерную сферическую оболочку с высокой однородностью толщины, заполненную либо газообразной смесью дейтерий-тритий, либо дейтерием. Диаметр сферы от 200 до 1000 мкм, толщина стенки 0,5—15 мкм, давление газа внутри оболочки 1—100 атм.

На основе найденных величин можно будет рассчитать кинетику ядерных превращений для расчета коэффициента полезного действия КПД конкретной энергетической термоядерной или гибридной ядерной установки. Результаты исследования помогут развитию энергоэффективной термоядерной энергетики.

Поэтому все работы должны быть закончены уже к 2023 г. И сейчас у института горячее время, а через год станет еще горячее. К примеру, итоговый вариант экваториального порт-плага, за производство которого взялся ИЯФ, разительно отличался от первоначального. Уже в процессе работы стало очевидно, что придется искать новые материалы и технологии. Так, для работы над проектом в институте освоили технологию глубокого сверления. В классическом варианте вращается деталь, а сверло неподвижно. А для того, чтобы убрать стружку, которая забивает полость сверления, в сквозное отверстие самого сверла пускают охлаждающую жидкость под большим давлением. Но если деталь большая и неподвижная, как в нашем случае, то вращаться должно сверло, и направить жидкость в полость сверления гораздо сложнее. Подобной технологии в ИЯФ не было, поэтому институт купил и модернизировал под свои нужды соответствующее оборудование. Теперь мы можем сверлить на два метра с двух сторон с хорошей точностью. Одна из особенностей этого материала — тщательно контролируемый химический состав, обеспечивающий нужный уровень примесей и легирующих элементов. Пока сделан полномасштабный опытный образец элемента диагностического защитного модуля, другими словами, верхняя крышка. Работа ведется, можно сказать, по методу последовательного приближения: сначала создается макет, а затем по результатам испытаний происходит корректировка проекта вплоть до стадии прототипирования и постановки на производство. Такой регламент очень важен, так как любой инженерный просчет ставит под угрозу весь проект» В работе по проекту ИТЭР новые технологии требуются буквально на каждом этапе. Как следствие, в институте появляется комплексное высокотехнологичное оборудование, которое ИЯФ будет использовать и для своих собственных проектов. То же самое относится и к новым материалам. Сейчас мы совместно с Новосибирским электровакуумным заводом начинаем исследовательскую работу по разработке более дешевой технологии производства этого нужного материала. Есть и физические задачи, которые также требуют решения. Когда токамак работает в режиме хорошего удержания, плазма сходит с поверхности «бублика» в специальное устройство дивертор порциями, а не сплошным потоком. И каждая такая порция несет разрушительную энергию: тепловая нагрузка на него оказывается больше, чем на внутренние стенки жидкостных ракетных двигателей. Поэтому, если не предпринимать никаких мер, материал конструкции быстро истончится. На этих установках наши специалисты занимаются не только собственными исследованиями физики плазмы, но и решают нетривиальные физические задачи для проекта ИТЭР.

Это приведет к снижению цены за электроэнергию по современным представлениям. Когда стали создаваться термоядерные установки, возникла большая наука — это физика высокотемпературной плазмы. Большая, серьезная наука, не все могут ее понимать и осваивать. Тем более, что теория не всегда совпадает с экспериментом, и адекватное понимание эксперимента очень часто основывается на так называемых скейлингах, то есть экспериментальных формулах. В мире сейчас около 40 действующих установок типа токамак, три работающие установки находятся в России. Они никакой термоядерной энергии не производят, они экспериментальные, на них исследуют плазму, материалы, системы управления плазмой и т. На некоторых установках делали эксперименты с тритием. На них было показано, что термоядерная реакция в принципе возможна, но коэффициент усиления был не больше единицы. Тем не менее, она возможна, потому что возникают нейтроны именно термоядерного происхождения, которые улавливались внешней оболочкой. Здесь сомнений нет. Вопрос только технологический — можно ли построить термоядерную электростанцию, так, чтобы она действительно давала термоядерную электроэнергию, и чтобы там реально функционировали все системы, которые туда входят. Это сильная альтернатива. У атомных станций два серьезных недостатка. Первое: они производят отходы, у которых период полураспада сотни и тысячи лет, их нужно где-то хранить, и их много, они накапливаются. Второй недостаток — они могут взрываться. Взрывы были сначала в Чернобыле, и затем на Фукусиме. В токамаках принципиально невозможен взрыв. Очень просто. Когда работает токамак, в его камеру постоянно поступает газообразное топливо, например, смесь трития и дейтерия. Имеются специальные быстродействующие клапаны, через которые поступает топливо. Если на термоядерной электростанции образуется внештатная, аварийная ситуация, то мгновенно закрываются клапаны, топливо прекращает поступать, той энергии, которая накоплена, для взрыва недостаточно, она может только сломать установку, прожечь камеру. Токамаки, конечно, нельзя считать полностью безопасными. Опасность заключается в том, что, когда сливаются ядра легких элементов, в частности, дейтерия и трития, образуется ядро гелия и быстрый нейтрон. Нейтроны поглощаются внешней оболочкой. Какая бы оболочка ни была, она становится радиоактивной. Эту радиоактивную оболочку через 20-30 лет надо менять. Но период полураспада там лет 15-20. Роботы убирают эту оболочку, заменяют на другую, радиоактивную где-то кладут — не хоронят, а кладут, и через 20 лет ее можно использовать снова. Период полураспада прошел, она становится нерадиоактивной. Снова можно использовать в установке. Это другие элементы. В мире, как уже было сказано, много работающих токамаков, и на каждом стоит своя система управления плазмой, свои алгоритмы управления, каждая команда разрабатывает свои системы. Так происходит потому, что систему управления плазмой нельзя перенести один к одному с одного токамака на другой, из-за того, что токамаки все разные, имеют разные электромагнитные системы. Мы предложили свою классификацию, основанную на анализе литературы. Изначально аббревиатура «токамак» пришла из Курчатовского института тогда он назывался Институт атомной энергии им. Курчатова , где токамаки и были изобретены, и где в 1954 г. За рубежом тогда уже были установки типа стеллараторы, отличающиеся от токамаков отсутствием в них тороидального тока.

Похожие новости:

Оцените статью
Добавить комментарий