Сперва уран распадается на уран-икс-один и гелий [c.21]. Важные новости образования в России и в Москве — новшества в детских садах, школах и вузах. Период полураспада урана различен: так для U-234 он составляет «всего» 270 тысяч лет, а период полураспада урана-238 превышает 4,5 миллиарда. Смотрите видео онлайн «СВЕРШИЛОСЬ! В США самостоятельно СМОГЛИ ОБОГАТИТЬ УРАН» на канале «ГЕОЭНЕРГЕТИКА ИНФО» в хорошем качестве и бесплатно, опубликованное 26 апреля 2024 года в 15:37, длительностью 00:35:11, на видеохостинге RUTUBE. Распад тория, урана и калия-40 является основным источником тепла вблизи мантии Земли, который управляет критической мантийной конвекцией и удерживает внешнюю жидкость в противоположность твердому внутреннему ядру.
Вторая жизнь урана: что делают в современном мире с отработанным ядерным топливом
Конечно все равно какие то отходы будут оставаться, но и им когда то найдут применение. Кстати эти хвосты из европы, про которые так много говорили, мы их не просто так берем, они как раз и являются топливом для какого то типа реактора.
Источник: livescience. Его назвали уран-241, сообщает Live Science. Последнее — редкость. Число их протонов находится в промежутке от 89 до 103.
Однако политики предпочитают атомным электростанциям солнечные, ветровые и другие возобновляемые источники энергии — главным образом, потому что использованное ядерное топливо остается радиоактивным, а в обществе и во власти пока отсутствует консенсус, что с ним делать. Отработанное ядерное топливо можно использовать повторно — для получения огромного количества энергии с нулевым содержанием углерода, которая позволит сократить выбросы парниковых газов. Существуют разные причины, по которым правительства отказываются от переработки отработанного ядерного топлива. Например, в США основное препятствие для утилизации — опасения в неэффективности затрат и вероятности распространения ядерного оружия.
Истоки последнего восходят к решению президента Джимми Картера 1977 года, который запретил перерабатывать ядерное топливо — вместо этого его захоранивают глубоко под землей. Франция, Великобритания и Япония в числе других стран пошли противоположным путем — правительства этих стран воспринимают отработанное ядерное топливо как ценный актив, а не просто отходы, требующие утилизации. Какое отработанное топливо подлежит переработке? Существующие на данный момент 440 ядерных энергетических реакторов, работающих по всему миру, производят примерно 10 500 т отработанного топлива в год. Как и оставшийся уран, плутоний подлежит переработке. В тепловом реакторе нейтроны, которые формируются довольно быстро, замедляются за счет взаимодействия с соседними атомами с низким атомным весом, такими как водород в воде, которая протекает через активную зону реактора. Все, кроме двух из 440 действующих коммерческих ядерных реакторов, являются тепловыми, и большинство из них используют воду как для замедления нейтронов, так и для передачи тепла, которое возникает в процессе распада, в электрические генераторы. Большинство этих тепловых систем — то, что инженеры называют легководными реакторами. В атомных реакторах используются два изотопа урана — менее распространенный уран-235 и более распространенный уран-238.
Обычные реакторы в основном расщепляют уран-235 для выработки энергии, а уран-238 в чистом виде часто считается бесполезным. Так, когда в стандартном реакторе заканчивается уран-235 — это происходит примерно через три года после начала использования, — его дозаправляют, даже если в нем еще много урана 238. Только около одной десятой добытой урановой руды превращается в топливо в процессе обогащения во время которого концентрация урана-235 значительно увеличивается , поэтому для выработки электроэнергии используется менее одной сотой от общего энергосодержания материала. Этот компонент является лишь слегка радиоактивным по сравнению с другими продуктами распада — цезием-137 и стронцием-90 и, будучи отделен от продуктов деления и остальной части материала в отработанном топливе, может быть легко сохранен для будущего использования на слабо защищенных объектах. Уран-238 также называют расщепляющимся, потому что он иногда распадается при попадании быстрого нейтрона. Он еще называется фертильным, потому что, когда атом урана-238 поглощает нейтрон без расщепления, то превращается в плутоний-239, который, как и уран-235, является делящимся и может поддерживать цепную реакцию. Он и подлежит переработке.
Соединения же тяжелых актиноидов, выделяясь из расплава по мере роста давления и кристаллизуясь, оседали на внутреннее твердое железоникелевое ядро планеты. Из сейсмологических исследований известно, что переходная зона между внешним жидким и внутренним твердым ядром Земли толщиной 2—3 км имеет мозаичную структуру. При этом основными структурными элементами являются относительно тонкие взвешенные слои протяженностью до нескольких десятков километров. Возможно, именно они и являются областями концентрации тяжелых радиоактивных элементов. Не можешь найти — моделируй! Когда речь идет о процессах на глубинах в тысячи километров, следует иметь в виду, что, с одной стороны, они недоступны непосредственному экспериментальному исследованию, с другой — их не всегда возможно изучать и в лабораторных установках, где трудно создать аналогичные физические условия. Но в современной науке существует еще один универсальный инструмент познания — компьютерное моделирование. В 2005 г. Задача была не из легких, поскольку методы теории реакторов традиционно применяются для расчета процессов длительностью максимум в годы, а здесь потребовалось просчитывать интервалы в миллиарды лет! Согласно их идее при кристаллизации магматического океана происходило «гравитационное разделение вещества по плотности», в результате которого силикаты, кристаллизуясь, всплывали, а соединения тяжелых актиноидов оседали на внутреннее ядро планеты. В дальнейшем сконцентрировавшаяся таким образом масса актиноидов, и в первую очередь соединения урана, играла роль ядерного реактора, генерирующего энергию, обусловленную цепными реакциями деления. К сожалению, в самой основе этой занимательной гипотезы лежит недоразумение. Кристаллизация каких-либо соединений актиноидов в виде самостоятельных минеральных фаз, которые могли бы погружаться в недра планеты, в магматическом океане невозможна. Прежде всего, это обусловлено исключительно низкими концентрациями урана и других актиноидов в протопланетном веществе. При кристаллизации расплава, который возникает на основе такого вещества, весь уран распределяется в кристаллической решетке породообразующих минералов или на их границах в виде примеси, как и многие другие редкие и рассеянные элементы. Конечно, образование скоплений редких элементов в природе возможно вспомним, например, самородное золото , только это происходит в коре и не в результате кристаллизации магматических расплавов, а за счет разгрузки гидротермальных растворов, транспортирующих эти элементы и сбрасывающих их при изменении физических условий. В ходе геологических процессов зарождающиеся в недрах планеты магматические расплавы вследствие более низкой плотности по сравнению с твердым веществом перемещаются к поверхности. В тех случаях, когда они прорываются на поверхность, возникает вулкан. Когда такой расплав застревает на глубине и кристаллизуется в магматической камере, образуется твердое магматическое тело, называемое интрузивом. Дифференциация вещества по плотности при формировании магматических тел принципиально ничем не отличается от такой дифференциации при затвердевании расплава в магматическом океане. Однако кристаллизующиеся силикаты магния и железа в этих расплавах вопреки предположению авторов обсуждаемой гипотезы не всплывают, а тонут, потому что их плотность всегда выше плотности жидкой фазы. Утверждая, что плотность магмы увеличится за счет железа, авторы упускают из виду, что в магматическом океане металл сразу образует самостоятельную жидкую фазу, не смешивающуюся с силикатной, которая опустится на дно задолго до начала кристаллизации силикатов. Возвращаясь к интрузивам, заметим, что никаких скоплений минералов, сложенных актиноидами, на дне соответствующих магматических камер нет, несмотря на то, что концентрация урана как в самих интрузивных телах, так и в исходных расплавах зачастую на два порядка превосходит его концентрацию в протопланетном веществе и магматическом океане. Все происходит ровно наоборот: основная часть урана концентрируется в остаточной жидкости, которая, как правило, собирается в верхней части магматической камеры, после того как основной объем расплава уже затвердел. Поэтому, даже если бы в этих последних порциях расплава и возникли какие-то тяжелые урансодержащие минералы, опускаться им было бы некуда. Конечно, для объективной оценки обсуждаемой гипотезы необходимы исследования специалистов в различных областях науки. Что касается геологической составляющей, то я считаю, что предложенная концепция пока не подтверждается фактическим материалом. Пушкарев, д. Расчеты показали, что теоретически существуют разные сценарии работы реактора. По некоторым из них его активность могла давно прекратиться, по другим — продолжаться до настоящего времени. Максимальная продолжительность возможна в режиме воспроизводства делящихся нуклидов. В результате содержание легко делящегося урана-235 поддерживается на достаточно высоком уровне, и получается реактор-размножитель на быстрых нейтронах. Ряд глобальных явлений на Земле носит циклический характер с периодом в сотни тысяч и миллионы лет. О причинах этих колебаний нет единого мнения. По обломочным окаменевшим моренам и ледниково-морским осадкам, обнаруженным на всех континентах, ученые восстановили ледниковую историю Земли за последние 2,5 млрд лет. В течение этого времени Земля пережила четыре ледниковые эры, каждая эра состояла из ледниковых периодов, а период — из ледниковых эпох. Периодичность потеплений-похолоданий, соответствующая смене ледниковых эпох, составляет около 100 тыс. Подробнейшая информация о палеоклимате получена при бурении ледниковых щитов в Антарктиде. Каково значение этого факта? Дело в том, что изверженные породы, застывая, намагничиваются в соответствии с существующим на тот момент направлением магнитного поля. Таким образом, эта «законсервированная» в породе намагниченность наглядно продемонстрировала, что в прошлом поле было другим. Замеры следов магнитного поля в горных породах различного возраста показали, что на протяжении геологической истории Земли оно меняло знак много-много раз. Инверсии происходили через интервалы времени от десятков тысяч до миллионов лет средний период — 250 тыс. Почему происходит смена магнитных полюсов? Магнитное поле планеты формируется благодаря циркуляции расплавленного железа во внешнем ядре. Движение электропроводящей жидкости в магнитном поле создает самоподдерживающуюся систему, своего рода геодинамо. Но для образования мощных переменных течений в ядре, приводящих к изменению магнитного поля, необходимы и мощные нестационарные источники тепла.
Опасная работа: как добывают уран
Оксиды Урана-238 являются не столько канцерогенами, сколько токсичными для внутренних органов соединениями клеточными ядами и вызывают мутации половых клеток рождения уродов и дефективных. И период полураспада Урана-238 4,5 миллиарда лет тут не главный фактор. О это американцы хотят победить.
Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии. Выделение изотопа U235 из природного урана — сложная технологическая проблема, см.
Изотоп U238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности термоядерного оружия используются нейтроны, порождённые термоядерной реакцией.
Этот компонент является лишь слегка радиоактивным по сравнению с другими продуктами распада — цезием-137 и стронцием-90 и, будучи отделен от продуктов деления и остальной части материала в отработанном топливе, может быть легко сохранен для будущего использования на слабо защищенных объектах. Уран-238 также называют расщепляющимся, потому что он иногда распадается при попадании быстрого нейтрона. Он еще называется фертильным, потому что, когда атом урана-238 поглощает нейтрон без расщепления, то превращается в плутоний-239, который, как и уран-235, является делящимся и может поддерживать цепную реакцию.
Он и подлежит переработке. Как перерабатывается ядерное топливо? Ядерное топливо представляет собой герметичный контейнер из сплавов циркония или стали, в который помещены таблетки с ураном. Когда топливо переходит в разряд отработанного, его извлекают из реактора и путем химического разделения сортируют на бесполезные элементы и вещества, которые можно использовать повторно.
Конкретные схемы переработки отличаются набором применяемых реагентов, последовательностью отдельных технологических стадий и аппаратурным оформлением. Например, в ходе самого распространенного метода переработки PUREX происходит восстановительная реэкстракция плутония из совместного экстракта с ураном и продуктами деления. После удаления оболочки топливо растворяется в азотной кислоте, затем органические растворители извлекают плутоний, который потом используется для производства ядерного оружия. В отличие от PUREX, процесс пиропереработки позволяет получить не компоненты для ядерного оружия чистый плутоний , а смесь трансурановых элементов.
Их можно использовать для производства энергии. Пиропереработка основана на гальванизации — использовании электричества для сбора на проводящем металлическом электроде металла, извлеченного в виде ионов из химической ванны. Этот процесс проводится при очень высоких температурах. Существуют два подхода по пироперераработке отработанного ядерного топлива — российский и американский.
В России перерабатывается керамическое оксидное топливо из дикосида урана, а в США — металлическое ядерное топливо. Как с ядерным топливом поступают разные страны? Переработка ядерного топлива часто воспринимается однозначно — как метод PUREX, который позволяет получать из отработанного топлива чистый плутоний для ядерного оружия. Однако еще в конце прошлого века усовершенствованная технология реакторов на быстрых нейтронах позволила использовать альтернативную стратегию рециркуляции, которая не позволяет получать чистый плутоний ни на одной из стадий переработки.
Таким образом, реакторы на быстрых нейтронах минимизируют риск того, что отработанное топливо от производства энергии будет использоваться для производства оружия.
Доклад о способности ядра урана делиться и превращаться в барий вызвал у ученых две доминирующие реакции: объявить докладчика сумасшедшим или срочно проверить столь фантастическое заявление. Для химиков эпохи Ломоносова и Лавуазье это и правда было чудом, ведь превращение одного металла в другой исполнило давнюю мечту алхимиков.
Но было ли деление урана первой в истории трансмутацией? О том, что на самом деле удивило ученых и откуда берется энергия ядерного оружия — в материале «Газеты. Отто Хан и Лиза Мейтнер, открыватели деления урана Смех старых алхимиков С древнейших времен исследователи мечтали найти способ превращать одни металлы в другие — в особенности, неблагородные олово и свинец в золото.
Вокруг этой мечты возникла паранаука алхимия, в которой практические знания о реакциях между веществами перемешаны с мистическим учением. Например, алхимики пытались создать философский камень, который не только облагораживает металл, но и при приеме внутрь лечит любые болезни и возвращает молодость. С трансмутацией металлов у алхимиков не вышло — в лучшем случае они создавали сплав, окрашенный под золото с помощью серы.
Зато из их опытов возникла научная химия, которая вывела незыблемую аксиому о сохранении вещества. В формулировке химика XVIII века Лавуазье она звучит так: «Ничто не творится не создается из ничего ни в искусственных процессах, ни в природных, и можно выставить положение, что во всякой операции химической реакции имеется одинаковое количество материи до и после, что качество и количество начал элементов остались теми же самыми, произошли лишь перемещения, перегруппировки. На этом положении основано все искусство делать опыты в химии».
В более простой формулировке это означает, что в конце реакции остаются те же атомы и в том же количестве, что и в начале. Если при сгорании водорода в кислороде внутри сосуда появилось что-то, кроме воды, значит, это примесь извне. Этому учат до сих пор на первых уроках школьной химии.
Лавуазье бы сильно удивился, услышав доклад нобелевского лауреата Нильса Бора на открытии Пятой Вашингтонской конференции по теоретической физике 26 января 1939 года. Тот заявил, что при бомбардировке нейтронами атом состоит из ядра и оболочки из отрицательно заряженных электронов; ядро, в свою очередь, состоит из положительно заряженных протонов, количество которых и определяет тип вещества, и нейтронов, необходимых для придания ядру стабильности ядер урана они могут превращаться в два ядра бария, чья масса примерно вдвое меньше. Как рассказывал физик Эдвард Теллер, за день до конференции ему позвонил коллега Георгий Гамов, который знал о содержании выступления, и сказал ему: «Бор сошел с ума.
Новый изотоп урана может сделать ядерную энергетику экологичной
О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Оригинал взят у ibigdan в Распад урана в реальном времени, очень захватывающе! самопроизвольному делению, составляет основу природного урана (99,27%), α-излучатель, Т=4,468⋅109 лет, непосредственно распадается на 234Th, образует ряд генетически связных радионуклидов, и через 18 продуктов превращается в 206Pb.
СВЕРШИЛОСЬ! В США самостоятельно СМОГЛИ ОБОГАТИТЬ УРАН
Они вступают в реакцию с другими атомами урана, в результате чего нейтронов становится больше. Новости Новости. продукты распада урана. Через год после взрыва атомной бомбы из продуктов радиоактивного распада остались лишь следующие долгоживущие элементы: 89Sr, 90Sr, 144Ce, 90Y, 91Y, l06Ru, 137Cs, 95Zr, 140Ba, 95N. Схема распада ra226. Формула основного закона радиоактивного распада. Радиоактивные превращения закон радиоактивного распада. В статье рассматриваются такие аспекты, как период полураспада урана, радиоактивный распад, изотопы урана и их свойства, применение урана в атомной промышленности и энергетике. Обедненный уран — токсичный тяжелый металл, характеристики которого сходны с природным ураном.
СВЕРШИЛОСЬ! В США самостоятельно СМОГЛИ ОБОГАТИТЬ УРАН
Новости энгельса-покровска, губернии. Так, например, вынужденное деление ядер урана нейтронами сопровождается вылетом нескольких нейтронов, которые, взаимодействуя с соседними ядрами урана, вызывают их деление. Таком образом, распад 1 г Урана-238 не так уж и страшен. Даже распад 1 килоТонны Урана, с энерговыделением ~200÷250 Ватт, незначительно для Земли. (Факт существования двух различных цепочек распада урана был понят лишь в результате многолетней интенсивной работы ученых разных стран.). Распад тория, урана и калия-40 является основным источником тепла вблизи мантии Земли, который управляет критической мантийной конвекцией и удерживает внешнюю жидкость в противоположность твердому внутреннему ядру. Они вступают в реакцию с другими атомами урана, в результате чего нейтронов становится больше.
Чем опасны боеприпасы с обедненным ураном? Генерал Игорь Кириллов ответил на шесть главных вопросов
Если свинец-206 каким-то образом оказался включенным в минерал в результате нормального химического процесса, а не в результате радиоактивного распада, то такой минерал должен содержать большее количество более распространенного изотопа , свинца -208. При отсутствии больших количеств этого геонормального изотопа свинца можно предполагать, что весь содержащийся в образце свинец-206 некогда был ураном-238. Он является р-излучателем и распадается в уран II и234 , период полураспада которого 6,7 ч. Напрнмер, как уже упоминалось, считают, что присутствие в недрах Земли именно таких малораспространенных см. К актиноидам относят элементы с порядковым номером от 89 до 103. Все актиноиды — радиоактивные элементы. Наиболее медленный самопроизвольный распад претерпевают торий и уран. Чем тяжелее актиноид, тем меньше его период полураспада.
В земной коре содержатся ТЬ 6-10 мас. В следовых количествах в урановых минералах находятся актиний, протактиний и нептуний как дочерние элементы урана. Остальные элементы получают искусственно в микроколичествах например, Мс1 получен в количестве 17 атомов. В этой степени окисления типы и свойства соединений актиноидов сходны с соответствующими соединениями лантаноидов по этой причине лантаноиды используются как носители микроколичеств актиноидов. У остальных представителей ряда актиноидов степени окисления разнообразны особенно у элементов и, Кр, Ри и Ат. Отсутствие высоких степеней окисления у тяжелых актиноидов связано с их более высокой , чем в случае легких актиноидов, радиоактивностью. Ядерная энергетика.
За рубежом в 1939 г. Одновременно наблюдается образование нескольких нейтронов. Этот новый тип ядерных превращений получил название деления. В этом же году советские ученые Петржак и Флеров доказали, что деление урана осуществляется не только при облучении нейтронами , но и самопроизвольно. Таким образом , для урана распад может идти одновременно по двум схемам, по типу а-распада и по типу деления. Последний процесс характеризуется большим периодом полураспада 10 лет и поэтому в природном уране он осуществляется очень редко. Положение здесь аналогично химическим экзотермическим реакциям , которые могут протекать самопроизвольно , но с измеримой скоростью протекают лишь тогда, когда система получает необходимую энергию активации, позволяющую реагирующим частицам преодолеть потенциальный барьер.
Для осуществления деления требуется также активация , например, за счет поглощения тяжелым ядром нейтрона. Следует иметь в виду, что в природной смеси 1 акт распада связан с несколькими распадами дочерних элементов 8а- и 7 3-распадов однако уран, выделенный из природного материала , содержит примеси лишь коротко живущих изотопов Th UXi и Ра UX2 и UZ р-активность последнего при определенных условиях не MeuiaeT определению плутония. Поэтому по химическим свойствам образующийся иХг сходен уже не с торием, а с протактинием. Подобный же распад самого иХг ведет к образованию иП, по химическим свойствам сходного с обычным ураном иногда называемым также У , но отличающегося от последнего значег. Радиоактивность — это самопроизвольный распад ядер атомов некоторых элементов , соировождающийся испусканием элементарных частиц и электромагнитных волн.
Быстрые заряженные частицы, вылетающие при распаде ядер, ионизируют молекулы пара вдоль своего пути. А ионы становятся центрами конденсации капель, которые хорошо видны при правильном освещении на фото. Задать свой вопрос.
Группа впоследствии провела аналогичные эксперименты с двумя «соседними» изотопами, ураном-216 и ураном-218, и обнаружила, что их период полураспада составляет примерно 2,25 мс и 0,65 мс соответственно. Они также проанализировали, как эти изотопы распадаются, и обнаружили, что уран-214 и уран-216 подвергаются альфа-распаду. На пути к лучшему пониманию альфа-распада Физиков так интересуют эти "легкие" изотопы урана, потому что их количество нейтронов близко к тому, что ученые считают "магическим числом". Обратите внимание, что ядра, которые имеют количество нейтронов и количество протонов, равное одному из магических чисел, называются "дважды магическими" и оказываются особенно устойчивыми 42He, 168O и т. Имея 122 нейтрона, уран-214 довольно близко к магическому числу 126, поэтому он может представлять интерес для изучения ядерной стабильности. Магические изотопы необычайно стабильны, и наблюдение за их ближайшими соседями дает возможность исследовать влияние ядерной структуры на процессы радиоактивного распада.
Учитывая периоды полураспада изотопов 214, 216 и 218 0,5 мс, 2,25 мс и 0,65 мс соответственно , их альфа-распад, по-видимому, происходит относительно легко по сравнению с другими изотопами урана. Это означает, что взаимодействия между протонами и нейтронами в ядрах этих атомов, вероятно, более мощные, чем в других радиоактивных ядрах.
Гораздо страшнее продукты распада урана. Но беда в том, что в нем содержатся продукты распада. Если снаружи радиация поражает кожу, которая к внешнему воздействию привычна — это и солнечная радиация и другие факторы, то радон при вдыхании значительно повышает риск развития рака легких. Внутри организма он действует по двум направлением. Первое — канцерогенно.
Выбор редактора
- Rn распад - фото сборник
- Эффект просушки: что происходит с радиоактивной лавой под реактором в Чернобыле
- Чем опасен обедненный уран | MAXIM
- Преображения урана подтвердили некоторые утверждения алхимиков
- Вторая жизнь урана: что делают в современном мире с отработанным ядерным топливом
- Распад урана и тория генерирует половину тепла Земли
Деление ядер урана. Цепная ядерная реакция
Но он «живет» всего 40 минут, прежде чем распадается на другие элементы. Новый изотоп, уран-241, имеет 92 протона (как и все изотопы урана) и 149 нейтронов, что делает его первым новым богатым нейтронами изотопом урана, открытым с 1979 года. Определите максимальную массу нептуния, которая может быть получена из данного образца урана. Можно увидеть разлет продуктов распада Распад урана — это даже не атомный, а ядерный процесс. А ядро по размерам в 20 тысяч раз меньше атома и в 5 млн раз меньше длины волны видимого света. Так что наблюдать в оптике, как оно распадается, не получится. Взглянем на продукты распада урана. Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), может в будущем стать распространённым ядерным топливом для атомных электростанций. Таком образом, распад 1 г Урана-238 не так уж и страшен. Даже распад 1 килоТонны Урана, с энерговыделением ~200÷250 Ватт, незначительно для Земли.
Период полураспада урана-235 составляет 700 000 000 лет. Так почему Хиросима заселена?
Разведка США опасается, что поставляемый Россией в Китай уран для реактора CFR-600 может быть использован для производства оружейного плутония. Такую информацию опубликовал Bloomberg. Уран-214 подвержен ускоренному альфа-распаду, при котором он теряет сразу по два протона и нейтрона, что говорит о сильном взаимодействии между субатомными частицами в этом изотопе. Да, уран-235 и 238, конечно, распадаются, но период полураспада у них огромен, а значит количество распадов в секунду будет минимальным. не имеет смысла. При распаде урана-235 образуются нейтроны, которые попадают в другие ядра топлива и расщепляют их, вызывая цепную реакцию. Природный уран однако состоит в основном из урана-238 и только 0.7% приходится на уран-235, который делится под действием тепловых нейтронов. На «обычных» (238U) АЭС основной источник энергии 235U.