В каких отраслях, тесно связанных с искусственным интеллектом, Россия не только конкурирует, но и опережает Европу и США, в подробном обзоре от ФедералПресс. Таким образом, актуальность исследований искусственного интеллекта имеет бинарный характер. Искусственный интеллект сегодня — В России роботы будут разрабатывать затопленные рудники.
Лишённый чувств? Учёный — об искусственном интеллекте
Эти же функции осуществляются первым в мире семейством виртуальных ассистентов «Салют» экосистемы «Сбер» [7]. Использование виртуальных помощников — это один из ИИ-инструментов, который со временем будет более широко внедряться в бизнес-процессы и повседневную жизнь современного человека. По статистике Facebook, более 10 тысяч компаний занимаются разработкой чат-ботов [8]. К примеру, Juniper Research отмечается высокая популярность применения виртуальных помощников. Использование чат-ботов в финансовом секторе и медицине способно сэкономить до 20 млн долл. США в год, к 2022 г.
К текущему моменту времени на мощностях французской энергетической компании Engie успешно применяются дроны с программами распознавания изображений на основе машинного обучения, которые следят за оборудованием и изучают инфраструктуру в целях предотвращения технологических и иных нарушений. ИИ-системы контроля и мониторинга широко используются и в городской среде. Наиболее простой пример — система распознавания автомобильных номеров с помощью камер видеослежения, применяемая муниципальными организациями. Кроме того, подобные алгоритмы применяются для систем распознавания лиц [17] Porokhovskiy, 2020. Автоматизация ручного труда также является важной и неоднозначной темой, поскольку использование алгоритмов искусственного интеллекта в промышленности способно вытеснить из этой сферы человеческий труд.
Автоматизированные технологии выполняют сложные процессы быстрее и качественнее, чем человек, они способны работать 24 часа в сутки. Следует подчеркнуть, что основная цель внедрения высокоинтеллектуальных решений сегодня — это не полная замена человека в производственных и бизнес-процессах, но повышение эффективности человеческого труда. Данная система анализирует данные медицинских полисов по операциям и процедурам в целях вычисления размеров страховых выплат. Еще одно направление применения алгоритмов искусственного интеллекта — это предиктивная аналитика. ИИ-алгоритмические технологии способны обрабатывать огромные массивы данных, выявлять закономерности и осуществлять прогностические функции.
Система анализирует характеристики покупателей и товаров и на основании данного анализа автоматически составляет качественные рекомендации [18] Sergeev, 2020. Другой пример применения искусственного интеллекта в бизнесе — это Expedia, крупнейшая в мире онлайн-платформа по планированию путешествий. В рамках этой платформы осуществляется целый ряд процедур от бронирования отелей до аренды транспорта. Компанией довольно эффективно используется сеть машинного обучения для персонализации процесса планирования поездки каждого клиента. В отличие от традиционных типов прогнозирования, предиктивная аналитика легко адаптируется к изменениям поведения, используя массивы вновь поступающих данных.
В результате применения возможностей анализа неструктурированных данных с помощью ИИ-сервисов в процессе распространения мобильного контента, в частности сообщений в мессенджерах, электронных писем, фото и видео, осуществляется структурирование сгенерированных данных и сведений в целях получения возможностей их дальнейшей обработки. Указанный принцип заложен в основе работы сервиса Siri, который с помощью алгоритмов программы позволяет обрабатывать и структурировать человеческую речь, обеспечивая тем самым ее подготовку к проведению дальнейшего анализа. В системах анализа неструктурированных данных заложен огромный потенциал для производственных и ресурсодобывающих предприятий, которые накапливают массивы смешанной информации в течение долгого периода времени. Такой анализ способен облегчить работу инженеров, в том числе сэкономить время на сортировку и организацию данных перед тем, как оценить их и выявить важные взаимосвязи. Кроме того, искусственный интеллект — это возможность делегировать роботам утомительные и трудоемкие для человека задачи.
Например, роботизированный онлайн-ритейлер Ocado разработал систему компьютерного зрения и сеть роботов в целях замены процесса сканирования баркодов на своих торговых складах. Это позволяет ускорить поиск и выдачу нужных товаров [21] Alizada, Muradli, 2020. Внедрение искусственного интеллекта в различные бизнес-сферы начинается, как было показано выше, со сбора и обработки необходимых данных, трансформирования и систематизации их в нужный структурированный вид. Следующим шагом является разработка ИИ-алгоритмов, которые будут способны к самообучению.
Затем становится понятно, что, конечно, ты должен быть в поиске, в этот момент появляется интернет-торговля. Все такие: интернет-торговля — это неинтересно, это для гиков, там можно купить электронику и больше ничего. Не подумаете же вы, что в интернете в самом деле можно одежду покупать, не примерив, не потрогав, этого не может быть! Дальше появляются соцсети и мессенджеры. И скептики опять: и что мессенджер — передать сообщение, бизнес-то здесь при чём? Потом "Инстаграм".
И каждый раз появляется что-то новое. Сейчас главный канал общения бизнеса и потребителя — голосовой, кто—то говорит, что и это пройдёт, но многие бизнесы уже начали с ним работать. Строятся большие экосистемы, и этот канал в них встраивается. В случае "Яндекса" сам голос — целая экосистема, потому что помимо самого базового ядра распознавания синтеза речи под этим есть уже большое количество готовых сервисов, к которым человек привык. Человек привык к навигатору — и он голосом прокладывает маршрут, человек привык к поиску — и он ищет голосом, человек привык к музыке — он голосом ставит музыку. Голос прорастает везде: в браузеры, в отдельные поисковые приложения. Автомагнитолы заменяются на встроенные голосовые сервисы, ориентированные именно на ситуацию человека за рулём. Голосовое общение для нас станет привычным, мы везде будем управлять голосом чем угодно, любой техникой. А это другой интерфейс, он отличен от текста. Голосовое общение — это общение диалоговое, мы что-то сказали, услышали ответ и продолжили общение, и поэтому представление своих товаров и услуг нужно оформлять в виде диалога.
Это обязательно нужно делать, и для этого сейчас существует большое количество платформ. То есть я как пользователь говорю: "Алиса", я хочу заказать пиццу в такой-то пиццерии. Огромные возможности появляются не только у бизнесов, но и у разработчиков. Потому что, как когда-то появление веб-сервисов породило новую профессию веб-разработчика, дало рабочие места куче людей, так же и тут. Вряд ли бизнес, особенно средний и малый, будет держать у себя в штате специалиста по голосовым диалогам. Проще обратиться к какой-то компании, которая сделает для тебя разработку. И такие компании появляются, у нас уже работает программа сертификации таких разработчиков. О том, как ИИ изменит рынок труда Профессии не исчезнут — они поменяются. Где-то поменяется количество занятости, где-то человек станет эффективнее, один специалист сможет выполнять работу за десятерых. Это происходило всегда: когда появилась лопата, стало понятно, что человек с лопатой может делать работу двух человек с мотыгой.
Когда появился трактор, стало понятно, что он может сделать столько, сколько сто человек с лопатами. И ни разу на пути этого прогресса не было такого, что мы говорили: нет, что-то плохо с тракторами получилось, давайте к лопатам вернёмся. Профессии будут меняться, как это происходило всегда, но не думаю, что стоит ожидать резких потрясений. Роботы заменят операторов колл-центров, просто потому что там более-менее одинаковые сюжеты. Но мы сами же рекомендуем всегда оставлять возможность переключения на оператора: во-первых, нужно явно давать понять человеку, что сейчас с ним говорит робот, он мне отвечает очень быстро и по делу. Если он не может меня понять, мне остаётся возможность — соедините меня с человеком. Операторов будет меньше, но они будут более квалифицированны, они будут решать действительно сложные вопросы, а типовые будут за роботами. Будет продолжать исчезать рутинная и тяжёлая работа, причём уходить она будет медленно, не то что однажды всем скажут: теперь вместо вас роботы, вы свободны, нет. Помимо того, что какие-то профессии будут меняться, будет создаваться новый пласт рынка труда. Вы бы хотели иметь персонального ассистента, который билеты бронирует, на рейс регистрирует, в парикмахерскую запишет, утром разбудит, напомнит что угодно, всё запишет, сообщит о встрече?
Я тоже о таком всю жизнь мечтаю. А вам хотелось бы стать таким помощником? Работать на меня, например, и 24 часа, ночью и днем, выполнять мои капризы, записывать мои сообщения, говорить мне: тебе пора вставать? Вряд ли. Мы видим разрыв между нашими потребностями и людьми, которые хотят эти потребности удовлетворять. И именно здесь приходит искусственный интеллект, который заполняет нишу. Роботы будут выполнять ту работу, которую людям выполнять на самом деле не очень хочется, просто иногда они вынуждены. У робота таких понятий, как удовольствие и неудовольствие, к счастью, нет. Про ИИ на войне — это дорого и бесполезно почти Искусственный интеллект — это система инструментов, можно даже сказать, набор математических алгоритмов, который решает очень узкую задачу. Беспилотный автомобиль может доехать из пункта А в пункт В, но при этом он не в состоянии ответить на вопрос, сколько будет 6 умножить на 7.
Мы можем поставить ещё один инструмент, который будет отвечать на этот вопрос, но они не будут связаны друг с другом. Это примерно как швейцарский нож — набор инструментов, который мы вынимаем. Поэтому можно сделать какого-то робота, который будет по кнопке ехать и выкапывать мину, можно сделать робота, который будет летать в самолёте вместо пилота. Но это будут два разных робота, и нет общего робота, который ими управляет, — человек делает это гораздо эффективнее. Кто-то из американцев говорил: если для завоевания страны нужны истребители шестого поколения, то дешевле страну купить, потому что они очень дорогие.
Будут ли роботы заменять людей на рабочих местах? Как будет развиваться отношение между человеком и искусственным интеллектом? Проблемы этического и безопасного использования ИИ становятся все более актуальными.
Технологии ИИ уже применяются во многих сферах жизни, от медицины и производства до финансов и образования. Перспективы роста и развития искусственного интеллекта велики, и в будущем мы столкнемся с еще более высоким уровнем интеллектуальной автономности. Но чтобы успешно развивать и использовать ИИ, нам необходимо разработать эффективные системы контроля и регулирования. Это позволит обезопасить общество от возможных рисков, связанных с неправильным использованием искусственного интеллекта. Будущее искусственного интеллекта обещает нам прогресс и новые возможности, но требует также осознанного подхода и ответственного использования. Влияние искусственного интеллекта на различные сферы жизни Искусственный интеллект ИИ уже сейчас оказывает значительное влияние на различные сферы нашей жизни, и его влияние только увеличивается. Современные технологии ИИ проникают во все сферы человеческой деятельности, от медицины и финансов до образования и спорта. Одной из областей, на которые ИИ уже оказал значительное влияние, является медицина.
Благодаря возможностям ИИ в обработке больших объемов данных и выявлении закономерностей, врачи получают более точные диагнозы и оптимальные методы лечения. Также ИИ помогает ускорить процесс разработки новых лекарств и терапий. В сфере транспорта ИИ приводит к автоматизации и оптимизации процессов. Например, автономные транспортные средства на базе ИИ способны уменьшить число аварий на дорогах, повысить эффективность использования транспорта и уменьшить выбросы загрязняющих веществ. Это особенно актуально в условиях растущей мегаполисов и проблем с транспортной инфраструктурой. Искусственный интеллект находит свое применение также в сфере финансов. Благодаря анализу больших объемов данных и обучению на основе исторических показателей, ИИ используется для прогнозирования рыночных трендов и принятия решений в инвестиционной сфере. Это позволяет улучшить качество принимаемых решений и минимизировать риски для инвесторов.
Один из самых заметных примеров влияния ИИ на нашу жизнь — это сфера развлечений. Искусственный интеллект уже используется в компьютерных играх для создания реалистичных и неповторимых игровых миров. Кроме того, алгоритмы ИИ способны адаптироваться к поведению игроков, что позволяет создать максимально увлекательный геймплей и индивидуальный опыт каждому игроку. Искусственный интеллект также оказывает влияние на сферу образования. Компьютерные системы с ИИ могут персонализировать образовательный процесс, предлагая студентам индивидуальные задания и материалы, которые соответствуют их индивидуальным потребностям и уровню знаний. Это позволяет эффективнее осваивать новую информацию и развивать уникальные способности каждого ученика. В заключение, влияние искусственного интеллекта на различные сферы жизни является неотъемлемой частью нашего современного мира. От медицины и транспорта до финансов и образования, ИИ приводит к автоматизации, оптимизации и улучшению процессов.
Необходимо учитывать как позитивные, так и потенциально негативные последствия использования ИИ, чтобы использовать его потенциал на благо человечества. Этические вопросы искусственного интеллекта С развитием искусственного интеллекта возникают все больше этических вопросов, которые общество должно рассмотреть и решить. Для оценки этических аспектов развития ИИ необходимо учитывать его потенциальные негативные последствия и влияние на человечество в целом. Одной из главных этических проблем является создание автономных систем ИИ, способных принимать решения без внешнего вмешательства. Вызывает беспокойство, что такие системы могут принимать решения, которые не соответствуют этическим нормам и ценностям общества. Необходимо разработать и применять этические принципы и нормы, чтобы гарантировать соблюдение прав и интересов людей во всех сферах использования ИИ. Еще одной проблемой является неравенство доступа к инновационным технологиям ИИ. Если развитие ИИ будет неравномерным и ограниченным только небольшой группой людей или организаций, это может создать социальное неравенство и усугубить уже существующие проблемы.
Важно обеспечить равный доступ к развитию и использованию технологий ИИ, чтобы все слои населения могли воспользоваться их преимуществами. Также возникают этические вопросы в сфере приватности и безопасности. ИИ может собирать и обрабатывать огромные объемы данных о людях, что вызывает опасения относительно нарушения личной жизни и конфиденциальности. Регулирование искусственного интеллекта должно включать строгие меры по защите данных и соблюдению приватности. Другой важной этической проблемой является возможность злоупотребления ИИ. Использование искусственного интеллекта для негативных целей, таких как массовая слежка, манипуляция мнениями и создание оружия, может иметь серьезные последствия для общества.
Искусственный интеллект и нейросети позволяют примерно в десять раз ускорить селекционную работу. Например, буквально накануне выхода данной публикации генетики из ИППИ РАН, Сколтеха и МФТИ сообщили о разработке алгоритма, который упростит предсказание функций генов у сельскохозяйственных растений, создавать новые сорта с необходимыми характеристиками с его помощью станет намного проще и быстрее. ИИ строит станки и машины Машиностроение — одна из ключевых отраслей промышленности, здесь особенно важно тщательно контролировать и синхронизировать все производственные процессы. При создании станков и агрегатов приходится учитывать множество параметров — от рыночной конъюнктуры и перспектив развития предприятий-потребителей до качества сырья и отдельных компонентов. Искусственный интеллект позволяет автоматизировать огромную часть рутинной, но необходимой работы. Например, прежде чем запустить любую деталь в производство, нужно провести множество испытаний. Тесты на реальных прототипах требуют больших затрат времени и ресурсов. Искусственный интеллект помогает ускорить этот этап: умная система может сама провести сотни тысяч виртуальных симуляций, для испытаний офлайн останутся только самые важные этапы проверки Такие системы особенно активно развиваются в оборонной промышленности, авиа- и судостроении, автопроме и других отраслях, где в финале опытные образцы приходится тестировать людям. Нейросети отлично справляются и с управлением складскими процессами, планируя спрос и загрузку, прогнозируя потребность в сырье и его количество на складах Искусственный интеллект способен выстраивать логистические цепочки, учитывать сезонность, особенности хранения и множество других факторов. Все это не только сокращает расходы на хранение, но и снижает загрузку складских помещений. Например, одно из крупнейших металлургических предприятий — Новолипецкий металлургический комбинат — развивает у себя целый технологический кластер, задача которого обнаруживать подобные «узкие места» и находить способы их устранения. Машины работают быстро и точно, а централизованная интеллектуальная система позволяет дообучать их на полученном опыте, оптимизируя операции и энергозатраты. ИИ создает виртуальное ЖКХ Системы, построенные на алгоритмах искусственного интеллекта, находят применение и в сфере жилищно-коммунального хозяйства. Одна из наиболее сильных сторон ИИ — это прогнозирование энергопотребления. Нейросети, обученные на исторических данных об использовании электроэнергии в разное время суток, способны точно предсказывать объем, который потребуется в будущем. Например, ученые Ярославского государственного технического университета разработали приложение, с помощью которого возможно с высокой точностью спрогнозировать расходы на электричество в каждый час грядущей недели. Изобретение позволяет пользователям сэкономить до десяти процентов платы за энергопотребление. Например, информационная система «Цифровой водоканал», разработанная компанией «Русатом Инфраструктурные решения», моментально фиксирует аномалии в расходе воды и подает сигнал диспетчерским службам. ИИ позволяет точно определить место утечки, а значит предотвратить разрастание аварии и снизить потери воды в несколько раз. Нейросети отлично справляются и с управлением складскими процессами, планируя спрос и загрузку, прогнозируя потребность в сырье и его количество на складах Такие виртуальные системы помогают эффективно управлять котельными, тепловыми и даже электрическими сетями. Ведь на компьютере можно смоделировать самые разные ситуации и просчитать экономический эффект.
Его превосходительство ИИ: в каких направлениях искусственного интеллекта РФ опережает Запад
В этой статье мы объясним, что означает искусственный интеллект, расскажем, зачем нужен ии, и рассмотрим, что относится к искусственному интеллекту. Новые алгоритмы и нейросети позволяют внедрить искусственный интеллект практически в любые сферы. последние новости сегодня. Искусственный интеллект - все самые свежие новости дня по теме. ТАСС – ведущее государственное информационное агентство России. Конец года — время подводить итоги. Редакция проекта «Мир 2051» подготовила для вас целую серию видео про технологические достижения, впечатлившие нас в 2023.
Что такое искусственный интеллект и зачем он нужен
Сегодня ИИ все еще отличается от человеческого мозга. Например, ему недоступно осознание таких вещей, как: Физические объекты существуют в трехмерной реальности и сохраняются, даже если вы их не видите. Объекты обладают многочисленными свойствами и подчиняются физическим законам, таким как гравитация. Время идет и накладывает определенный порядок на действия в окружающей среде. Объекты в движении следуют обычно предсказуемым траекториям, таким как падение, перекатывание и так далее. Причины могут предсказуемо привести к следствиям. Действия, предпринимаемые человеком или слабым искусственным интеллектом , могут повлиять на будущее, которое может повлиять на человека. Например, человек находится за рулем автомобиля и видит, что рядом с проезжей частью находится детская площадка, на которой ребенок играет с мячом. Водитель сразу же принимает во внимание тот факт, что ребенок с мячом где-то рядом, а значит, либо мяч может укатиться на проезжую часть, либо на нее выбежит ребенок. А может быть, ребенок выбежит за мячиком.
Существование ребенка с мячом на детской площадке не означает, что вышеприведенные события обязательно произойдут. Но водитель держит это в уме, даже где-то на подсознательном уровне, готовясь в случае необходимости реагировать на ситуацию. Другое дело ИИ. Представим, что по этой же дороге едет, например, «Тесла». Для ИИ автомобиля ребенка с мячиком не существует, пока он не попадет в объектив камеры. А как только он пропадет, ИИ забудет о нем сразу же. Конечно, ИИ способен моментально среагировать, если ребенок окажется на проезжей части. Конечно, ПО современных машин может даже предсказать траекторию полета мяча, скорость движения объекта и ребенка. Но это возможно лишь в том случае, если объект и ребенок находятся в поле его видимости.
В остальных случаях ничего за пределами камеры для ИИ не существует. Зачем нужен искусственный интеллект Для чего нужен ИИ? Чтобы улучшить человеческую жизнь. Упростить ее там, где это возможно. Это может касаться таких вопросов, как экономия времени ИИ быстрее просчитывает информацию , работа в опасных условиях. Рассмотрим основные цели существования ИИ и его развития. ИИ может снизить количество человеческих ошибок. ИИ не заменит человеческую интуицию и знания, но, в отличие от людей, ИИ не утомляется или не подвергается стрессу. ИИ может трудиться на опасных работах, например на заводах, где человек может получить травму или значительный вред здоровью.
ИИ можно использовать на рутинной работе, например по сортировке мусора. Сейчас одно из самых активных направлений исследования ИИ — это чат-боты.
Дмитрий Масюк, директор бизнес-группы Поиска и рекламных технологий Яндекса Открытие для компаний API российских генеративных нейросетей будет стимулировать бизнес внедрять технологию в пользовательские продукты и внутренние процессы. Александр Громов, партнёр «Яков и Партнёры» и соавтор отчёта Сегодня каждая вторая опрошенная компания в России находится на этапе экспериментирования и эксплуатации решений на базе искусственного интеллекта. С появлением новых инструментов, расширением сфер применения и упрощением доступа к ИИ мы ожидаем, что эффект станет гораздо больше и в несколько раз превысит текущие показатели. Особенно это актуально в условиях исчерпания потенциала традиционных источников роста. По итогам опроса эксперты пришли к выводу, что экономический потенциал искусственного интеллекта в России к 2028 г. Реализованный эффект от внедрения искусственного интеллекта к 2028 году может достичь 4,2—6,9 трлн руб.
Из них 0,8-1,3 трлн руб.
Хотя этот подход может работать для небольших проектов или конкретных задач, он не подходит для развертывания машинного обучения в больших масштабах, особенно в приложениях, взаимодействующих с клиентами. Предприятия понимают важность управления в промышленном масштабе, которое предполагает создание четких процессов, включающих сдержки и противовесы для повышения эффективности и снижения рисков. Для достижения этой цели все больше внимания уделяется стандартизации моделей и процедур ML. Эта тенденция возникла в 2022 году и, как ожидается, сохранится в 2023 году, поскольку все больше владельцев бизнеса осознают ценность установления общекорпоративных стандартов машинного обучения для полноценного использования искусственного интеллекта и машинного обучения в своих организациях.
Искусственный интеллект и машинное обучение представляют собой серьезные проблемы с внедрением. Генеративный искусственный интеллект в маркетинге и СМИ Компании стремятся завоевать лояльность клиентов, постоянно создавая высококачественный контент для маркетинговых каналов. Различные типы контента могут быть созданы с помощью таких методов, как обучение в стиле передачи или общие состязательные сети в генеративных сетях искусственного интеллекта. Ожидается, что в 2023 году его значимость в сфере контент-маркетинга значительно возрастет. Однако влияние генеративного ИИ не ограничивается маркетинга ; потенциально это может произвести революцию во всей медиаиндустрии.
Безграничные возможности включают создание новых фильмов, восстановление старых до качества высокой четкости и улучшение спецэффектов. Тем не менее, влияние генеративного искусственного интеллекта не ограничивается только маркетингом; у него есть потенциал изменить весь медиа-ландшафт. Диапазон потенциальных применений практически безграничен и охватывает такие области, как: Производство новых фильмов и восстановление старых в высоком разрешении. Развитие спецэффектов и визуальных эффектов в индустрии развлечений. Создание аватаров для использования в метавселенная.
Возрастающая важность платформ управления моделями Инструменты и модели машинного обучения имеют широкий диапазон сложности, что представляет собой проблему для различных заинтересованных сторон в любой корпорации. Дилемма заключается в достижении консенсуса относительно полного жизненного цикла инструмента или модели ML. То, что руководство воспринимает как жизненный цикл модели, может отличаться от точки зрения ИТ-команды, а то, что ИТ-команда считает жизненным циклом, может не совпадать с ожиданиями команды управления рисками и т. Однако ситуация меняется. В 2022 году платформы управления моделями появились как решение для гармонизации разнообразных функций и точек зрения, связанных с использованием модели в различных подразделениях организации.
Эта разработка создает централизованный центр, позволяющий компаниям эффективно контролировать свои модели ML и определять их сквозной жизненный цикл без необходимости участия руководителей отдельных отделов. Ожидается, что эта тенденция сохранится и в 2023 году. Более широкое распространение адаптивного искусственного интеллекта Крупные ритейлеры вкладывают значительные средства в технологии искусственного интеллекта, чтобы улучшить взаимодействие с клиентами, повысить операционную эффективность и вовлеченность. Ожидается, что эта тенденция сохранится как минимум до 2023 года. Одним из ключевых результатов этих инвестиций станет разработка бесконфликтных шоппинг , что стало возможным благодаря таким технологиям, как компьютерное зрение и периферийные системы искусственного интеллекта, которые могут значительно сократить время ожидания.
Отдельные публикации могут содержать информацию, не предназначенную для пользователей до 16 лет. Интернет-журнал Новая Наука каждый день сообщает о последних открытиях и достижениях в области науки и новых технологий. Читайте последние новости высоких технологий, науки и техники.
Как искусственный интеллект изменит мир к 2030 году
Уровень доверия технологиям ИИ в целом вырос на 7 п. Несмотря на высокий уровень одобрения, пока россияне не готовы доверить искусственному интеллекту принятие конечных решений в той или иной сфере. На то, что технологиям ИИ россияне отводят второстепенную роль, указывают и связанные с ним ассоциации. То есть ИИ воспринимается как подконтрольный человеку помощник. Доля тех, кто считает, что государство должно способствовать развитию технологий искусственного интеллекта, выросла за год на 7 п.
Запрос на обучение Запрос на получение знаний об ИИ в России достаточно высок.
Массовое производство подобных чипов начнётся во второй половине 2024 года. Высота 12-ярусных чипов за счёт использования более прогрессивной технологии упаковки остаётся на уровне 8-ярусных чипов прежнего поколения.
Очевидно, что подобной динамике финансовых показателей компании способствовал высокий спрос на память типа HBM, хотя и в сегменте NAND наблюдались признаки восстановления. Темпы роста выручки SK hynix в прошлом квартале оказались максимальными с 2010 года. SK hynix намеревается увеличить капитальные затраты в этом году и нарастить объёмы поставок передовой памяти HBM3E, а также наладить поставки микросхем DDR5 высокой ёмкости для серверного применения.
В более традиционных сегментах рынка памяти, по мнению представителей компании, спрос начнёт восстанавливаться во второй половине текущего года. Помимо новых предприятий в Южной Корее, SK hynix собирается построить предприятие и исследовательский центр в штате Индиана. Компания сейчас ведёт переговоры с рядом клиентов о заключении долгосрочных контрактов на поставку памяти семейства HBM.
Акции прочих производителей чипов на азиатских фондовых рынках тоже устремились вниз после открытия торгов утром в четверг. Источник изображения: SoftBank Благодаря столь крупным инвестициям SoftBank будет обладать самыми высокопроизводительными вычислительными мощностями в стране, отметил Nikkei Asia. Как утверждают источники ресурса, для их работы будут использоваться ускорители Nvidia.
В 2024 финансовом году SoftBank планирует завершить создание своей первой большой языковой модели LLM с 390 млрд параметров. Затем, по данным Nikkei Asia, компания начнёт в 2025 году разработку LLM с 1 трлн параметров и поддержкой японского языка. Как отметил ранее Nikkei Asia, в Японии наблюдается нехватка частных компаний с высокопроизводительными суперкомпьютерами, необходимыми для создания LLM, несмотря на возросший интерес к ИИ.
Благодаря инвестициям SoftBank превратится в сильного игрока в сфере генеративного ИИ в то время, когда международные компании пытаются выйти на рынок Японии. На прошлой неделе OpenAI открыла свой первый офис в Токио. Она стала первой из трёх небольших ИИ-моделей, которые софтверный гигант планирует выпустить в свет.
В декабре прошлого года Microsoft выпустила модель Phi-2, которая работала так же хорошо, как и более крупные модели, такие как Llama 2. По словам разработчиков, Phi-3 работает лучше предыдущей версии и может давать ответы, близкие к тем, что дают модели в 10 раз больше. По сравнению с более крупными аналогами, небольшие ИИ-модели обычно дешевле в эксплуатации и лучше работают на персональных устройствах, таких как смартфоны и ноутбуки.
Наряду с Phi компания также создала модель Orca-Math, которая ориентирована на решение математических задач. Конкуренты Microsoft занимаются разработкой небольших ИИ-моделей, многие из которых нацелены на решение более простых задач, таких как обобщение документов или помощь в написании программного кода. По словам Бойда, разработчики обучали Phi-3 по «учебному плану».
Они вдохновлялись тем, как дети учатся на сказках, читаемых перед сном. Это книги с более простыми словами и структурами предложений, но в то же время зачастую в них поднимаются важные темы. Поскольку существующей литературы для детей при тренировке Phi-3 не хватало, разработчики взяли список из более чем 3000 тем и попросили большие языковые модели написать дополнительные «детские книги» специально для обучения Phi-3.
Бойд добавил, что Phi-3 просто развивает дальше то, чему обучились предыдущие итерации ИИ-модели. Если Phi-1 была ориентирована на кодирование, а Phi-2 начала учиться рассуждать, то Phi-3 ещё лучше справляется с кодированием и рассуждениями. Расследование Reuters показывает, что санкционная продукция Nvidia продолжает поставляться в Китай.
Источник изображения: Nvidia Агентство использовало для получения подобных выводов общедоступную конкурсную документацию, в которой отображались состоявшиеся закупки серверного оборудования, в составе которого содержались запрещённые к экспорту в Китай компоненты Nvidia. По словам представителей Reuters, уже после вступления новых ограничений в середине ноября прошлого года не менее 10 китайских учреждений смогли получить серверное оборудование, содержащее «запрещённые» ускорители Nvidia.
Конечным результатом работы станет разработка модели, которая с высокой степенью вероятности поможет психологам объяснять и прогнозировать поведение человека как в реальной, так и в цифровой среде».
Идея данного проекта, как отметил один из основных исполнителей, заведующий кафедрой общей психологии ИПО Павел Устин, возникла не на пустом месте. Оно также было поддержано грантом РНФ. За это время у нас сложился крепкий научный коллектив из психологов и специалистов по IT-технологиям, были созданы инструменты мониторинга и анализа продуктов виртуальной активности человека в социальных сетях, разработаны алгоритмы прогнозирования успешности», — рассказал П.
ИИ и не разрешается использовать для написания диплома, но и официально не запрещается. Но здесь речь о привычных общественных институтах. Онлайн-образование, большая часть которого принадлежит частным компаниям, начало внедрять ИИ раньше госучреждений. Там ИИ активно применяется в онлайн-образовании, инновационные решения улучшают обучение и оптимизируют процессы. Вот несколько ярких кейсов. Крупный поставщик открытых онлайн-курсов в США Coursera использует ИИ для предложения персонализированных рекомендаций курсов учащимся на основе анализа их предпочтений, предыдущих курсов и успехов. Китайская образовательная компания Squirrel AI использует алгоритмы машинного обучения для создания уникальных обучающих планов для каждого ученика, учитывая его индивидуальные потребности и способности. Американская компания Knewton разработала платформу, использующую адаптивные алгоритмы машинного обучения для персонализации учебного контента и методов обучения.
Английская компания Century Tech предлагает платформу, основанную на ИИ, для индивидуального обучения, анализа прогресса и формирования персонализированных рекомендаций. Американская Cognii разработала ИИ-платформу для проверки эссе и предоставления обратной связи студентам, что упрощает процесс проверки больших объемов работ. Что может ИИ в онлайн-образовании Как выглядел упрощенный процесс создания онлайн-курса до появления ИИ: Методист составлял учебную программу так, чтобы ученики получили достаточный объем знаний для освоения профессии или точечного навыка. Продюсер искал релевантных спикеров для курса. Спикеры записывали обучающие ролики со съемочной командой. Копирайтеры или авторы-редакторы писали текст к курсу на основе контента от спикера. Дизайнеры отрисовывали картинки, графики и прочее. Когда курс выпускался, к ученикам прикрепляли службу поддержки учащихся — людей, которые проверяли домашние задания, давали обратную связь и поддерживали учеников на всем пути обучения.
Получался долгий и дорогой процесс, который влиял и на конечную стоимость курса, и порой на качество обучения: онлайн-школы могли записать курс в спешке и дать себе обещание внести правки позже. А внесли эти правки потом или нет, кто проверит. Если вы спросите меня, какой из этих шагов может полностью забрать на себя ИИ, то я отвечу, что все. Методиста может заменить GPT — нейросеть напишет программу и сам контент для любого курса за секунды. Видео с виртуальным спикером может сделать нейросеть наподобие HeyGen — можно создать как несуществующего спикера, так и загрузить примеры видео с реальным человеком и воссоздать его голос и движения. Картинки нарисует Midjourney. А виртуальный ассистент в формате чат-бота на основе GPT в любом привычном мессенджере проверит домашние работы, поставит оценки и узнает, все ли ок у ученика с прохождением курса и общим состоянием.
Применение искусственного интеллекта в бизнес-сфере: современное состояние и перспективы
AI может помочь в поиске дополнительной информации по теме урока, что позволит повысить качество написанной работы. Фото: 1MI «Если объединить сильные стороны идей от ИИ с человеческой интуицией и мудростью, то люди могут использовать получившуюся синергию для принятия более эффективных решений», — считает доцент кафедры философии и права ПНИПУ. В свое время психолог Джордан Петерсон отмечал, что людям, желающим научиться думать, нужно сперва научиться писать. Письмо помогает развивать критическое мышление, логику, исследовательские навыки. И здесь речь не столько о морали, сколько о том, что важные навыки не развиваются в достаточной мере», — рассказала Середкина, тем самым объяснив возможное негативное влияние ИИ на качество обучения. Помимо неточностей и дезинформации, диалог с ChatGPT может представлять угрозу «культурной предвзятости». В связи с этим нейросеть дает необъективную оценку. В качестве примера эксперт указала, что чат-бот считает расовое оскорбление более негативным, чем убийство миллионов людей или взрыв ядерной бомбы.
Он может критиковать только определенные религии, но откажется давать определение «женщине». Стоить помнить, что ИИ дает необъективную оценку предметам и явлениям. Фото: 1MI Режимы «пленник пещеры» и «механический оракул» «Пленник пещеры» — режим, в котором нейросеть схожа с искусственной сущностью, повторяющей смыслы и утверждения. Название этого режима происходит от аналогии с пещерой с пленниками, которые видят лишь тени, а не настоящие формы. Обучающийся сам становится учителем и тренирует чат-бот своими запросами. Он тренирует критическое мышление, но с учетом технических ограничений. Они могут прокачать наши знания и навыки, а могут лишить возможности размышлять и самостоятельно принимать решения.
Как и с какой целью взаимодействовать с ИИ — решает только сам человек, он же несет ответственность за использование полученных результатов», — добавила Середкина.
Одни авторы пугают, что скоро исчезнут многие профессии и десятки миллионов людей потеряют работу. Другие сетуют, что школьники и студенты быстро сориентировались и используют самую медийно раскрученную систему ChatGPT для выполнения учебных заданий. Масса заметок по каждому чиху, связанному с ИИ. Яндекс будет нанимать гуманитариев для дообучения своей GPT-подобной системы с зарплатой 150 тысяч рублей просто за общение с программой. И бесконечные новости о том, как картины, созданные нейросетями, побеждают на выставках; как ИИ работает в медицине, геологии... Проще сказать, где он не применяется. Но самое главное, что искусственный интеллект не просто показывает эффектные фокусы. Он реально стал практическим инструментом, практически незаменимым по жизни. Чистая математика в основе Для понимания, как все работает, нам понадобятся всего три определения: что такое ИИ, ML машинное обучение и NN нейронные сети.
Без них никак не обойтись, потому что они ключевые. Искусственный интеллект ИИ — это общее понятие, которое описывает машинные алгоритмы и технологии, направленные на создание интеллектуальных систем. Машинное обучение Machine Learning, ML — это класс методов ИИ, позволяет компьютерам обучаться на основе больших объемов данных, извлекая из них закономерности. Используется в основном для решения различных задач классификации и прогнозирования. Нейронные сети Neural Networks, NN — это одна из технологий машинного обучения, которая моделирует работу мозга человека. Нейронные сети могут использоваться для решения множества различных задач: для распознавания образов например, автомобильных номеров на фотографии , перевода голосового сообщения в текстовое, генерации изображений по тексту, создания моделей чего-либо, текстов, картин и т. То есть нейронные сети — это один из способов реализации машинного обучения. Вообще специалисты стараются меньше употреблять словосочетание «искусственный интеллект». Они предпочитают термин «машинное обучение». Это связано с тем, что существуют два принципиально разных способа использовать компьютер для решения задач.
Классический заключается в том, что есть исходные данные. И есть формула алгоритм , которая обеспечивает преобразование исходных данных в выходные результат. Второй способ применяют, когда у человека не получается разработать алгоритм самому. Есть входные и выходные данные, а алгоритм неизвестен. И вот чтобы компьютер мог решить задачу например, распознавания лиц людей или товаров в магазине , применяются методы машинного обучения. Вы скажете, зачем нам сдались все эти определения?! Но я попрошу не торопиться. Ведь все, что скрывается за написанными выше понятиями, очень помогает нам в повседневной жизни. Повторюсь, почти у каждого из нас есть смартфон, компьютер. Мы регулярно забиваем свои запросы в поисковые системы, и они выдают нам нужные ответы.
Например, тот же прогноз погоды. Или когда мы используем навигатор, управляя машиной, — он ведь тоже подстраивается под наши привычки и предпочтения. Я, например, в течение месяца, выезжая в дальнее Подмосковье, заправлялась на одной и той же заправке и останавливалась взбодриться кофе в конкретном месте. Но буквально на днях, следуя в том же направлении с полным баком топлива и со своим кофе в термосе, я не планировала остановок. Однако навигатор упорно предлагал мне заправиться и перекусить в уже «знакомых» ему местах. И еще много чего предлагал. То есть он уже сам за меня начал «думать». Наверное, многие давно заметили: стоит только поговорить о покупке какой-то вещи — и буквально через несколько часов уже ваш смартфон предлагает вам разные варианты этого предмета. Он ведь «подслушивает» все разговоры. Еще один пример.
Несколько лет назад на всех станциях метро в Москве заработала система оплаты проезда с помощью распознавания лица. По официальным данным, только за прошлый год ею воспользовались 32 млн раз. А появление и широкое использование дронов, которые уже много чего могут делать самостоятельно? Вы думаете, что так и должно было быть и это естественные процессы? Это результат машинного обучения, работы нейронных сетей, которые стремительно развиваются. Но все те примеры, которые я привела выше, лишь малюсенький кусочек «айсберга».
Продвинутая камера играет важную роль при выборе смартфона, а использование ИИ в процессе съемки стало повсеместным. Отцы и дети Традиционно считается, что молодежь, особенно поколение Z до 26 лет , является наиболее продвинутыми пользователями технологий. Однако представители возрастной группы 26—44 лет также активно прибегают к помощи искусственного интеллекта. Например, при управлении «умным домом» с помощью голосового ассистента или обработке больших объемов информации различия между поколениями стираются — эти сферы применения ИИ пользуются практически одинаковым спросом у респондентов из разных возрастных групп. Тем не менее люди старшего возраста от 45 до 55 лет чаще отмечают, что ИИ-технологии пока не принесли им никакой конкретной пользы. Вместе с тем они отмечают свою общую заинтересованность в таких инновациях. Общий тренд на интерес к технологиям искусственного интеллекта и доверие к нему продемонстрировали респонденты с детьми. Заметна и тенденция на рост использования ИИ в повседневной жизни.
Более сильная киберзащита, более изощренные злоумышленники ИИ уже дает огромные преимущества нашим киберзащитникам, позволяя им улучшать возможности, сокращать трудозатраты и лучше защищать от угроз, говорит Фил Венаблс, CISO Google Cloud. С другой стороны, Венаблс ожидает, что злоумышленники будут использовать генеративный ИИ и LLM для персонализации и постепенного масштабирования своих деструктивных кампаний: «Они будут использовать все возможное, чтобы размыть границу между доброкачественными и вредоносными приложениями ИИ, поэтому защитники должны действовать быстрее и эффективнее». ИИ становится мультимодальным Самым важным трендом в области ИИ в 2024 г. Большинство ИИ-продуктов 2023 г. Новый этап развития генеративного ИИ Наиболее заметной тенденцией 2024 г. По прогнозам Магнусона, общие, универсальные модели, скорее всего, выйдут из моды, и на смену им придут специализированные приложения, ориентированные на конкретную область. ИИ кардинально меняет анализ данных Самой значительной тенденцией в области ИИ в 2024 г.
ТОП 10 искусственных интеллектов в 2023 году
Таким образом, актуальность исследований искусственного интеллекта имеет бинарный характер. Технологиям искусственного интеллекта (ИИ) чаще доверяет молодежь 18-24 лет, люди с высшим образованием, материально обеспеченные и более осведомленные россияне. Наработки в области искусственного интеллекта в ближайшие годы могут принести государству триллионы рублей. Разбираемся, что такое искусственный интеллект, каковы принципы его работы и насколько мы близки к появлению полностью сознательных машин.
Статьи и новости
Вице-премьер Дмитрий Чернышенко на конференции AI Journey, посвященной развитию искусственного интеллекта (ИИ), обозначил приоритеты правительства в этой сфере. Технологии искусственного интеллекта (далее — ИИ), которые еще вчера казались фантастикой, все более уверенно внедряются в различные сферы общественной жизни. Искусственный интеллект находит широкое и все более значимое применение в различных областях и сферах деятельности, что приводит к новым технологическим революциям и повышению эффективности деятельности в различных отраслях. — Какие изменения нас ждут в области искусственного интеллекта через 30–50 лет? последние новости сегодня. Искусственный интеллект - все самые свежие новости дня по теме. ТАСС – ведущее государственное информационное агентство России. Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем.