Новости марсоход соджорнер

Марсоход Sojourner После Викингов наступило некоторое затишье в изучении и подготовке к освоению Марса. Цветное изображение, сделанное Соджорнер марсоход своего колеса оставляет следы на Марсе. Лёгкий Соджорнер стал первым планетоходом, действующей за пределами системы Земля-Луна. Как известно, первый маленький марсоходик «Соджорнер» (Sojourner) якобы катался по Марсу с 4 июля по 27 сентября 1997 года.

Все марсоходы, побывавшие на Красной планете

Оперативно управлять марсоходом невозможно — сигнал от Земли до Марса идет от 4 до 20 минут. Марсоход Соджорнер. Rover Sojourner был разработан как технологическая демонстрация нового способа доставки посадочного модуля. Марсоход Perseverance с уникальным мини-вертолетом успешно достиг поверхности Красной планеты. Марсоход Соджорнер. Rover Sojourner был разработан как технологическая демонстрация нового способа доставки посадочного модуля.

Вечный сон: китайский ровер на Марсе так и не смог проснуться после зимней спячки

«Марс Пасфайндер» и марсоход «Соджорнер» при сворачивании в стартовое положение. Так же, как Pathfinder когда-то взял с собой Sojourner, Perseverance принес Ingenuity, маленький вертолет, показавший, что управляемый полет в разреженной атмосфере Марса возможен. В 1997 году NASA отправило к Красной планете марсоход Соджорнер, и с тех пор на ней побывало пять марсоходов. Несмотря на то, что сам «Соджорнер» находился в полном порядке, инженеры больше не могли контролировать марсоход.

Mars Pathfinder

И, пожалуй, самое главное — миссия Pathfinder и Sojourner доказала возможность посадить и эксплуатировать марсоход на Красной Планете. На «Соджорнере» были телекамеры и спектрометр для исследования химического состава поверхности. Марсоход Perseverance с уникальным мини-вертолетом успешно достиг поверхности Красной планеты. Как известно, первый маленький марсоходик «Соджорнер» (Sojourner) якобы катался по Марсу с 4 июля по 27 сентября 1997 года. Цветное изображение, сделанное Соджорнер марсоход своего колеса оставляет следы на Марсе.

Юджин Сернан заявил, что американцы не были на Луне

Марсоход Sojourner, находившийся на Марсе в 1997 году, преодолевал за то же время расстояние в три раза меньшее. Однако Sojourner продержался намного дольше гарантийного срока, заложив добрую традицию, которую продолжили и следующие марсоходы, а также дрон-вертолет Ingenuity. Сегодня исполняется 10 лет с того дня, как марсоход совершил мягкую посадку на марсианской равнине Эолис Палус (Aeolis Palus) внутри кратера Гейла. «Марс Пасфайндер» и марсоход «Соджорнер» при сворачивании в стартовое положение. Марсоход Sojourner После Викингов наступило некоторое затишье в изучении и подготовке к освоению Марса.

Мини марсоход Соджорнер на борту спускаемого аппарата Патфингер

25 лет посадке марсохода Sojourner: kiri2ll — LiveJournal Марсоход Sojourner сделал этот снимок на третьи сутки пребывания на Марсе.
Тайна красной планеты: марсоходы, которые добрались до Марса Фото Красной планеты полученное с посадочного модуля Pathfinder, который доставил на поверхность Марса самый первый марсоход Sojourner.

К 20-летию посадки марсохода «Соджорнер»

Главный конструктор китайской программы исследования Марса представил долгожданный комментарий о статусе китайского марсохода Zhurong (Чжучжун), который сохраняет. Марсоход Perseverance с уникальным мини-вертолетом успешно достиг поверхности Красной планеты. Марсоход Perseverance с уникальным мини-вертолетом успешно достиг поверхности Красной планеты. Название марсохода Соджорнер дословно означает «временный житель» или «проезжий», оно было дано победителем голосования — 12-летним мальчиком из штата Коннектикут, США[1]. Марсоход Sojourner После Викингов наступило некоторое затишье в изучении и подготовке к освоению Марса. Марсоход «Соджорнер» мог удаляться от посадочного аппарата на расстояние около 500 метров, сохраняя с ним радиосвязь.

Кто и когда садился на Марс: освежим память

Согласно недавно опубликованному исследованию , были получены убедительные доказательства изменения климата на Равнине Утопии, которая находится в восточной части северного полушария Марса. Ледниковые периоды на Марсе сопровождаются масштабным расширением ледяных шапок, как и на Земле, но средняя температура поверхности планеты в этот период сильно изменяется из-за повышения температуры на полюсах и перемещения водяного пара. Ученые обнаружили, что современные дюны образовались совсем под другим углом в отличии от древних дюн. Все это означает, что направление ветра в средних широтах сильно изменилось. Полученные данные свидетельствуют о том, что 400 тысяч лет назад преобладающие ветра сместились на 70 градусов. Это привело к разрушению дюн, образовавшихся в ледниковый период. Со временем ветер планеты стер дюны, превратив их в длинные темные хребты известные как поперечные эоловые хребты , которые сегодня пересекают большую часть планеты.

Большая пыльная буря была замечена на этой неделе на расстоянии около 1000 км от предполагаемого места посадки. В НАСА правильно рассчитали, что эта буря рассеется задолго до посадки. Расчетное место посадки марсохода обозначена на карте в виде эллипса у подножия горы внутри кратера Гейла. Фото высокого разрешения нового марсианского дома.

В 2006-м в грунте места под названием Тирон обнаружил следы серы и воды. Тогда же около Домашней Плиты Спирит нашёл чёткие признаки древнего взрыва: разбросанные крупные камни поверх мелкой гальки. Это свидетельства либо вулканических извержений, либо столкновения с метеоритом. А в 2007-м буксующее переднее колесо ровера обнажило почти чистый кремнезём, основной ингредиент стёкол, которые мы на Земле устанавливаем в своих домах. Всего аппарат проработал на поверхности Марса 6 лет, 2 месяца и 19 дней, наколесив по его поверхности 7730 метров. Давайте посмотрим, на итоги его жизни. Opportunity Как вы помните, Оппи стартовал на три недели позже своего коллеги, поэтому и посадку в кратере Игл совершил аж 25-го января 2004-го года. Его посадка тоже была мягкой, хотя без 26-ти отскоков от поверхности не обошлось. Дистанция до намеченной цели составила почти 15 километров. К слову, само место посадки получило имя: Станция памяти Челленджера, в честь экипажа разбившегося в 1986-м году Спейс-Шаттла. Исследовав кратер, марсоход сделал его панорамный снимок и уже на выезде обнаружил древний метеорит из никеля. В начале 2005-го года аппарат застревает в сыпучем грунте — так же, как спустя несколько лет застрянет его брат. Однако команде учёных удалось постепенными чуть ли не рывковыми движениями сантиметр за сантиметром высвободить Оппортьюнити из песка. Операция по спасению заняла 6 недель. В 2007-м аппарат переживал те же проблемные пылевые бури что и Спирит. Питание падало до 120-ти ватт-час, а научные работы тоже полностью останавливались. Но затем ветер сдул пыль, на небе показалось солнышко и Оппи смог продолжить своё путешествие: определённой заранее целью стал огромный кратер Индевор. К концу марта 2010-го аппарат проехал почти в три раза большую дистанцию, чем Спирит, целых 20 километров. И, наконец, 9-го августа 2011-го года прибыл в Индевор. Изучая окрестности кратера, он сперва установил рекорд по продолжительности работы на внеземном объекте, а затем и по пройденной дистанции, обойдя советский аппарат Луноход-2. Одометр ровера на тот момент показывал уже 40. В 2014-м году постоянные сбои памяти Оппортьюнити вынудили команду миссии провести рискованное обновление: инженеры полностью переформатировали его флеш-память. А к концу того же года полностью отказались от её использования из-за вышедших из строя блоков. Аппарат полностью перешёл на оперативную память. Седьмая марсианская зима 2015-2016 годов была встречена очередными проблемами. Солнечного света вновь не хватало для генерации электроэнергии и ровер перевели в режим минимальной производительности, чтобы он не замёрз. Хотя научная работа не останавливалась, а сама зима была успешно пережита. Продолжая двигаться по западной кромке кратера Индевор, аппарат установил очередной рекорд: успешно проехался по самому крутому склону вне земли: его наклон составил 30 градусов. Оказавшись к концу года уже в западной части кратера, Оппортьюнити принялся изучать воронки и склоны внутри него. Следующей целью стала долина Персевиренс, направляясь к которой аппарат неудачно вывернул одно из передних колёс. Там, к сожалению, количество получаемого света значительно снизилось, а когда в 2018-м году начался очередной сезон пылевых бурь, солнечные лучи практически не достигали углубления, в котором оказался Оппортьюнити. Команда NASA с волнением ожидала окончания бурь, однако ни одна из попыток установить связь не увенчалась успехом. Счётчик пройденного расстояния составил 45,16 километра. Как и Спирит, Оппортьюнити совершил множество открытий: обнаружил следы воды, подтвердил, что в прошлом на Марсе была возможна простая микробная жизнь. Аппарат пережил 60 продлений миссии и вместо 90 суток проработал на поверхности Марса 14 лет 11 месяцев и 1 день, что на данный момент остаётся рекордом. Если говорить о глобальных итогах мероприятия, программа Mars Exploration Rover оказалась невероятно успешной: оба аппарата справились со своими задачами, изучили противоположные полушария планеты, во много раз превзошли изначальные сроки работы и отправили на Землю гигабайты панорам и научных данных. Но самым главным всё же стало само достижение: NASA доказало, что может отправить на Марс недорогие аппараты и с помощью них сделать кучу открытий, которых никто даже не ожидал. Что техника при должном обращении способна работать с десяток лет. И что в следующий раз нужно получше продумать схему питания, возможно, отказаться от солнечных панелей… И заняться подвеской и колёсами. Все эти выводы, набитые шишки и приобретённый опыт спустя почти десять лет после прибытия Спирита и Оппортьюнити на Марс выльются в следующий этап программы, Марсоход Curiosity.

Местом посадки выбрана именно эта равнина потому, что когда-то давно на ее территории могла быть вода с обитающими в ней живыми организмами. Это значит, что марсоход «Чжужун» вполне может стать первым, кто обнаружит следы жизни на Марсе. По случаю знаменательного события, я постарался собрать максимум интересной информации о новом аппарате — она еще не упоминалась на нашем сайте. Давайте рассмотрим эти факты, а также выясним, какую ошибку совершают некоторые зарубежные издания, рассказывая про новое достижение китайских ученых. К сожалению, реальных фотографий марсохода до сих пор нет, поэтому вот 3D-модель Первый китайский марсоход Посадка китайского марсохода была совершена в рамках миссии межпланетной станции «Тяньвэнь-1». Она состоит из трех частей: орбитального спутника, спускаемой платформы и упомянутого выше марсохода. В отличие от аэрокосмического агентства NASA, китайские ученые обычно не ведут прямые трансляции. Так что интересных зрелищ не стоило даже сдать. На данный есть просто факт — аппарат «Чжужун» успешно совершил мягкую посадку и теперь занимается исследованием окружающего пространства. Как только изучение будет завершено, марсоход съедет из платформы и начнет более тщательное изучение марсианской поверхности. Скоро марсоход «Чжужун» съедет с посадочной платформы, но пока этого не произошло Марсоход «Чжужун» весит 240 килограммов и по размерам сравним с американскими аппаратами Spirit и Opportunity, которые были запущены в январе 2004 года.

Первый настоящий марсоход, о котором все забыли - Соджорнер

В первые постсоветские годы России, переживавшей период экономических трудностей, не под силу были амбициозные проекты по освоению других планет тут можно вспомнить разве что так и не долетевший до Красной планеты «Марс-96». Что интересно, при его создании могли быть применены и российские разработки. Россияне предложили оснастить планетоход именно бесклиренсным шасси на конических колесах. Был создан экспериментальный прототип, для которого американская компания McDonnell Douglas, Планетарное общество The Planetary Society и Исследовательский центр имени Эймса Ames Research Center предоставили радиотехнику и телекамеры. Находившаяся в Хантингтон-Бич Калифорния группа управления через спутник направляла движение планетохода на Толбачинском полигоне Камчатка. В марте 1994-го прототип прошел новые испытания в пустыне Мохаве. В феврале 1995-го машину испытали на склоне гавайского вулкана Килауэа, в ноябре 1996-го — на полигоне в Северной Аризоне. Однако, хотя результат был признан вполне удовлетворительным, американцы при создании окончательного варианта планетохода всё же предпочли «традиционное» шасси. В то время как шли работы по созданию марсохода, более 60 ученых из США и Европы спорили относительно наилучшего места для его высадки.

Специалисты по Марсу особенно интересовались областями, где, как предполагали планетологи, присутствуют отложения пород, перенесенных мощными водными потоками, которые струились там в древние геологические эпохи. Эти потоки неслись с гор, прорезая холмистые равнины и твердые породы. Было рассмотрено несколько районов, в которых эти русла выходили на равнину Хриса именно на ней совершил посадку 20 июля 1976 года «Викинг-1» , выбранные по данным съемки с орбитальных блоков «Викингов». В таком выборе присутствовал известный символизм, так как древнегреческий бог войны Арес является «коллегой» древнеримского бога Марса. Было высказано предположение о том, что долина Ареса образовалась в ходе катастрофического наводнения, вынесшего с гор различные породы и отложения. Ученые даже отыскали подобное место на Земле — район вблизи городов Спокан и Мозес-Лейк в штате Вашингтон, известный как «Паршивая земля» Channeled Scablands. Ученые заранее понимали, что передвижение планетохода по столь пересеченной местности будет нелегким. А данные, полученные с помощью орбитального телескопа «Хаббл», свидетельствовали о том, что после приземления марсоход может попасть в зону мощных песчаных бурь.

Управление историческим путешествием передали Лаборатории реактивного движения Jet Propulsion Laboratory — филиалу Калифорнийского технологического института. К слову сказать, менее чем за месяц до того, 7 ноября 1996 года с того же космодрома стартовала миссия Mars Global Surveyor — на орбиту Красной планеты была доставлена автоматическая станция, которая в течение почти десяти лет передавала на Землю высококачественные снимки, выполняя работу по картографированию Марса. Mars Pathfinder оторвала от земли мощная ракета-носитель «Дельта-2». На преодоление расстояния до Красной планеты ушло более полугода. Известие с воодушевлением восприняли и в Вашингтоне. Даже после приземления лэндер не исчерпал степень своей полезности. Дело в том, что антенна марсохода могла передавать данные только в радиусе 500 метров. Соответственно ровер передавал информацию на лэндер, а тот уже транслировал ее на Землю.

На станции Сети дальней связи NASA в тот день, 4 июля, произошел сбой — и вплоть до следующих суток лэндер сохранял неподвижность. Лишь 5 июля раскрылись створки — и на грунт по металлическому трапу съехала диковинная машина весом 11,5 кг ровер под названием «Соджорнер» Sojourner. С виду она напоминала детскую игрушку, да и по размерам не слишком от нее отличалась: 65 см в длину, 48 см в ширину и 30 см в высоту. К тому моменту у человечества уже был накоплен определенный опыт эксплуатации внеземных колесных транспортных средств — от советского «Лунохода» до роверов, на которых передвигались на Луне американские астронавты. Символично, что свое название дословно означающее «временный житель» или «проезжий» он получил в честь знаменитой чернокожей общественной деятельницы XIX века Соджорнер Трут , боровшейся против рабства, за права женщин и отмену смертной казни. Марсоход был оборудован солнечной батареей, способной работать как при экстремально низких, так и при высоких температурах. Она передавала энергию на аккумулятор, соединенный с одиннадцатью электродвигателями постоянного тока RE016DC мощностью 3,2 Вт, созданными компанией Maxon Motor. Шесть двигателей вращали колеса, четыре задавали направление движения и один поднимал и опускал спектрометр.

Также машину снабдили тремя радиоизотопными элементами с несколькими граммами плутония-238 — для поддержания необходимой температуры в электронном блоке. Марсоход был оборудован шестью колесами диаметром 13 см каждое из которых могло вращаться самостоятельно. Он обладал способностью наклоняться не переворачиваясь на 45 градусов и преодолевать препятствия высотой до 20 см. Из научного оборудования на борту были три видеокамеры и спектрометр, способный определять элементный состав пород и пыли. Управление марсоходом осуществлялось посредством 8-разрядного процессора Intel 80C85 c объемом оперативной памяти в 512 Кб. Программное обеспечение «Соджорнера» могло создавать 3D-карты окружающей местности, определять степень ее проходимости, высоту препятствий, плотность грунта и угол наклона поверхности — и выбирать наиболее надежный маршрут. Первое путешествие по поверхности Марса Изначально организаторы миссии ставили перед собой не очень амбициозные цели. Уже сам факт посадки на Марс рассматривался как огромное достижение.

Предполагалось, что «Соджорнер» проработает в течение семи, максимум 30 марсианских суток и сделает несколько снимков окрестной местности. Я хочу, чтобы они знали: если будет неудача, мы придем к ним пожать руки», — пообещал Голдин. Когда «Соджорнер» оказался на грунте, это был знаменательный момент. А другой сотрудник шутливо посоветовал марсоходу: «Звони домой время от времени». Путешествие «Соджорнера» началось с того, что марсоход осмотрел близлежащий камень. Этот объект размером с футбольный мяч, имевший на поверхности несколько разноцветных выступов, получил имя «Билл-в-ракушках» Barnacle Bill. Ровер удачно «припарковался» у камня и нацелил на него спектрометр. В «Билле» обнаружили высокое содержание кремния и кварца, обычного для вулканических пород.

Поскольку на Марсе вулканов очень мало, геологи начали ломать головы. Они пришли к выводу, что либо «Билла» мог занести на планету метеорит, либо он всё же образовался как осадочная порода… Затем «Соджорнер» осмотрел камень «Йоги». Выяснилось, что он содержит меньше кремния и больше магния, чем «Билл-в-ракушках». Соответственно, «Йоги» признали более старым и примитивным. Далее «Соджорнер» отснял и отправил на Землю трехмерную круговую цветную марсианскую панораму. Ученые, изучив снимки, сообщили, что, похоже, территория вокруг места приземления аппарата миллиарды лет назад подверглась катастрофическому затоплению. Немедленно встал вопрос: куда с тех пор делась вся эта вода? Определенного ответа тогда получить не удалось… Ежедневно техническая команда проводила два сеанса связи — и с лэндером, и с ровером.

Файлы включают изображения с навигационной камеры ровера, климатические данные скорость ветра, температура и давление , а также информацию о химическом составе почвы, камней и песчаных дюн. Есть также потенциальная информация о недрах Марса. Методы работы двух агентств различаются. В случае с Perseverance каждый инструмент был разработан разными командами. Таким образом, каждая команда имеет эксклюзивный доступ к данным в течение нескольких месяцев до публикации. Наконец, CNSA тем не менее общается немного с момента начала миссии.

Обратное излучение состоит из трех компонентов; простое резерфордовское обратное рассеяние , образование протонов в результате реакций с ядрами легких элементов и генерация рентгеновских лучей при рекомбинации вакансий атомных оболочек, созданных бомбардировкой альфа-частицами при взаимодействии с электронами самых внутренних орбиталей. Прибор был разработан для регистрации энергии всех трех компонентов отраженного излучения, что позволило идентифицировать присутствующие атомы и их количество на расстоянии нескольких десятков микрометров от поверхности анализируемого образца. Процесс обнаружения был довольно медленным; каждое измерение может занять до десяти часов. Чувствительность и избирательность зависят от канала; Обратное альфа-рассеяние имеет высокую чувствительность к легким элементам, таким как углерод и кислород , испускание протонов в основном чувствительно к натрию , магнию , алюминию , кремнию , сере , а рентгеновское излучение более чувствительно к более тяжелым элементам, от натрия к железу и другим. Сочетание всех трех измерений делает APXS чувствительным ко всем элементам, за исключением водорода , концентрация которого превышает доли процента. Инструмент был разработан для неудавшейся российской миссии « Марс-96 ».

Детекторы альфа-частиц и протонов были предоставлены Химическим факультетом Института Макса Планка, а детектор рентгеновского излучения был разработан Чикагским университетом. Во время каждого измерения передняя поверхность прибора должна была соприкасаться с образцом. Чтобы это было возможно, APXS был установлен на роботизированной руке, называемой механизмом развертывания альфа-протонного рентгеновского спектрометра ADM. Двойная мобильность марсохода и ADM увеличила потенциал этого инструмента - первого в своем роде, достигшего Марса. Эксперимент по истиранию колес Колесо, подвергшееся эксперименту по истиранию колеса. Эксперимент по истиранию колес WAE был разработан для измерения абразивного воздействия марсианской почвы на тонкие слои алюминия, никеля и платины и, таким образом, определения размера зерен почвы на месте посадки.

С этой целью 15 слоев - по пять из каждого металла - были установлены на одном из двух центральных колес толщиной от 200 до 1000 Ангстремов и электрически изолированы от остальной части марсохода. При правильном направлении колеса солнечный свет отражался на ближайший фотоэлектрический датчик. Собранный сигнал был проанализирован для определения желаемой информации. Чтобы абразивное воздействие было значительным в графике миссии, марсоход должен был останавливаться через частые промежутки времени и, когда другие пять колес были заторможены, заставлять колесо WAE вращаться, вызывая повышенный износ. После эксперимента WAE на Марсе были предприняты попытки воспроизвести эффекты, наблюдаемые в лаборатории. Интерпретация результатов, предложенная Ferguson et al.

Инструмент был разработан, построен и направлен отделением Льюиса «Фотоэлектрическая и космическая среда» Исследовательского центра Гленна. Эксперимент по соблюдению адгезии материалов Основная статья: Эксперимент по соблюдению адгезии материалов Эксперимент по соблюдению материалов MAE был разработан инженерами исследовательского центра Гленна для измерения ежедневного накопления пыли на задней части марсохода и снижения способности фотоэлектрических панелей к преобразованию энергии. Он состоял из двух датчиков. Первый состоял из фотоэлемента, покрытого прозрачным стеклом, которое можно было снять по команде. Ближе к полудню по местному времени были произведены измерения выхода энергии из элемента как со стеклом, так и со снятым стеклом. Из сравнения можно было сделать вывод о снижении выхода ячеек из-за пыли.

Результаты для первой ячейки сравнивались с результатами для второй фотоэлектрической ячейки, подвергшейся воздействию марсианской среды. Второй датчик использовал микровесы с кварцевым кристаллом QCM для измерения удельного веса пыли, осевшей на датчике, на единицу поверхности. Это не зависело от того, неподвижен или движется марсоход. Это говорит о том, что пыль, оседающая на марсоходе, была взвешена в атмосфере и не была поднята движением марсохода. Система контроля Соджорнер преодолевает разницу в высоте. Поскольку было установлено, что трансмиссии, относящиеся к вождению Sojourner, происходят один раз в каждый день, марсоход был оснащен компьютеризированной системой управления, чтобы управлять его движениями независимо.

Был запрограммирован ряд команд, обеспечивающих соответствующую стратегию преодоления препятствий. Одной из основных команд была «Перейти к путевой точке». Предусматривалась местная система отсчета, источником которой был спускаемый аппарат. Координатные направления фиксировались в момент приземления с учетом направления на север. Во время сеанса связи марсоход получил с Земли командную строку, содержащую координаты точки прибытия, которую он должен был достичь автономно. Алгоритм, реализованный на бортовом компьютере, в качестве первого варианта пытался достичь препятствия по прямой из начальной позиции.

Используя систему фотографических объективов и лазерных излучателей, марсоход мог определять препятствия на этом пути. Бортовой компьютер был запрограммирован на поиск сигнала лазеров на изображениях камер. В случае плоской поверхности и отсутствия препятствий положение этого сигнала не изменилось относительно опорного сигнала, сохраненного в компьютере; любое отклонение от этого положения позволяло определить тип препятствия. Фотографическое сканирование выполнялось после каждого продвижения, равного диаметру колес 13 см 5,1 дюйма , и перед каждым поворотом. Одно из изображений обнаружения препятствий, сделанных Sojourner.

При этом и посадочный аппарат, и марсоход проработали значительно дольше запланированного по плану первый был рассчитан на 30 дней работы, второй - на 7. Обе станции с небольшим разрывом во времени совершили благополучную посадку. Источником электроэнергии служат солнечные батареи. Высота расположения телекамер - 1,5 м, размах солнечных батарей - 2,3 м, диаметр колеса 6 шт. Аппарат оснащён буром, несколькими камерами, микроскопом и двумя спектрометрами, смонтированными на манипуляторе. Поворотный механизм выполнен на основе сервоприводов. Такие приводы расположены на каждом из передних и задних колёс, средняя пара таких деталей не имеет. Поворот передних и задних колёс марсохода осуществляется при помощи электромоторов, действующих независимо от моторов, обеспечивающих перемещение аппарата. Когда марсоходу необходимо повернуть, двигатели включаются и поворачиваются на нужный угол. Всё остальное время они, наоборот, блокируют поворот, чтобы аппарат не сбивался с курса из-за случайного движения колёс. Переключение режимов поворот-тормоз производится с помощью реле. Соснов Д. Марсоход включает кабину для экипажа со шлюзовой камерой, систему управления, навигационные средства. Обследование планеты осуществляется в полете над ее поверхностью. Требования к конструкции спускаемого аппарата Все перечисленные в предыдущей главе аппараты — безэкипажные и имеют много общего: герметичную конструкцию, мотор колеса, источники питания — солнечные батареи. Условия рельефа явились причиной обращения к прыгающим аппаратам и затем — и летающим. Условия на планете и переход к космическому аппарату, управляемым экипажем, а также опыт эксплуатации существующих аппаратов позволили сформировать следующие требования к конструкции спускаемых аппаратов: 1. Аппарат должен быть обитаемым, иметь герметичную кабину отсек для 2-3 членов экипажа, оборудованный средствами управления на стоянке и в движении, при проведении исследований, отборе проб, проведении съемок и передач, обеспечивать экипаж условиями для сна, отдыха, приготовления и приема пищи, санитарно-гигиеническими. Аппарат должен обладать хорошей транспортабельностью при перемещении с Земли на объект исследований иметь минимальную массу, форму, удобную для размещения в космическом корабле или креплении на ракете-носителе при отдельной доставке, виброустойчивость, устойчивость к ударным нагрузкам. Иметь хорошую проходимость в условиях сложного рельефа. Иметь достаточную устойчивость к сильным ветровым нагрузкам. Иметь длительный рабочий ресурс. При работе системы аппарата должны максимально использовать ресурсы, имеющиеся на объекте исследований. Иметь достаточно мощный двигатель и надёжное энергетическое обеспечение. Иметь высокую живучесть. Исключить необходимость проведения существенных ремонтных работ в период работы экспедиции. Иметь надежные средства связи со стационарной базой на планете и кораблем, движущимся по планетарной орбите. Иметь надежную защиту экипажа от солнечной и космической радиации и метеоритов. Основы конструкции взлетно-посадочного комплекса Условия работы взлетно-посадочного комплекса и опыт конструирования и эксплуатации его аналогов позволяют заключить о целесообразности его конструкции летающей на безопасной высоте над неровностями рельефа и основанной на эффекте Бифельда-Брауна. Серьезной проблемой для работы марсохода являются частые и продолжительные пыльные бури на поверхности Марса, которые перекрывают солнечное излучение и препятствуют работе солнечных батарей. Проблема была решена при применении изобретательского приема «Использование вредного фактора». В нашем случае вредным фактором являются пыльные бури с их массами частичек пыли перемещаемых воздушными потоками. Брауном Т. Brown в 1923 г. Бифельдом Prof. Суть эффекта состоит в том, что плоский конденсатор, заряженный высоким напряжением, имеет тенденцию к движению в сторону положительно заряженного электрода. Изменением положения и величины заряда на поверхности электрода можно изменять направление движения конденсатора. В своих экспериментах Браун использовал устройства с различной формой электродов. Им установлено, что наиболее эффективными оказались объекты с анодом в форме купола и катодом в форме диска с диаметром в три раза меньшим диаметра анода. Такая форма получила название диска Брауна рис. Впоследствии велись разработки устройств, основанных на эффекте Бифельда-Брауна, в которых применялись электроды другой формы. Так на выставке научно-технического творчества молодежи НТТМ-2006 был представлен вертикально взлетающий аппарат, построенный школьниками под руководством к. Аппарат состоит из трех сотов, выполненных из фольги, над которыми на стойках из пенопласта закреплена тонкая 0,1 мм медная проволока. При подаче на них высокого напряжения появляется сила, действующая в сторону положительно заряженной обкладки, выполненной из проволоки [13]. Удовлетворительного объяснения эффекту Бифельда-Брауна пока не разработано.

Похожие новости:

Оцените статью
Добавить комментарий