Гальваническое анодирование представляет собой процесс образования на поверхности различных металлов оксидной пленки путем анодного окисления в проводящей среде. Анодирование является универсальным методом защиты металлов от коррозии, а также технологией, позволяющей подготовить их к окраске.
Чем отличается анодированный алюминий от обычного
Очевидно, эта обработка использовалась, поскольку части морских транспортных судов требовали жесткого защитного покрытия, невосприимчивого к соленому, бурному морю. Этот процесс все еще используется сегодня, несмотря на устаревшие требования сложного цикла напряжения, которые теперь считаются ненужными. К 1927 году этот процесс получил развитие, и был запатентован новый процесс анодирования в серной кислоте. Серная кислота остается наиболее распространенным анодирующим электролитом и по сей день. Японцы использовали анодирование щавелевой кислотой с 1923 года, и оно было широко применено немцами, особенно в архитектурных решениях.
Анодирование алюминиевых профилей широко использовалось в архитектуре в 1960-х и 70-х годах. Процесс анодирования Перед конкретно анодированием алюминий должен проследовать по следующему технологическому процессу: Очистка. Анодируемую деталь необходимо сначала очистить, чтобы удалить все включения масел, полирующих составов и других примесей. Это делается путем погружения в водный раствор, который содержит мягкие кислоты или щелочи вместе с различными моющими средствами.
Предварительная обработка. Этот этап в основном для эстетических целей, он улучшает внешний вид поверхности перед этапом анодирования. Самая распространенная предварительная обработка это травление, при котором поверхность приобретает атласный или яркий оттенок, что дает яркий блестящий оттенок.
Разные концентрации кислот и плотность тока дают разные результаты конечной продукции. Повышение температуры и понижение плотности тока дает мягкую и пористую пленку.
При понижении температуры и повышении плотности тока покрытие увеличивает свою твердость. В процессе анодирования анодные ячейки, включая поры образуют шестигранную структуру, которая, как считают специалисты, выполняет принцип минимальности энергии и не зависит от применяемого типа электролита. Шестигранная форма имеет энергетическое происхождение. Толщина анодного покрытия увеличивается с увеличением длительности анодирования. Однако степень роста толщины зависит от нескольких факторов, таких как тип электролита, плотность тока, длительность обработки и т.
Первоначально происходит быстрое и постоянное увеличение фактической толщины, а затем начинается уменьшение скорости роста толщины, пока не наступит стадия, при которой толщина остается приблизительно постоянной, не смотря на продолжающуюся подачу электрического тока. Это связано с тем, что в ходе анодирования происходит как непрерывный рост толщины покрытия, так и его растворение под воздействием электролита раствора серной кислоты. Размеры анодных ячеек прямо зависят от параметров анодирования. С увеличением напряжения размеры анодной ячейки увеличиваются, а количество пор соответственно уменьшается. Соотношение между размером ячеек и напряжением приблизительно линейное, то есть чем больше напряжение, тем больше размеры ячейки.
Третьим и важнейшим, становится этап закрепления. Так как после анодирования поверхность изделия становится пористой и мягкой, возникает необходимость закрыть поры. Эта процедура проводится с помощью погружения изделия в нагретую пресную воду, либо с помощью обработки паром, либо специализированным раствором.
Но если же изделие после анодировки было покрыто краской, то закреплять не нужно, так как краска закроет образовавшиеся поры. Что дает анодирование Чем-то анодирование похоже на гальванические процессы, возникающие во время хромирования или оцинковки стали. Но есть существенная разница: исключено использование посторонних веществ, пусть даже похожих по свойствам и химическому составу. Оксидирование ведётся на основе самого металла, подвергаемого электрохимическому воздействию. При анодировании процесс поддаётся регуляции, оксидному слою придаются заранее заданные свойства, а результатом служит прочность оксидируемого участка. Лучше всего защитный слой в результате анодирования образуется на таких металлах, как алюминий, титан, сталь, тантал. Главное же требование к технологии, чтобы металл имел только один оксид с высокими адгезивными свойствами.
Но для обеспечения адгезии нужна пористая структура, которая обеспечит соприкосновение рабочей смеси с чистым металлом поверхности, что значительно ускоряет процесс оксидирования. Получается, что при электрохимическом процессе могут образовываться два типа оксидных защитных покрытий, отличающиеся как назначением, так и строением. Первый тип — пористая поверхность оксидной плёнки. Получается при воздействии на металл кислых электролитов. Структурированная порами поверхность служит отличной основой для того, чтобы на неё легли лакокрасочные материалы, которые своей структурой, образующейся в процессе полимеризации основы, закрепляется во фракталах пор. То есть анодированная поверхность способствует повышенной адгезии. Относится ко второму типу. Это самостоятельное защитное покрытие, которое защищает металл от контактов с внешней агрессивной средой. Впрочем, созданием защитных слоёв процесс анодирования не ограничивается. Применяя разные материалы и меняя уровень напряжения, можно получить разные оттенки анодированной плёнки.
Чем активно пользуются дизайнеры при оформлении интерьеров, когда облицовочным материалом служит алюминий. Показания к анодированию алюминия Хотя большинство марок Al имеют хороший внешний вид и коррозионную стойкость во многих случаях, иногда требуется дальнейшее повышение этих свойств. Это может быть достигнуто с помощью вышеназванного процесса. Покрытие из оксида алюминия может не иметь требуемой степени защиты на некоторых сплавах. Кроме того, они могут иметь слой оксида алюминия после процесса анодирования, который оставляет нежелательный цвет, такой как непривлекательный желтый, коричневый или темно-серый. Несмотря на то, что существуют некоторые вариации от каждого сплава к сплаву, вот краткий анализ анодирования по типу серии: 1XXX — эта серия покрывает чистый Al. Он в этой серии может быть анодирован. Образующийся слой оксида алюминия, который образуется, является прозрачным и несколько блестящим. Поскольку нижележащий чистый Al является относительно мягким, обработанные предметы могут быть легко повреждены и не иметь механических свойств по сравнению с другими сериями Al-сплавов. Медь в этих сплавах создает очень прочный и твердый Al -сплав.
Хотя медь полезна для улучшения механических свойств Al, она, к сожалению, делает эти сплавы плохими кандидатами на анодирование, матовый цвет не дает привлекательности таким изделиям. В то время как анодированный слой обеспечивает достойную защиту Al подложки из марганца, он создает нежелательный коричневый цвет. Анодированный материал 4XXX хорошо защищен слоем оксида алюминия, созданным в процессе анодирования. Тем не менее, важно отметить, что серия 4XXX имеет темно-серый, почти черный цвет, которому не хватает эстетической привлекательности. При анодировании сплавы 5XXX имеют в результате оксидный слой, который является прочным. Они превосходные кандидаты на анодирование, тем не менее, некоторые легирующие элементы, такие как марганец и кремний, должны находиться в пределах установленного диапазона для нормального протекания процесса анодирования. Эти сплавы являются отличными кандидатами для процесса, полученный оксидный слой прозрачен и обеспечивает превосходную защиту. Поскольку сплавы 6XXX обладают отличными механическими свойствами и легко анодируются — алюминий анодированный данной серии часто применяется для конструкционных проектов. Очень хорошо подходит для процесса анодирования. Последующий оксидный слой прозрачен и обеспечивает отличную защиту.
Если уровень цинка становится чрезмерным, оксидный слой, может стать коричневым. Это можно сделать путем помещения обработанной поверхности в воду либо в специальный раствор. Перед этой стадией возможна эффективная покраска детали, поскольку наличие пор позволят обеспечить хорошее впитывания красителя. Возможности применения анодированного алюминия Анодированные детали используются в самых разнообразных сферах. Этим способом обрабатываются предметы интерьера, посуда, поручни и другие изделия, которые используются каждый день. Также этот процесс используют для навесных алюминиевых фасадов — они приобретают повышенную стойкость к внешним атмосферным воздействиям. Анодирование применяют для защиты от коррозии деталей различной техники. Это комплектующие автомобилей, самолетов, судов, всевозможных летательных аппаратов. Обработка увеличивает прочность и обеспечивает повышенную стойкость к нагрузкам. Для чего анодируют алюминий и как его применяют Главная цель анодирования деталей, изготовленных из алюминия — повышение срока эксплуатации в условиях воздействия различных агрессивных сред.
Учитывая, что чистый алюминий обладает высоким сродством к кислороду, его коррозионная стойкость выше, чем у многих других лёгких металлов конструкционного назначения. Естественное окисление алюминия происходит при первом контакте с воздухом. Процесс же анодной обработки ещё больше увеличивает стремление обеих химических элементов создавать окислы, вступая в реакцию между собой. Способность анодной плёнки отлично впитывать красители различного химического состава делают обработанный таким способом алюминий отличным декоративным материалом. Он широко применяется для внешней отделки интерьеров зданий и сооружений. Незаменимы алюминиевые конструкции при создании: рекламных конструкций для культурно-спортивных мероприятий, выставок и шоу. Прекрасная светоотражающая способность анодированного алюминия сделала его незаменимым материалом при изготовлении дорожных знаков. Благодаря интерференции информация, нанесённая на знак при анодировании прекрасно видна автомобилистам в ночное время суток. Рамы любительских велосипедов также изготавливаются из анодированных сплавов алюминия. На специальную одежду, которой пользуются велосипедисты в тёмное время суток, наносится тончайшая плёнка оксида алюминия.
Благодаря этому силуэт легко разглядеть в темноте на почтительном расстоянии. С той же целью анодированный металл применяется при изготовлении отражающего слоя в прожекторных установках. Отличные свойства анодированного алюминия позволяют использовать его для изготовления самого широкого круга номенклатуры деталей и узлов, применяемых в самых разных областях. Можно смело сказать: если принято решение изготовить что-то из обработанного таким способом металла, прочность и лёгкость конструкции не будет вызывать никаких сомнений! Устройства, оборудование, реактивы В промышленных масштабах анодирование делается в растворах серной кислоты разной концентрации. Они обеспечивают как большую скорость процесса, так и заданную глубину оксидной плёнки. Применение автоматики позволило полностью автоматизировать этот достаточно вредный для здоровья процесс. Оборудование для анодирования бывает трех типов: Базовое, или основное. Тут всё просто: ванна с электролитом из инертного, не вступающего в реакцию, материала, притом обладающего свойствами теплоизолятора для предотвращения перегрева электролита. И катод, материал которого находится в прямой зависимости от того материала, который нужно анодировать.
Обслуживающее оборудование. К нему относятся агрегаты, обеспечивающие работоспособность установки для оксидирования. Это узлы подачи напряжения, предохранительные и приводные механизмы. Это оборудование для работ по обработке и подготовке изделий к анодированию. В него входят и средства доставки деталей к ваннам. И средства упаковки и перемещения к местам, где готовые изделия складируются. Самыми трудными, экологически опасными операциями при обработке металлов анодированием являются процессы загрузки и выгрузки деталей в ванны. Поэтому на качество работы приводных механизмов для этого всегда обращается особое внимание. Исторически сложилось так, что все производственные процессы связаны с потреблением переменного тока — который совершенно не годится для процессов анодирования. Для того, чтобы ток был постоянным то есть текущий в проводниках только в одном направлении, применяют выпрямители с достаточным запасом мощности.
Оптимальная мощность для промышленных выпрямителей, связанных с процессами оксидирования — 2,5 киловатта. А для обеспечения получения анодированной плёнки разных цветов и оттенков для таких выпрямителей монтируют бесступенчатую систему подачи мощности. Зачем анодировать Как уже говорилось выше, при взаимодействии алюминия с кислородом, на его поверхности образуется пленка.
При этом алюминиевое изделие далее для определенности — профиль всегда является анодом, то есть его подключают к положительному полюсу источника тока, а другой подходящий металл или сплав — катодом и его подключают к отрицательному полюсу рисунок 1. Анодные покрытия различают по типам электролитов, которые применяют при их получении. Покрытия бывают пористыми, например, в фосфорном и сернокислом электролитах, а также так называемыми «барьерными» — совсем без пор. Барьерные анодные покрытия обладают высоким электрическим сопротивлением и их применяют, например, при изготовлении электрических конденсаторов. Сернокислое анодирование Обычным, наиболее популярным и широко применяемым для алюминиевых профилей в строительных конструкциях является сернокислое анодирование алюминия. Этот вид анодирования отличается высокой технологичностью и позволяет получать покрытия в широком интервале толщин. Сернокислое анодное покрытие применяют как без дополнительного окрашивания — его называют бесцветным, так и с последующим окрашиванием по одному из нескольких известных способов — его называют цветным анодированием.
Заключительной операцией обычно всегда является операция наполнения или уплотнения пор. Анодирование или окраска алюминия Сернокислое анодное покрытие образуется в результате «реакции» алюминия с ионами раствора серной кислоты. Оно занимает больший объем, чем исходный алюминий и поэтому в результате анодирования происходит увеличение толщины изделия. При сернокислом анодировании это увеличение составляет приблизительно одну треть от общей толщины покрытия. В этом заключается коренное отличие анодного покрытия от, например, порошкового рисунок 2 : анодное покрытие формируется из поверхностного слоя алюминия, порошковое покрытие — на поверхности алюминия. Рисунок 2 — Изменение толщины изделия при анодировании и порошковом окрашивании Способы анодирования алюминия Конкретный способ анодирования зависит от вида изделия. Например, небольшие изделия или детали, могут анодировать «насыпью» в барабанах или корзинах.
Что такое анодирование металлов и зачем его использовать?
Узнайте о принципе и преимуществах анодирования алюминиевого корпуса. Анодированный алюминий: черный, матовый, листовой Сферы применения материала, методики и технологии анодирования в промышленности и в домашних условиях. это электрохимический процесс, который превращает металлическую поверхность в декоративную., прочный, сопротивление ржавчине, анодно-оксидная отделка. В данной статье мы расскажем вам о том, что такое анодирование, объясним основные понятия и способы анодирования, расскажем о плюсах и минусах метода, а также о том, когда используют анодирование | Статьи ГК Интерстилс в Ташкенте. В сегодняшней статье мы рассмотрим, что такое анодированный алюминиевый профиль, в чём его преимущества и где он используется. Процесс анодирования Процесс, в результате которого, происходит образование на поверхности металла высокопористых оксидных слоев алюминия, этот процесс является электрохимическим.
Анодирование (техническая информация)
У меня, повторюсь, блок питания выдает два напряжения- 25 и 50 вольт. И еще по блоку питания: он должен быть достаточно мощным. Для примера: вы анодируете ресивер 36мм ружья длиной 70см. При напряжении 50 вольт и плотности тока 2,2 ампера на дм. Значит, вам нужна сила тока в 18 ампер. То есть, мощность вашей установки- около киловатта. Это совсем не мало.
Там все сказано. Два знака и три буквы- и в них вся электротехника!!! Режимы обработки, допуски. Итак, приступим. Существует много електролитов и способов обработки. Рассуждать о них можно долго, каждый чем то интересен… Но меньше слов, больше дела!
Мы с Вами будем заниматься «Сернокислотным твердым толстослойным анодированием». Просто потому что он вполне доступен, легко повторяем и дает очень качественные результаты. Хорош он и тем что электролит для него не имеет срока годности. Однажды сделанный, он не потеряет своих качеств и через годы. Электролитом нам будет служить раствор серной кислоты в дистиллированной воде. Можно, впрочем, применить и обычную, из крана воду, но если есть вариант с дистиллированной- предпочтите его.
Из моих скромных экспериментов могу сделать вывод о том, что вода из крана немного портит равномерность процесса. А именно- распределение плотности тока на поверхности детали. Хотя, повторюсь, лишь немного. Самый простой вариант добыть серную кислоту H2SO4 , как, впрочем, и дистиллированную воду- это прогуляться в местный автомагазин запчастей. Ну или на аналогичный рынок. И кислота, и дистиллированая вода — применяются для обслуживания автомобильных аккумуляторов.
Ваша задача проста: смешать этот «Электролит» с дистиллированной или не очень водой в соотношении 1:1. Вы уж сами решите, сколько вам нужно электролита для ваших опытов. Если вы купите пятилитровую стандартную канистру с электролитом, и такую же с водой- то у вас получится 10 литров полноценного раствора для анодирования. Для мелких деталей- выше крыши, для крупных- я бы количество удвоил. В моем «арсенале» — 30 литров. Их мне хватает даже для крупных деталей, вроде 800мм ресиверных труб из дюралюминия, для длинных, морских ружей.
Имейте в виду: при смешивании электролита , а тем более, кислоты с водой, выделяется много тепла. Если наливать воду в кислоту, вода моментально вскипает, и начинает разбрызгиваться в сторону вашего лица! Именно поэтому необходимо лить тонкую струйку кислоты автоэлектролита в емкость с водой при постоянном помешивании! А вообще , не помешает и очки защитные одеть! Это общие правила обращения с кислотой. Зачем Вам ружье, если вы ослепнете?
Не забывайте об этом. Ну и вот такая таблица Вам, полагаю, пригодится: Кстати, если серную кислоту сделать самому непросто и глупо! Снег на улице, дождь с неба, лед в морозильнике…- это все она, родимая! Ну а если у Вас, по совместительству, и самогонный аппарат имеется, то вообще проблем быть не может. Хотя, и купить её сегодня- очень даже несложно. Я пробовал- большой разницы не заметил.
Если Вы заметите- сообщите. Немного терминов… Просто немного терминов, без которых трудно говорить о токовых режимах обработки: 1- «электролит» — смесь 1:1 «автоэлектролита» и воды. К нему мы цепляем провод «-» от блока питания. Весьма рекомендую использовать именно свинец. Без разницы, цифрового или стрелочного. Амперметр подключается в любом месте, в разрыв цепи тока.
Заметьте, при разных площадях катода и анода, катодная плотность тока будет отличаться от анодной плотности тока. Несмотря на то что абсолютная величина тока в цепи- одна и та же. Запомните этот нюанс. Режимы обработки. Запомните главное: никакого шаманства в технологии анодирования нет и быть не может! Если температурный и токовый режим находится в поле допуска, и контакт «деталь-зажим» хорош,- у Вас не может получиться плохого результата!
По сути, вся возня по отработке качественного анодирования- лишь попытки грамотного соблюдения предписанных режимов, не более того. Ниже -10 растущий анодный слой вполне хорош, но есть одно НО. Для поддержания нужной силы тока может не хватить напряжения, выдаваемого вашим блоком питания с понижением температуры електрическое сопротивление электролита сильно возрастает. А советовать Вам делать блок питания с высоким 80-100 вольт выходным напряжением, я не буду- такое напряжение уже опасно для жизни. Потому вот я и не советую работать с электролитом ниже -10 градусов. В этих пределах нарастает плотный, окрашенный, красивый анодный слой.
Я бы весьма рекомендовал плотность тока 2.. Просто это- мой любимый режим. Мне он кажется наиболее надежным. По многим соображениям, о которых тут не буду распространяться. Ведь, напомню, пленка не только нарастает изнутри, но и растворяется снаружи. И, если скорость роста мала- большой толщины слоя вы не дождетесь, процесс анодирования превратится в процесс банального травления металла.
В том смысле, что чем больше размер площадь катода пластина из свинца - тем лучше. Лучше потому что это обеспечит весьма «мягкий», равномерный режим распределения плотностей тока по поверхности обрабатываемых деталей, особенно больших. Эта самая «равномерность» весьма важна для уменьшения проблем с возможными «прогарами»и растравами деталей. Чисто практически, площадь катода рекомендуется хотя бы в 2 раза больше, чем площадь анода-детали. При этом, если лист свинца положен на дно ванны, его нижняя поверхность- не считается, поскольку почти не работает. Таким образом, рекомендую катодную плотность тока вдвое меньшую, чем анодную.
Важна лишь плотность тока. Но чисто практически, исходя из того что цепь наша имеет ненулевое электрическое сопротивление, нам потребуется довольно приличный вольтаж нашего блока питания. Причем, очень желательно- чтобы блок питания имел несколько выходных напряжений, ну хотя бы два. Физически это- лишь отвод от середины вторичной обмотки трансформатора. У меня хорошо зарекомендовал себя вариант с 25 и 50 вольтами на выходе. Кстати, вы в курсе, что напряжение без нагрузки, и напряжение под нагрузкой у блока питания- это две большие разницы?
Под нагрузкой напряжение всегда падает «проседает». И большая разница этих напряжений говорит о слабости трансформатора. Как правило, при этом, он трансформатор еще и сильно греется. А значит- его надо менять на более мощный. А вот если напряжение вашего трансформатора при отдаче ампер так 10-15 «просело» лишь на пару вольт- это нормально. И греться сильно он не будет… Почему я хочу купить кондиционер?
Соблюдение токового режима при анодировании- дело не особо хитрое. Крути себе реостат, да поглядывай на амперметр… А вот с температурным режимом- все намного сложнее. Пока что я просто перед анодированием охлаждаю 4-5 канистр с электролитом в бытовом морозильнике, и провожу анодирование при постоянном росте температуры. В смысле, залил я раствор с -10 градусной температурой, включил ток… и поползла температура вверх! А что же вы хотите- там весьма солидное тепло выделяется по ходу дела…. А потом- электролит сливаю в канистры обратно, и по второму кругу в морозильник!
Нудно, спросите? Не то слово! Вот потому то моей голубой мечтой является изготовление некой холодильной установки, способной охлаждать електролит прямо в ванне, по ходу процесса! Как это и принято в заводской практике! И, наверное, самым простым путем тут будет переделка оконного небольшого! Сделать в ванне двойную стенку, залить туда ТОСОЛ, и в него поместить трубку охладителя… Ну или еще проще- гонять холодный воздух по тому «двойному дну».
Думаю, что таки сооружу подобную «установку», тем более, что оконный кондиционер и невелик, и не особо дорог… Типичные ошибки процесса. В рамках этого сайта я описываю «холодную» технологию анодирования, в результате которой, покрытие получается очень твердое, достаточно толстое, самоокрашивающееся, с высокой коррозионной защитой. И выглядит примерно так: Поэтому, в случае отклонения процесса в какую либо сторону от именно этого варианта, я буду называть результат браком. Хотя даже и такое бракованное покрытие- вполне честный вариант анодирования, дающий тоже неплохую защиту и приличный внешний вид. Итак, речь пойдет о типичных ошибках и «как с ними бороться». На самом деле их не так уж и много.
Попробую перечислить их по порядку: 1 — Температура процесса слишком низкая. Вы не можете добиться правильной плотности тока на детали анодной плотности тока. Несмотря на то, что реостат выкручен по максимуму и напряжение, идущее с блока питания- максимально. В результате малой плотности тока покрытие растет очень медленно, и оно- бесцветно. Проблема в том, что при очень низкой температуре элекрическое сопротивление электролита сильно возрастает, вследствии чего вашего напряжения 25-50 вольт недостаточно для получения «правильной» плотности тока. У вас есть 2 пути решения: или поднять напряжение вольт так до 60-100 опасно!!!
Я бы советовал второй вариант. Плотность тока правильная, а вот твердость анодного слоя слабовата, да и окраски у него по сути нет. Так себе, легкий мутновато-молочный оттенок… Дело в том, что температура- важнейший показатель процесса. И при превышении порога допуска, процесс изменяется качественно. Из «холодного» он становится «теплым». Со всеми вытекающими: бесцветная и не слишком толстая и твердая пленка.
Даже уже полученный «холодный слой», при этом разрыхляется и постепенно растворяется. Окраска исчезла не полностью, но пленка потеряла всякую прочность. Царапины от ногтя: 3 — Анодная плотность тока мала. Анодный слой растет медленно, он бесцветен. Хотя и прочен вполне. Дело в том, что окрашенность у анодного слоя появляется скачкообразно, примерно с анодной плотности тока в 1,5..
При меньшей- слой получается бесцветным, а вернее- слегка мутно-белым. И хоть прочность такого слоя не так уж и плоха, мы ведь хотим еще и эстетики? В качестве небольшого запаса надежности. Вдруг вы ошиблись при подсчете площади поверхности детали? Хочется чтобы процесс шел быстро- потому вы подняли ток выше нормы. Но вас преследуют частые «пробои» и растравы то детали, то зажима подвески.
Это явление называется «прогар». Вот почему это происходит: Прогар — отчего он происходит? В принципе, при очень интенсивном перемешивании электролита, и как следствии — хорошем отводе тепла от детали, допустимы большие плотности тока. Это сокращает время процесса, и позволяет нарастить особо толстый анодный слой. В промышленности возможен даже вариант с 2мм слоем анода. Так обрабатывают рабочую поверхность цилиндров судовых двигателей.
Для этого там имеют место во первых, супер качественное охлаждение детали в процессе анодирования, во вторых- напряжение анод-катод в сотни вольт. Но ни то, ни другое мы позволить себе не сможем, к сожалению. И в итоге, из за естественной концентрации тока на углах и концах детали, деталь наша будет иметь зоны местного перегрева. А такие зоны нагревают окружающий электролит. А нагретый электролит имеет значительно более низкое электрическое сопротивление. Значит весь электрический ток устремляется именно в перегретую зону, перегревая ее этим еще больше!
Кроме того, теплый электролит интенсивно растворяет анодный слой!
Этот процесс анодирования не приводит к остаточным опасным отходам. Наконец, все кислотные выбросы в атмосферу улавливаются и тщательно очищаются системами очистки, которые разрешены и регулярно проверяются Агентством по охране окружающей среды Огайо. Газы оксидов азота NOx , образующиеся в ваннах для химического осветления, химически преобразуются в газообразный азот и водяной пар.
Кислые газы нейтрализуются, а запахи устраняются с помощью многоступенчатых башенных скрубберов с насадкой и абсорбцией щелочи с высоким pH. Вторичная переработка Помимо усилий по переработке алюминия, штамповочного масла и металлического никеля, компания также имеет сложные процессы и программы по переработке фосфорной кислоты и титанового лома. Его система рециркуляции фосфорной кислоты использует оборудование ионного обмена и вакуумного разделения для очистки и повторного использования воды с фосфорной кислотой, выделенной на линиях анодирования. Более 85 процентов всей фосфорной кислоты перерабатывается, тем самым предотвращая крупномасштабное загрязнение фосфатами последующих систем водоснабжения.
Титан используется в запатентованной системе конвейерных лент Anomatic и в ее стойках для анодирования. Поскольку ремни и стойки со временем изнашиваются, титановый лом улавливается и продается обратно на титановые заводы для повторного использования. Вопросы безопасности Процесс анодирования Anomatic не содержит никаких регулируемых тяжелых металлов хром VI, свинец, ртуть, кадмий, барий, мышьяк и селен , как указано в Z66. Единственными тяжелыми металлами, которые использует компания, являются никель II используется в процессе герметизации и хром III красители.
Гидроксид никеля в анодном покрытии находится в микроскопической концентрации и либо химически связан с анодной порой, либо осаждается внутри пор. Он стабилен как химически, так и физически, не растворяется в воде, поэтому не может быть растворен. Трехвалентный хром — это встречающаяся в природе форма хрома, которая является важным элементом нашего рациона и присутствует в витаминных добавках. Красители хрома III обычно считаются безопасными и полностью герметизированы внутри анодированного алюминиевого покрытия, предотвращая контакт или разрушение.
Уильям Раш — президент Anomatic Corp. Что такое анодирование? При анодировании используется основной металл — алюминиевый сплав — для создания тонкого, чрезвычайно прочного и устойчивого к коррозии покрытия. Анодированная поверхность очень твердая и, таким образом, сохраняет и продлевает срок службы алюминиевого изделия.
В отличие от анодирования, покрытия — например, краска — могут значительно снизить возможность вторичной переработки алюминия и могут увеличить затраты. В производстве красок, пластмасс и гальванических покрытий используются проблемные материалы, которые могут поставить под угрозу экологические цели. С другой стороны, анодирование является «нейтральным для вторичного использования» с минимальным использованием таких материалов, как летучие органические соединения ЛОС и тяжелые металлы. Коррозионная стойкость анодированного алюминия хорошо зарекомендовала себя для промышленного применения.
В транспортных компонентах, строительных элементах, контейнерах для хранения и технологическом оборудовании используется анодирование, чтобы продлить срок службы и расширить возможности алюминиевых конструкций. Анодированный алюминий безопасен для кухонной посуды и обеспечивает прочные рабочие поверхности для применений, требующих превосходной стойкости к истиранию. Анодирование также снижает трение и увеличивает смазывающую способность, что является преимуществом для установленных компонентов и для движущихся частей. Повышенная износостойкость означает более длительный срок службы.
Анодирование с твердым покрытием дополнительно улучшает износостойкость и общую стойкость покрытия к физическим нагрузкам. Алюминий экономит энергию и материалы Металлический алюминий является хорошим проводником электричества; анодное покрытие — изолятор. Комбинации двух свойств могут быть включены в системы, которые экономят энергию и материалы. Металл может служить как структурной, так и проводящей цели, в то время как анодное покрытие изолирует цепь и сохраняет структуру.
Это упрощает физическую конструкцию электрических цепей и экономит место и проводку. Все вышеупомянутые свойства анодирования вносят существенный вклад в жизненный цикл продукта и снижают потребность в энергии. Экологические аспекты процесса анодирования Анодирование — это процесс на водной основе без использования летучих органических соединений. В нем нет растворителей-носителей, смол-носителей, а любая пигментация, используемая при анодировании, создается чрезвычайно небольшими количествами металлов или красителя, надежно закрепленных на твердой поверхности.
При анодировании не используются галогенированные углеводороды или аналогичные токсичные органические вещества. Подобная нейтрализация восстанавливает большинство анодирующих химикатов до обычных растворенных минералов. Большая часть анодирования выполняется без образования опасных отходов, и во многих случаях отходы анодирования с высоким содержанием алюминия являются экологически ценными для удаления загрязняющих веществ и осаждения твердых частиц в процессах очистки бытовых сточных вод. Анодирование — это не металлическое покрытие.
Иногда их путают, но на самом деле это совершенно разные процессы. Анодное покрытие создается из основного металла и, таким образом, имеет по существу те же компоненты, что и алюминий. Поверхность состоит из металлов в виде ультратонкого нетоксичного оксида алюминия. Добавленные материалы составляют незначительное количество массы продукта; Паспорта безопасности материалов для анодированного алюминия идентичны паспортам для металла.
Согласно правилам EPA, обычное анодирование не приводит к образованию опасных отходов; в нем не используются летучие органические соединения или токсичные органические вещества, внесенные в список EPA. Вовлечение тяжелых металлов значительно ниже, чем при использовании пигментов для наружных красок или гальванических покрытий. Возможность повторного использования не изменяется анодированием, и не требуется промежуточная обработка для повторного ввода анодированного металла в цепь рециркуляции, в отличие от более толстых органических или гальванических металлических покрытий. Анодированный алюминий — экологически чистый выбор для различных областей применения.
Анодирование — это процесс чистовой обработки алюминиевых сплавов, при котором используется электролитическое окисление поверхности алюминия для получения защитного оксидного покрытия. Анодное покрытие состоит из гидратированного оксида алюминия и считается устойчивым к коррозии и истиранию. Покрытия имеют толщину от 0,1 до 1,0 мил и практически прозрачны, хотя могут быть окрашены. В отличие от большинства других видов отделки, анодирование сохраняет естественный блеск, текстуру и красоту самого металла.
Анодированное покрытие твердое, прочное, никогда не отслаивается и в нормальных условиях никогда не изнашивается. Цель анодирования — сформировать слой оксида алюминия, который защитит алюминий под ним. Слой оксида алюминия имеет гораздо более высокую стойкость к коррозии и истиранию, чем алюминий. Существует несколько типов анодирования, при которых образуется пористый оксидный слой, который можно окрашивать органическими красителями или металлическими пигментами, что придает алюминию декоративный и защитный вид.
Когда дело доходит до покрытий, анодирование — это безопасная и экологически чистая технология, столь же чистый процесс, какой доступен сегодня. Анодирование — это ускорение естественного процесса окисления. Он не производит вредных или опасных побочных продуктов и не наносит вреда здоровью человека или окружающей среде. Это определяется конечным использованием детали и необходимыми физическими характеристиками и характеристиками, такими как цвет, твердость, использование в помещении или на открытом воздухе, устойчивость к высоким уровням УФ-излучения и выцветанию, а также устойчивость к коррозии.
Большинство алюминиевых сплавов образуют оксид алюминия в резервуаре для анодирования, поэтому ответ на этот вопрос зависит от процесса анодирования и желаемого результата. Медь, содержащая серию 2000, как правило, наиболее трудно анодировать, а серии 5000 или 6000 — самые легкие. Все остальное будет уничтожено в процессе. Отливки сложно анодировать, потому что они часто бывают пористыми.
Для анодирования отливок предпочтительным является сплав 518. C443 также хорош, но он не устойчив к коррозии. Эти сплавы также предпочтительны для окраски, поскольку предварительная обработка краской повредит плохое литье, подобно химическим веществам для анодирования. Детали можно сваривать перед анодированием.
Настоятельно рекомендуется использовать сварной пруток 5356, хотя некоторое обесцвечивание все равно будет. Шлифование сварного шва перед анодированием приведет к снижению механической целостности и не решит проблему изменения внешнего вида. Сваривать после анодирования — не лучшая идея, потому что для большинства сварочных процессов требуется электрическая проводимость, а анодное покрытие необходимо отшлифовать в том месте, где будет наложен сварной шов.
Помимо этого, анодирование алюминия придает изделиям дополнительные эстетические свойства и респектабельный внешний вид. Прекрасный внешний вид этого материала делает возможным его использование для производства декоративных изделий, а высочайшие показатели функциональности делают его незаменимым при изготовлении высокопрочной фурнитуры, а также антипригарной посуды и отделки в стиле хай-тек дорогих автомобилей. Фирма SeVen осуществляет продажу фурнитуры для стекла премиум класса vk.
Этот вид обработки придает цвет алюминиевой детали, потому что процесс анодирования создает стабильные и устойчивые поры на поверхности алюминия, а краситель просто заполняет эти поры. Металл погружается в ванну, которая содержит неорганическую соль металла. Ток подается и откладывает соль металла в основании пор. Коротко о главном Анодирование представляет собой процесс создания оксидной пленки на поверхности металлов и сплавов путём их анодной поляризации в проводящей среде. Иными словами — на поверхности металлического субстрата выращиваются поры. Анодная пленка является продолжением структуры самого металла, так как начинает формироваться внутри его кристаллической решётки. Поэтому, анодирование, в отличие от любого другого покрытия, не может отслоиться, отлететь, оторваться. Анодирование выполняет не только защитную функцию, но и является отличным декоративным покрытием с возможностью большого выбора фактур.
Технология анодирования металла, способы покрытия
Расцветка изделия может различаться. Тут все зависит от применяемой методики анодирования в домашних условиях. С применением анилиновых красок детали металла можно выкрасить даже в черные оттенки. Преимущества анодированных поверхностей Выдающиеся антикоррозийные свойства. Оксидная плёнка надёжно защищает от обычной влаги и от большинства агрессивных сред. Прочность оксидной плёнки. Оксиды по своим прочностным физическим характеристикам в большинстве случаев прочнее металла, на котором они образованы. Непроводимость тока. Парадоксальным образом образованная на металле и из металла оксидная плёнка практически является диэлектриком — что находит своё применение в создании электролитических оксидных конденсаторов. Экологический аспект: при производстве посуды нанесённая на неё оксидная плёнка не даёт ионам металла переходить в пищу, не даёт ей подгорать, стенки и дно посуды приобретают устойчивость к большим перепадам температуры. Широкое использование анодированных поверхностей металла в дизайне.
Применение в растворах электролита некоторых солей позволяет получать глубокие и насыщенные оттенки. Особенности анодированных Данная процедура широко применяется в промышленных масштабах, кроме того, осуществить самостоятельное оксидирование стали, алюминия или меди можно и в домашних условиях. Последний вариант будет отличаться от профессионального процесса, однако он удобен для обработки небольших деталей. Изделия, которые на своей поверхности имеют образовавшуюся после анодирования пленку, обладают следующими характеристиками: повышенная устойчивость к коррозии; увеличивается прочность таких материалов как сталь и алюминий; изделие становится нетоксичным; отсутствие возможности проведения тока; подготовленная поверхность подходит под дальнейшую обработку с помощью гальванического покрытия. Процедура анодирования металла применяется для производства посуды — обработанные таким методом изделия не пригорают на плите и безопасны для приготовления пищи. Материалы с оксидной пленкой используют при изготовлении некоторых инструментов, строительных материалов, светотехнических приборов, предметов домашнего обихода. Кроме того, обработке подвергаются изделия из серебра. Широко распространено цветное анодирование, которое позволяет придать деталям разнообразный декор. Окрашенные таким способом изделия имеют более ровный и глубокий цвет. Обработанные анодированием поверхности инструментов и приспособлений не растрескиваются при эксплуатации, сохраняя первозданный вид на долгий срок.
Кроме того, плоскость становится более крепкой, что позволяет ей выдерживать повышенные нагрузки и механическое воздействие. Анодирование разных металлов Нержавеющая сталь Самый трудный для анодирования объект из-за своей химической инертности. Чтобы получить на ней оксидированную поверхность, нержавейку предварительно подвергают процедуре никелирования. Хотя сейчас ведется активная разработка специальных диффузионных паст, на которых оксид будет образовываться без никелевой «подушки». Медь Оксидированию поддаётся плохо, а там, где это требуется, применяют дорогие соли в качестве присадок к электролитам или используют не экологичные фосфатные или оксалатные растворы. На практике этот процесс применяют крайне редко. А также дополнительно придаёт изделиям декоративность, кардинально меняя цвет. Титан очень нетребователен к составу кислот для электролитических реакций — подойдёт практически любая. Серебро Для создания оксидной плёнки на серебре, применяют серную печень — сплав порошкообразной серы с поташом при сильном нагревании без присутствия воды. Впрочем, такой метод нанесения оксидных плёнок применяют и для бронзы, где получаемая плёнка называется искусственной патиной.
На серебре обработка таким реактивом способна дать синий и фиолетовый цвета. Но без изменения свойств серебра как металла. Анодирование алюминия Оксидирование этого металл даёт самые широкие возможности с широчайшей сферой применения. Есть много способов образования на поверхности этого металла оксидов, более половины из них связаны с получением цветных ярко окрашенных, поверхностей. Чем отличается анодированный алюминий от обычного — Металлы, оборудование, инструкции На сегодняшний день алюминий остается очень важным и востребованным материалом для изготовления всевозможных деталей, подделок и прочее. Можно перечислить массу его преимуществ, например, небольшой вес, достаточная прочность, не подвергается коррозии, его легко обрабатывать для дальнейшего использования. Но при всем этом, многих не привлекает его внешний вид. Если вы хоть раз пробовали красить алюминий, то ваши попытки могли заканчиваться безуспешно, ведь краска держится на алюминии очень плохо. Если его использовать без краски, то очень скоро он покроется темными пятнами. Чтобы все это не допустить, была разработана технология анодирования алюминия.
Предлагаем вам рассмотреть вопрос о том, что такое анодированный алюминий, какие существуют его разновидности, в каких сферах используется анодированный алюминий и можно ли анодировать этот материал своими руками. Анодирование — что это Под анодированием подразумевается анодное оксидирование. То есть это процесс, в результате которого на поверхности алюминия образуется или появляется оксидное покрытие. Вследствие этого процесса происходит окисление металла. В результате алюминий становится неуязвимым для негативного воздействия извне. То есть окисленное место становится намного прочнее. Применение анодированного алюминия Существует множество сфер использования для достижения абсолютно разных целей. Сейчас рассмотрим их: Основа для окраски. Защищенное покрытие способно удерживать слой краски продолжительное время. Для этого осуществляется соединение органического покрытия с хромовым анодным.
Даже если слой краски повредится, его легко восстановить, а самому изделию не грозит коррозия и прочее. Данная технология эффективна при нанесении органических красок. Защита от коррозии. Эта защита способна справляться с воздействием даже соленой воды. В дизайне. Использование специальных красителей можно придавать алюминию абсолютно разные цвета. Благодаря этому изделиям можно придавать красивый внешний вид. Чистые руки. Нередко алюминий используется для создания перил, рукояток, поручней и прочее. Если он будет без анодного покрытия, то на руках могут оставаться следы.
Чтобы это исключить все эти детали анодируют, что позволяет держать руки в чистоте. Для достижения таких результатов поры анодного покрытия наполняются. Отражение в проекторах. Технология сернокислого анодирования используется для защиты отражателей прожекторов. Это отражение будет сохраняться годами. А если необходимо почистить его поверхность, то для этого нет никаких проблем. В тепловых отражателях. Используется анодированный алюминий в нагревательных рефлекторах. Поверхность легка к любому очищения. Может использовать в помещениях с повышенной влажностью.
Толщина покрытия составляет 1 микрон. Эффективная борьба с износом и трением. За счет более твердого покрытия значительно снижается износ. В этом случае анодное покрытие может достигать до 60 микрон. Электрический изолятор. В некоторых типах трансформаторов сегодня принято использовать алюминиевую ленту, в обязательном порядке анодированную. Такое покрытие прекрасно сопротивляется воздействию тепловой энергии. Теплое анодирование Выполняется эта работа при комнатной температуре от 15 до 20 градусов по Цельсию. Процедура известна как легкоповторяемая.
Японцы использовали анодирование щавелевой кислотой с 1923 года, и оно было широко применено немцами, особенно в архитектурных решениях. Анодирование алюминиевых профилей широко использовалось в архитектуре в 1960-х и 70-х годах. Процесс анодирования Перед конкретно анодированием алюминий должен проследовать по следующему технологическому процессу: Очистка. Анодируемую деталь необходимо сначала очистить, чтобы удалить все включения масел, полирующих составов и других примесей. Это делается путем погружения в водный раствор, который содержит мягкие кислоты или щелочи вместе с различными моющими средствами. Предварительная обработка. Этот этап в основном для эстетических целей, он улучшает внешний вид поверхности перед этапом анодирования. Самая распространенная предварительная обработка это травление, при котором поверхность приобретает атласный или яркий оттенок, что дает яркий блестящий оттенок. Анодирование алюминия — это электрохимический процесс. Проще говоря, он включает извлечение алюминиевого сплава и погружение его в большой резервуар, заполненный раствором электролита. Чаще всего это раствор на основе серной кислоты и дистиллированной воды. Хотя точный тип используемой кислоты зависит от области применения.
Мы готовы предоставить Вам информацию о компаниях с хорошей репутацией, занимающихся перфорацией. У нас Вы можете получить также матрицу стандартов перфорирования. Преимущества применения алюминиевого анодированного профиля Анодированный алюминиевый профиль применяется для изготовления навесных вентилируемых фасадов, монтажных лестниц, поручней. Защитная пленка не только защищает сам металл, но и ваши руки от серой алюминиевой пыли. Женщинам интересно будет узнать, что алюминиевые вязальные спицы тоже анодируют, чтобы не пачкались ручки мастерицы. Но и в строительстве анодированный алюминий получил свое применение. Анодирование алюминиевого профиля используют при монтаже навесных вентилируемых фасадов в высоко- агрессивных средах. Высоко- агрессивные среды- это приморские районы из-за высокого содержания солей в воздухе или территории вблизи заводов. Города миллионники редко имеют высоко- агрессивную среду, чаще средне- агрессивную. Присвоение класса агрессивности происходит на уровне специальных служб сан-эпидемического надзора по согласованию с администрацией города — нужно искать в их постановлениях. Еще одно важное преимущество — окраска анодированной поверхности. Наверное, это основной плюс описанного процесса. Появилась возможность декоративной обработки изготовленных алюминиевых изделий, что сразу принесло к большому распространению его применения. Высокая износостойкость анодной пленки способствовала увеличению содержания анодированных алюминиевых деталей в общем объеме судостроительных и авиастроительных предприятий. Фасады многих Олимпийских объектов в Сочи выполнены с помощью технологии Навесной Вентилируемый Фасад на алюминиевых анодированных системах. Гравировка Лазерные надписи и гравировки отлично подходят для работы с нашими анодированными поверхностями и поверхностями с PVD покрытием благодаря высокому качеству, хорошей репродуктивности, высокой скорости письма, бесконтактной обработке, а также износостойкости лазерных инструментов и гарантированности от фальсификации самих надписей. Правильная настройка позволяет достигать различных видов надписей. При выполнении надписей лазером следует оптимизировать параметры письма, учитывая особенности нашего материала, облагороженного при помощи анодирования, так же как и в случае глубокой и широкой гравировки для предотвращения образования заусенцев у наклонных кромок и бороздок. Мы готовы помочь Вам в поиске производителей станков или компаний, занимающихся гравировкой. Что такое анодированный алюминий На сегодняшний день алюминий остается очень важным и востребованным материалом для изготовления всевозможных деталей, подделок и прочее. Можно перечислить массу его преимуществ, например, небольшой вес, достаточная прочность, не подвергается коррозии, его легко обрабатывать для дальнейшего использования. Но при всем этом, многих не привлекает его внешний вид. Если вы хоть раз пробовали красить алюминий, то ваши попытки могли заканчиваться безуспешно, ведь краска держится на алюминии очень плохо. Если его использовать без краски, то очень скоро он покроется темными пятнами. Чтобы все это не допустить, была разработана технология анодирования алюминия. Предлагаем вам рассмотреть вопрос о том, что такое анодированный алюминий, какие существуют его разновидности, в каких сферах используется анодированный алюминий и можно ли анодировать этот материал своими руками. Применение анодированного алюминия Существует множество сфер использования для достижения абсолютно разных целей. Сейчас рассмотрим их: Основа для окраски. Защищенное покрытие способно удерживать слой краски продолжительное время. Для этого осуществляется соединение органического покрытия с хромовым анодным. Даже если слой краски повредится, его легко восстановить, а самому изделию не грозит коррозия и прочее. Данная технология эффективна при нанесении органических красок. Защита от коррозии. Эта защита способна справляться с воздействием даже соленой воды. В дизайне. Использование специальных красителей можно придавать алюминию абсолютно разные цвета. Благодаря этому изделиям можно придавать красивый внешний вид. Чистые руки. Нередко алюминий используется для создания перил, рукояток, поручней и прочее. Если он будет без анодного покрытия, то на руках могут оставаться следы. Чтобы это исключить все эти детали анодируют, что позволяет держать руки в чистоте. Для достижения таких результатов поры анодного покрытия наполняются. Отражение в проекторах. Технология сернокислого анодирования используется для защиты отражателей прожекторов. Это отражение будет сохраняться годами. А если необходимо почистить его поверхность, то для этого нет никаких проблем. В тепловых отражателях. Используется анодированный алюминий в нагревательных рефлекторах. Поверхность легка к любому очищения. Может использовать в помещениях с повышенной влажностью. Толщина покрытия составляет 1 микрон. Эффективная борьба с износом и трением. За счет более твердого покрытия значительно снижается износ. В этом случае анодное покрытие может достигать до 60 микрон. Электрический изолятор. В некоторых типах трансформаторов сегодня принято использовать алюминиевую ленту, в обязательном порядке анодированную.
Перед тем как проводить анодирование деталей, нужно тщательно зачистить наждачной бумагой или напильником, а потом обезжирить. После этого нужно провести химическое полирование. Для этого алюминиевая деталь помещается на десять минут в состав из 75 объемных долей ортофосфорной кислоты и 25 серной кислоты. Затем ее можно погружать в раствор электролита. Положительный заряд источника тока присоединяется к детали, а отрицательный — к токопроводящей емкости с электролитом. Анодировка длится обычно примерно 90 минут. Окончательным этапом является уплотнение пор пленки, которые уплотняются после кипячения детали в воде примерно в течение двадцати минут. Анодированные детали имеют серый, золотистый, оливковый, черный или коричневый оттенок и незначительную приятную шероховатость. Качество анодировки можно проверить следующим образом: по анодированной поверхности нужно провести черту химическим карандашом.
Принцип анодирования алюминиевого корпуса-обработка алюминиевой поверхности
Что такое анодирование металла? Анодирование представляет собой процедуру образования на поверхности различных металлов оксидной пленки путем анодного окисления. По описанию анодирование проводится в двух видах электролитов, в Сернокислом и Щавелекислом, т.к. хотел уйти от серняги, как более вредной, перешел на Щавелекислый электролит. По описанию анодирование проводится в двух видах электролитов, в Сернокислом и Щавелекислом, т.к. хотел уйти от серняги, как более вредной, перешел на Щавелекислый электролит. Что такое анодирование. Что такое анодирование металла? Анодирование представляет собой процедуру образования на поверхности различных металлов оксидной пленки путем анодного окисления.
Механизм и технология анодирования Ан.окс. Структура и свойства оксида алюминия в покрытии.
Для чего необходимо анодирование Если вас интересует Узнайте, что такое анодирование и анодированное покрытие. Поэтому была разработана технология анодирования – это процесс, в результате которого образуется оксидная пленка Al2O3. Анодирование в компании Галарс-СПб, технология процесса, преимущества анодирования. Его характеристики можно улучшить благодаря анодированию, в результате которого на поверхности образуется прочный и устойчивый защитный слой. Что такое анодирование. Обычно анодирование проводят при постоянном токе в гальваностатическом или потенциостатическом режиме. Для чего необходимо анодирование Если вас интересует Узнайте, что такое анодирование и анодированное покрытие.