Новости гелий 3 на луне

эта добыча природных ископаемых на Луне может решить энергетический кризис, обеспечив человечество энергией на 10 000 лет впере. Добыча гелия-3 на Луне может стать решающим фактором в развитии термоядерной энергетики. основы безуглеродной энергетики. РКК «Энергия» планирует промышленное освоение Луны для добычи экологически чистого топлива гелий-3, которого нет на Земле. В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром.

Колонизация Луны и добыча там гелия-3? Пока это фантастика из далекого будущего

На Луне концентрация гораздо выше, минимальная оценка запасов превышает 500 тысяч тонн. По словам учёных, «имеющиеся на Луне запасы гелия-3 могут обеспечить землян энергией, как минимум, на пять тысяч лет вперёд» (цитата по РИА Новости). гелий-3 - космическое топливо будущего. Вместе они руководят разработкой программы высадки на Луне робота, который определит основные месторождения гелия-3. Гелий-3 — это редкий изотоп гелия, который имеет два протона и один нейтрон в ядре. Гелий-3 является побочным продуктом реакций, протекающих на Солнце.

Новые сверхдержавы родятся на Луне

Учёные взялись за детальное исследование возможностей данного изотопа гелия. Подписывайтесь на наш Телеграм Что такое ядерный синтез Для человечества в современном его виде добыча энергии является основополагающим фактором для комфортного существования. Из химических процессов наиболее эффективной в качестве получения энергии является реакция взаимодействия с кислородом — горение, которая сегодня служит основным источником энергии на электростанциях, транспорте и в быту. Ядерные реакции в этом смысле подобны химическим, только энергия связи протонов и нейтронов в ядре значительно больше, чем та, что связывает атомы в молекулы. Поэтому одна тонна ядерного топлива может легко заменить миллионы тонн нефти. Но для выделения из него энергии нужно приложить немало сил нагреть его до сотен миллионов градусов, чтобы запустить термоядерную реакцию. В природе подобные процессы происходят в недрах звёзд.

Солнце — пример космического объекта, где происходят природные термоядерные реакции Люди подобную реакцию могут повторить пока только в военных целях водородная бомба. Чтобы удержать такую энергию в каком-нибудь месте и использовать в своих целях, нужны более сложные технологии. Одним из теоретических вариантов являются термоядерные реакторы токамаки , в которых изначально планировалось синтезировать гелий из дейтерий-тритиевой смеси. Главный недостаток системы — высокая радиоактивность трития, период полураспада которого составляет всего 12,5 лет. В промышленном реакторе внутренние стенки камеры сгорания необходимо будет менять через каждые несколько лет из-за радиационного разрушения материала. Кроме того, выделяемую энергию уносят в основном нейтроны, не имеющие электрического заряда и плохо взаимодействующие с веществом, что усложняет её сбор.

Одним из лучших альтернатив является замена трития на гелий-3. Реакции дейтерий-гелиевой смеси практически радиационно безопасны, так как в них используются только стабильные ядра, и не производят неудобные нейтроны.

Некоторое количество гелия-3 было захвачено ядром Земли. В настоящее время гелий-3 не добывается из природных источников, а создаётся при распаде искусственно полученного трития. Изотоп в основном используют в лабораториях, им наполняют детекторы ионизирующего излучения. С помощью таких детекторов можно вычислить незаконно перевозимые радиоактивные вещества. Гелий-3 также обладает большим энергетическим потенциалом.

Недавно научный руководитель этого проекта академик китайской АН Оуянг Зиюань объявил о том, что уже на этом первом этапе исследования Луны Китай рассчитывает сделать большой вклад в науку и в развитие космических технологий. Так что китайский лунный проект обещает быстро окупить себя. В ходе первого этапа китайской программы исследования Луны планируется, помимо прочего, измерить толщину лунного грунта, оценить возраст поверхности и определить количество имеющегося там гелия-3 очень редко встречающегося на Земле изотопа гелия, который можно использовать в качестве топлива для термоядерного реактора по материалам SpaceDaily Интересные рассуждения о космических программах, нужных для получения запасов гелия-3, даны в статье кандидата технических наук, члена-корреспондента Академии космонавтики им. Циолковского Юрия Еськова «За чистым топливом — на Уран, опубликованной в "Российской газете", 11 апреля 2002 года. Автор пишет, что еще эффективнее, чем на Луне, искать гелий-3 в атмосферах дальних планет гигантов, например, Урана, где гелий-3 составляет 1:3000 что в тысячу раз больше, чем в лунном грунте. За 10 лет аппарат преодолеет трудно вообразимую дистанцию в 6 млрд. Фокус, однако, в том, что запускается он с высокой околоземной орбиты и вся жизнь его проходит в космосе, так что никаких экологических проблем для населения Земли он не создает. Система бесперебойного снабжения наземных ТЯЭС с суммарной мощностью 3 млрд. Запаса топлива аппарату хватит лишь в один конец: до цели он долетит с пустыми баками. Таким образом, обратная заправка без которой задача возвращения нереализуема оказывается фактически даровой. Возникает естественный вопрос: в какой степени существующие на сегодня технологии могут обеспечить функционирование такой системы? Главная проблема тут — бортовая энергоустановка. К нынешнему моменту накоплен огромный положительный опыт создания и эксплуатации реакторов наземных АЭС с мощностью 4 млн. Что касается размеров запускаемого беспилотного аппарата 450 тонн, в том числе 200 тонн топлива , то он по порядку величины соответствует массе МКС а в окончательном проекте масса МКС планируется еще большей ; суммарный же годовой грузопоток на орбиту 1900 тонн меньше, чем планируемый для стандартных программ космическая связь, телевещание и т. Подавляющее большинство элементов такого орбитального гелиево-водородного завода существует уже сегодня и благополучно действует в криогенной промышленности». Автор говорит, что даже при сегодняшнем уровне развития техники такой проект был бы вполне экономически рентабельным: «Отпускная цена электроэнергии в мире составляет от 5 до 10 центов за кВт. Из простейшей арифметики видно, что доставка с Урана гелия-3 будет оставаться рентабельной даже при цене 1 тонны в 10 млрд. Цена же выведения на орбиту одного подобного завода составляет 10 млн. Стали уже привычными слова, что наукоемкие отрасли ядерная, космическая и др. Случай с гелием-3 - тот самый случай. Этот способ, который позволит решить энергетическую проблему на достаточно длительное время, в случае, если найдутся возможности изыскать средства для его реализации, сможет стать шансом на прогресс российских наукоемких отраслей: как космонавтики что является предметом для отдельного разговора , так и термоядерной техники. В настоящий момент есть два магистральных направления в термоядерном синтезе: токамаки и лазерный синтез. Первый из этих вариантов сейчас реализуется в проекте международного экспериментального термоядерного реактора ИТЭР. Принцип действия токамака таков: в плазменном сгустке создавается электрический ток, и при этом, как у всякого тока, у него появляется собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. И тогда с помощью внешнего магнитного поля определенной конфигурации подвешивали плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками. В газе всегда есть свободные ионы и электроны, которые начинают двигаться в камере по кругу. Этот ток нагревает газ, количество ионизированных атомов растет, одновременно увеличивается сила тока и повышается температура плазмы. А значит, количество водородных ядер, слившихся в ядро гелия и выделивших энергию, становится все больше. Однако эксперименты, начатые почти пятьдесят лет назад в московском Институте атомной энергии, показали, что плазма, подвешенная в магнитном поле, оказалась неустойчивой — сгусток плазмы очень быстро «распадался» и вываливался на стенки камеры.

Этот редкий изотоп способен обеспечить потребность в чистой энергии и заложить основу многомиллиардной промышленности. В недавнем пресс-релизе стартап Interlune заявляет , что обладает технологией, позволяющей добывать гелий-3 эффективно и бережно. Впрочем, Interlune — не единственная организация, положившая глаз на лунные запасы гелия-3. Добыча природных ресурсов — составная часть лунной программы «Артемида». В 2015 году в США был принят закон, поощряющий американские компании вести добычу ресурсов на внеземных объектах, включая воду и минералы. Другими словами, граждане Соединенных Штатов получили право оставить себе все, что привезли из космоса, если это не живое существо.

» Сокровище Луны – гелий-3

Запасы гелия-3 на Луне исследователи оценили в около 1,3 млн тонн. Добыча гелия-3 потребовала бы астрономические суммы для организации на Луне горнодобывающей и перерабатывающей промышленности. Избирательное обогащение лунного реголита солнечным гелием в зависимости от минерального состава приводит к неоднородному региональному распределению месторождений изотопов гелия на Луне. Европейские ученые объявили о планах начать добычу элемента гелий-3 на Луне уже в 2025 году.

Китай находит гелий-3 на Луне: начинается великая гонка

По словам главы Китайской лунной программы Оуян Цзыюаня Ouyang Ziyuan , три полета на Луну в год смогут обеспечить энергией всех людей на Земле. Добыча полезных ресурсов на Луне Но радоваться еще рано — такие полеты будут требовать огромного количества денег, времени и сил. Чтобы добыть один грамм изотопа гелия-3, специалистам нужно переработать около 150 тонн лунного реголита. Переработка будет вестись либо на самой Луне, либо на Земле. В любом случае, материал придется транспортировать и это тоже будет стоить огромных денежных вложений. Доставка грузов на Луну и обратно стоит огромных денег После открытия минерала «камень Чанъэ» и изотопа гелия-3, Китайское национальное космическое управление еще сильнее заинтересовалось исследованием Луны. В 2024 году Китай запустит пятую фазу программы «Чанъэ», в рамках которой планируется изучить южный полюс Луны и начать строительство исследовательской станции. Напоследок стоит отметить, что Китай также намерен заняться изучением Марса. Считается, что они смогут доставить на Землю марсианский грунт раньше, чем США — уже в 2031 году.

Рамис Ганиев.

Вот некоторые из них: 1. Ядерная энергетика: гелий-3 может использоваться в ядерных реакторах в процессе термоядерного синтеза. При достаточно высоких температурах и давлениях гелий-3 может служить топливом для контролируемого термоядерного синтеза, который является источником энергии Солнца.

Термоядерная энергия обладает огромным потенциалом и может быть чистым и эффективным источником энергии в будущем. Научные исследования: гелий-3 используется в различных научных исследованиях, особенно в области физики и астрофизики. Он может быть использован в качестве рабочего газа в детекторах частиц и ядерных реакциях для изучения элементарных частиц, физических свойств материи и процессов в космосе. При вдыхании гелия-3 пациентом и последующем проведении МРТ, можно получить детальные изображения легких и оценить их функциональные характеристики. Это может помочь в диагностике и лечении заболеваний легких, таких как астма и хроническая обструктивная болезнь легких ХОБЛ.

Разработка инерциально-конфайнментных систем: Гелий-3 может использоваться в различных технологиях, связанных с инерциальным конфайнментом плазмы для управляемого термоядерного синтеза. Это включает в себя исследования и разработку магнитных ловушек и других устройств, способных удерживать горячую плазму, содержащую гелий-3, в контролируемых условиях. Важно отметить, что на данный момент промышленная эксплуатация гелия-3 ограничена из-за его редкости на Земле.

Теоретически, запасов гелия-3 хватило бы для обеспечения Земли электроэнергией в течение 700-800 лет. Ученые также доказали, что на Луне в большом количестве есть железо, платина, титан, а также множество редкоземельных металлов. Глава китайской программы исследования Луны Оуян Цзыюань заявил, что «три полета космических челноков в год могут доставлять достаточно топлива для всех людей по всему миру».

Многие из них были обнаружены и на Луне. При этом новых минералов на спутнике нашей планеты за всю истории было найдено всего шесть — пять астронавтами и межпланетными станциями США и СССР. Еще один — китайской миссией в сентябре 2022 года. Открытие минерала В декабре 2020 года аппарат Китайского национального космического агентства CNSA «Чанъэ-5» высадился на Луну, собрал 1,7 кг образцов грунта, а затем вернулся с ними на Землю. Это стало первым случаем получения лунного материала с 1970-х годов. CNSA распределила небольшие фрагменты находок среди почти 100 научных групп для анализа. Исследователям из Пекинского научно-исследовательского института геологии урана удалось выделить из своего образца единственную частицу материала, который они назвали «камень Чанъэ». Размер фрагмента вещества составляет одну десятую часть ширины человеческого волоса.

Топливо будущего: где и зачем добывают гелий-3

Общее количество гелия-3 в атмосфере нашей планеты оценивается в 35 000 тонн. Однако в настоящее время изотоп не добывается из природных источников, а создаётся при распаде искусственно полученного трития, бомбардируя нейтронами литий-6 в ядерном реакторе. Таким способом можно получать до 18 килограмм гелия-3 в год, чего абсолютно недостаточно для каких-либо промышленных нужд. В природе же он может накопиться либо на больших планетах Уран или Нептун , способных его удерживать, либо на телах без атмосферы и магнитосферы. Так, Луна в течение миллиардов лет терпела плазменную бомбардировку солнечным ветром. В привезённых на Землю образцах лунного реголита содержание гелия-3 на тонну составило 0,01 грамма. Это означает, что на Луне должно быть от 500 тысяч до нескольких миллионов тонн данного изотопа. Учёные подсчитали, что 0,02 грамма гелия-3 в ходе реакции термоядерного синтеза выделяют энергии столько же, сколько образуется при сжигании барреля нефти 159 литров. При современном уровне мирового энергопотребления лунного топлива человечеству хватило бы на 5-10 тысяч лет, что примерно в десять раз больше, чем энергетический потенциал всего извлекаемого химического топлива газа, нефти, угля на Земле.

Зачем вообще добывать гелий-3 Большая часть добытого людьми гелия используется в лабораториях для научных целей. Гелий-3 используется для наполнения газовых детекторов нейтронов. Это счётчики для измерения нейтронного потока. К примеру, нейтронные мониторы используют для обнаружения незаконно перевозимых делящихся материалов и предотвращения ядерного терроризма. Также гелий-3 используют для достижения сверхнизких температур. Откачкой паров гелия-4 под вакуумом можно получить температуры до 0,7 К.

Он является одним из двух стабильных изотопов гелия, вторым является гелий-4. Гелий-3 обладает некоторыми уникальными свойствами, которые делают его интересным для научных и технических применений. Гелий-3 добывается преимущественно из природных газов из нефтяных и газовых скважин. Он может образовываться в природных условиях в результате радиоактивного распада тяжелых элементов, таких как уран и торий. Однако концентрация гелия-3 в природных источниках очень низкая, поэтому его добыча обычно экономически неэффективна. Наиболее значимым источником гелия-3 является «солнечный ветер», который содержит значительное количество этого изотопа. Солнечный ветер состоит из выброшенных из солнечной короны частиц, включая гелий-3. В отличие от Земли, атмосфера Луны не имеет магнитного поля, что позволяет солнечному ветру напрямую достигать ее поверхности. В результате гелий-3 может собираться на Луне. В последние годы возник интерес к добыче гелия-3 на Луне в связи с исследованиями потенциала использования этого изотопа в ядерной энергетике. Гелий-3 может использоваться в ядерных реакторах в процессе термоядерного синтеза, который является источником энергии Солнца.

ОЦК — объёмно-центрированная кубическая кристаллическая структура. Квантовая жидкость , существенно отличающаяся по свойствам от жидкого гелия-4. Жидкий гелий-3 удалось получить только в 1948 году. В 1972 году в жидком гелии-3 был обнаружен фазовый переход в сверхтекучее состояние при температурах ниже 2,6 мК и при давлении 34 атм ранее считалось, что сверхтекучесть, как и сверхпроводимость — явления, характерные для бозе-конденсата , то есть кооперативные явления в среде с целочисленным спином объектов. За открытие сверхтекучести гелия-3 в 1996 году Д. Ошерову , Р.

Впрочем, зажечь смесь еще полдела. Минус термоядерной энергетики — сложность получения практической отдачи, ведь рабочим телом является нагретая до многих миллионов градусов плазма, которую приходится удерживать в магнитном поле. Эксперименты по приручению плазмы проводятся уже многие десятилетия, но лишь в конце июня прошлого года в Москве представителями ряда стран было подписано соглашение о строительстве на юге Франции в городе Кадараш Международного экспериментального термоядерного реактора ITER — прототипа практической термоядерной электростанции. В качестве топлива ITER будет использовать дейтерий с тритием. Читайте также: Рассекреченные документы раскрывают проект «Горизонт»: лунный форпост армии США Термоядерный реактор на гелии-3 будет конструктивно сложнее, чем ITER, и пока его нет даже в проектах. И хотя специалисты надеются, что прототип реактора на гелии-3 появится в ближайшие 20-30 лет, пока эта технология остается чистейшей фантастикой. Вопрос добычи гелия-3 анализировался экспертами в ходе слушаний по вопросам будущего исследования и освоения Луны, состоявшихся в апреле 2004 года в Подкомитете по космосу и аэронавтике комитета по науке палаты депутатов Конгресса США. Их вывод был однозначен: даже в отдаленном будущем добыча гелия-3 на Луне совершенно невыгодна. Как отметил Джон Логсдон, директор Института космической политики из Вашингтона: «Космическое сообщество США не рассматривает добычу гелия-3 в качестве серьезного предлога для возвращения на Луну. Лететь туда за этим изотопом все равно что пятьсот лет назад отправить Колумба в Индию за ураном. Привезти-то он его может, и привез бы, только еще несколько сотен лет никто не знал бы, что с ним делать». Добыча гелия-3 как национальный проект «Мы говорим сейчас о термоядерной энергетике будущего и новом экологическом типе топлива, которое нельзя добыть на Земле. Речь идет о промышленном освоении Луны для добычи гелия-3». Это высказывание главы ракетно-космической корпорации «Энергия» Николая Севастьянова было воспринято российскими научными обозревателями как заявка на формирование нового «национального проекта». Ведь по сути, одной из главных функций государства, особенно в XX веке, было как раз формулирование перед обществом задач на грани воображения. Это касалось и советского государства: электрификация, индустриализация, создание атомной бомбы, первый спутник, поворот рек. Сегодня в РФ государство пытается, но не может сформулировать задачи на грани невозможного. Государству нужно, чтобы кто-то показал ему общенациональный проект и обосновал выгоды, которые из этого проекта в теории проистекают. Программа освоения и добычи гелия-3 с Луны на Землю с целью снабжения термоядерной энергетики топливом идеально отвечает этим требованиям. Если Луна — источник полезных ископаемых, и оттуда везти этот гелий-3, а на Земле не хватает энергии… Все это понятно, звучит очень красиво.

На Луне обнаружили новый минерал: почему это важно для энергетики

Ученые называют его «Чангезит- Y », и это своего рода бесцветный кристалл с важной характеристикой: он содержит гелий-3. Это изотоп, который может стать топливом для будущих термоядерных реакторов и многих других. Полученный кристаллический минерал, честно говоря, действительно крошечный. Это примерно десятая часть человеческого волоса. Тем не менее, эта очень маленькая выборка возможности сбора данных нынешними марсоходами являются такими, какие они есть представляет огромный интерес для лунных геологов. Гелий-3 действительно может изменить мир.

Китайская миссия «Чанъэ-5» Changesite, Helium-3 и будущие разработки О том, что на нашей Луне есть залежи гелия-3, мы знали уже давно: еще со времен программы «Аполлон». И с тех пор ученые усердно работали над тем, чтобы понять, как доставить его на Землю, поскольку это дало бы огромные преимущества с точки зрения энергии. Прежде всего, термоядерный синтез с гелием-3 по сравнению с термоядерным синтезом с использованием дейтерия и трития, изотопов водорода, не приведет к образованию радиоактивных нейтронов. Минусы: большие трудности с получением контролируемых реакций, но у нас есть время решить эту проблему.

Выяснили, что больше всего гелия содержится в минерале ильменит.

На Луне он входит в морские базальты — породы, которые находятся в «лунных морях». Они получили название море Спокойствия и океан Бурь.

Основной целью исследования является определение содержания гелия-3 в лунном грунте, параметров извлечения гелия-3, которые указывают, при какой температуре мы можем извлекать гелий и как гелий-3 прикрепляется к лунному грунту.

Мы проведем систематическое исследование этих аспектов», — сказал Хуан Чжисинь, исследователь, ответственный за использование лунных образцов в Научно-техническом отделе Пекинского научно-исследовательского института геологии урана. Гелий-3 — это газ, который потенциально может быть использован в качестве топлива для будущих термоядерных электростанций, но крайне редко встречается на Земле, хотя в изобилии существует на Луне. Это потенциальный будущий источник термоядерной энергии, который не производит вредных веществ в процессе производства энергии.

Китайская миссия «Чанъэ-5» Changesite, Helium-3 и будущие разработки О том, что на нашей Луне есть залежи гелия-3, мы знали уже давно: еще со времен программы «Аполлон». И с тех пор ученые усердно работали над тем, чтобы понять, как доставить его на Землю, поскольку это дало бы огромные преимущества с точки зрения энергии. Прежде всего, термоядерный синтез с гелием-3 по сравнению с термоядерным синтезом с использованием дейтерия и трития, изотопов водорода, не приведет к образованию радиоактивных нейтронов. Минусы: большие трудности с получением контролируемых реакций, но у нас есть время решить эту проблему.

Этап, который приведет к строительству «исследовательской базы» на южном полюсе Луны. Дорожная карта миссий, запланированных на ближайшее время: Чанъэ 6, который, как и «Чанъэ 5», будет миссией по сбору образцов. На этот раз он попытается вернуть на Землю лед, расположенный в постоянно затененных кратерах на южном полюсе. Чанъэ 7, который будет представлять собой комбинацию орбитального аппарата, посадочного модуля и вездехода, предназначенную для поиска воды на южном полюсе Луны.

Несмотря на количество, эта миссия может следовать за Чанъэ-6, но также и предшествовать ей. Чанъэ 8, который проверит технологии возможного строительства лунной базы.

Гелий-3: новый источник энергии для космических путешествий

  • На Луне обнаружили новый минерал: почему это важно для энергетики | РБК Тренды
  • На Луну спешим летим!:-) ГЕЛИЙ-3 забрать хотим!:-)
  • Добыча гелия-3: к новому видению лунной экономики
  • Бывший астронавт предлагает добывать гелий-3 на Луне
  • Пациент Neuralink играет в шахматы мыслью, Добыча ГЕЛИЯ-3 на ЛУНЕ, Новое обновление робота H1

Зачем американцы собрались присвоить Луну

Гелий-3, которого на Луне во много раз больше, чем на Земле, считается наиболее перспективным компонентом термоядерных реакторов будущего – основы безуглеродной энергетики. Гелий-3 же в относительно больших количествах содержится в космическом гелии, который образуется, например, на Солнце при термоядерных реакциях. Добыча гелия-3 на Луне может стать решающим фактором в развитии термоядерной энергетики. Гелий-3 заносился на Луну солнечным ветром миллиарды лет и считается самым перспективным источником дешевой энергии благодаря способности вступать в термоядерную реакцию с дейтерием. Стартап Interlune, основанный экс-сотрудниками Blue Origin, рассчитывает в ближайшие годы запустить на Луне добычу гелия-3.

На Луне ищут замену нефти

найти ему применение. Изотоп гелий-3 на Луне. Помимо нового минерала, в лунном грунте была обнаружена большая концентрация изотопа гелия-3. Программа освоения и добычи гелия-3 с Луны на Землю с целью снабжения термоядерной энергетики топливом идеально отвечает этим требованиям. Гелий-3 же в относительно больших количествах содержится в космическом гелии, который образуется, например, на Солнце при термоядерных реакциях. Кроме ценного гелия-3, на Луне за последние годы был обнаружен кислород, водород и значительные запасы воды в виде льда. Имеющиеся на Луне запасы гелия-3 могут обеспечить землян энергией на пять тысяч лет вперед, заявил в среду на мультимедийной лекции в РИА Новости доктор физико-математических наук.

На Луне редчайший Гелий-3, и человечество мечтает его добывать. Как и зачем

А цена одного грамма гелия-3 сегодня составляет 17,5 тысяч долларов. По словам ученых, в реакции синтеза с использованием тонны гелия-3 и 0,67 тонны дейтерия будет высвобождаться столько же энергии, как при сгорании 15 миллионов тонн нефти. При этом эксперты отмечают, что ни гелий-3, ни продукты его распада не будут радиоактивны и не станут такой огромной проблемой при утилизации, как современное ядерное топливо. Однако стоимость добычи этого источника энергии на Луне будет очень высокой. Для добычи каждого грамма гелия-3 потребуется перерабатывать 150 тонн реголита.

Однако, для этого необходимо решить ряд технических и экономических проблем, связанных с добычей и транспортировкой гелия-3 на Землю , а также с разработкой технологий, позволяющих эффективно использовать гелий-3 для термоядерного синтеза. Существует несколько проектов и исследований, направленных на поиск возможностей использования гелия-3 в термоядерном синтезе. Одним из наиболее известных проектов является ITER Международный экспериментальный термоядерный реактор , в рамках которого строятся установки для термоядерного синтеза на основе плазмы, использующие гелий-3 в качестве топлива.

Что касается размеров запускаемого беспилотного аппарата 450 тонн, в том числе 200 тонн топлива , то он по порядку величины соответствует массе МКС а в окончательном проекте масса МКС планируется еще большей ; суммарный же годовой грузопоток на орбиту 1900 тонн меньше, чем планируемый для стандартных программ космическая связь, телевещание и т. Подавляющее большинство элементов такого орбитального гелиево-водородного завода существует уже сегодня и благополучно действует в криогенной промышленности». Автор говорит, что даже при сегодняшнем уровне развития техники такой проект был бы вполне экономически рентабельным: «Отпускная цена электроэнергии в мире составляет от 5 до 10 центов за кВт. Из простейшей арифметики видно, что доставка с Урана гелия-3 будет оставаться рентабельной даже при цене 1 тонны в 10 млрд. Цена же выведения на орбиту одного подобного завода составляет 10 млн. Стали уже привычными слова, что наукоемкие отрасли ядерная, космическая и др.

Случай с гелием-3 - тот самый случай. Этот способ, который позволит решить энергетическую проблему на достаточно длительное время, в случае, если найдутся возможности изыскать средства для его реализации, сможет стать шансом на прогресс российских наукоемких отраслей: как космонавтики что является предметом для отдельного разговора , так и термоядерной техники. В настоящий момент есть два магистральных направления в термоядерном синтезе: токамаки и лазерный синтез. Первый из этих вариантов сейчас реализуется в проекте международного экспериментального термоядерного реактора ИТЭР. Принцип действия токамака таков: в плазменном сгустке создавается электрический ток, и при этом, как у всякого тока, у него появляется собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. И тогда с помощью внешнего магнитного поля определенной конфигурации подвешивали плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками. В газе всегда есть свободные ионы и электроны, которые начинают двигаться в камере по кругу. Этот ток нагревает газ, количество ионизированных атомов растет, одновременно увеличивается сила тока и повышается температура плазмы. А значит, количество водородных ядер, слившихся в ядро гелия и выделивших энергию, становится все больше.

Однако эксперименты, начатые почти пятьдесят лет назад в московском Институте атомной энергии, показали, что плазма, подвешенная в магнитном поле, оказалась неустойчивой — сгусток плазмы очень быстро «распадался» и вываливался на стенки камеры. Оказалось, что к неустойчивости приводит комбинация целого ряда сложных физических процессов. Кроме того, оказалось, что время устойчивого удержания плазмы возрастает с увеличением размеров установки. А несколько лет назад специалисты пришли к выводу, что оставшиеся нерешенные проблемы нужно исследовать на установке, максимально приближенной к реальному энергетическому термоядерному реактору. Это понимание и привело к работам по созданию ИТэРа. От всех других установок и методов этот вариант проведения управляемой термоядерной реакции отличается прежде всего тем, что он в основном уже вышел из сферы сомнений и поисков. Благодаря накопленной за пятьдесят лет исследований обширной базе физических и инженерно-технических данных он вплотную подошел к стадии экспериментального реактора. Это, видимо, и вдохновило международное сообщество на создание ИТЭРа — ученые решили, что даже богатой стране нет никакого смысла делать термоядерный реактор в одиночку - результатом будут знания и опыт, которые все равно станут общим достоянием и в национальную экономику сразу ничего не внесут. В то же время, объединив усилия, можно резко ускорить продвижение к своему работающему термояду и снизить собственные затраты.

А его концептуальное проектирование по инициативе нашей страны началось на четыре года раньше. Другое направление на пути к управляемой термоядерной реакции — это лазерный термоядерный синтез ЛТС. Он заключается в том, что мишень из "сырья" для термоядерной реакции облучается со всех сторон лазерными лучами, и таким образом там создаются условия, достаточные для осуществления термоядерной реакции. Сложность в том, как это осуществить технически. Моя диссертационная работа состоит в проведении компьютерного моделирования явления оптического резонанса в сферичеких мишенях при лазерном облучении.

Вместе с тем прагматики понимают, что перспектива освоения Луны возрастает с каждым годом. Действительно, какие полезные ископаемые есть на Луне? Какова вообще ценность и цена Луны? Серьезные исследования на лунной местности еще не проводились.

Похожие новости:

Оцените статью
Добавить комментарий