Новости термоядерный холодный синтез

в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Американские ученые повторили прорыв в области термоядерного синтеза. О том, что значит переход к термоядерному синтезу для всего человечества, и что еще Россия готова сделать для того, чтобы новый реактор заработал как можно скорее? Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза. Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза».

Комментарии:

  • Холодный синтез: самое известное физическое мошенничество
  • Холодный ядерный синтез: почему у Google ничего не получилось? / ИА REX
  • Академик Александров о холодном термоядерном синтезе
  • Экспериментальные установки
  • Возможет ли холодный синтез?
  • Главные новости

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

О холодном синтезе... афёра, но для чего? - форум, дискуссии, обсуждение событий и новостей Холодный ядерный синтез. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции.
Самая грандиозная научная стройка современности. Мы закуем Солнце в «бублик» В рамках концепции холодного термоядерного синтеза возможны условия, когда ядра атомов сливаются, несмотря на кулоновское отталкивание.
Академик Александров о холодном термоядерном синтезе За последние два года физики, работающие с NIF, смогли в несколько раз повысить энергетическую эффективность "быстрого" термоядерного синтеза.

Прорыв в термоядерном синтезе

Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. 8 декабря 2014 Новости. 8 октября 2014 года была завершена проверка независимыми исследователями из Италии и Швеции устройства E-Cat для выработки электроэнергии на основе реактора холодного термоядерного синтеза. Представлены новые данные в пользу реальности холодного термоядерного синтеза – следы возникновения высокоэнергичных нейтронов при электролизе тяжёлой воды. Однако, при всей невероятности и даже сомнительности холодного термоядерного синтеза, нельзя прятать голову в песок. Термоядерный синтез заработал в плюс: американские учёные смогли запустить реакцию с положительным КПД.

Курсы валюты:

  • Подписка на дайджест
  • В защиту холодного ядерного синтеза (ХЯС)
  • «Что такое Холодный ядерный синтез?» — Яндекс Кью
  • Холодный ядерный синтез: возможно ли? - YouTube
  • Подписка на дайджест

О холодном синтезе... афёра, но для чего?

Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. То есть провели реакцию холодного термоядерного синтеза. То есть провели реакцию холодного термоядерного синтеза. Тандберг начал изучать холодный термоядерный синтез в 1927 году, когда 33-летний главный научный сотрудник компании Electrolux Co. заинтересовался экспериментами по термоядерному синтезу, проводимыми в Германии, сказал Вильнер. Лабораторный реактор холодного термоядерного синтеза. К маю 2000 г. на тему холодного термоядерного синтеза в открытой научной печати было опубликовано более 2 тыс. работ, из которых примерно 10 % содержали достоверные указания на наличие эффекта ХС.

Мегаджоули управляемого термоядерного синтеза

Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров. К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание». Семихатов Алексей Михайлович доктор физико-математических наук, заведующий лабораторией, Физический институт им. Лебедева РАН «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Это научное достижение, показывающее, что достигнуто неплохое понимание поведения экстремально сжимаемой материи.

Разговоры о нем идут уже не одно десятилетие, и, судя по всему, его использование может начаться совсем скоро, считает автор статьи. Он взял интервью у ряда экспертов, чтобы узнать, способны ли термоядерные реакции обеспечить электроэнергией весь мир. Большинство исследований в этой области сосредоточено на другом подходе — так называемом синтезе с магнитным удержанием. При нем водородное топливо удерживается на месте мощными магнитами и нагревается настолько, что атомные ядра сливаются.

Исторически эти исследования вели крупные государственные лаборатории формата ДЖЭТа или Объединенного европейского токамака в Оксфорде, но в последние годы инвестиции хлынули и в частные компании, которые сулят выработать термоядерную энергию уже в 2030-х. По данным Ассоциации термоядерного синтеза, за год до конца июня компании из этой области привлекли 2,83 миллиарда долларов инвестиций, в результате чего общий объем инвестиций частного сектора на сегодняшний день достиг почти 4,9 миллиарда. Николас Хоукер, исполнительный директор стартапа First Light Fusion из Оксфорда, чей подход аналогичен Ливерморской национальной лаборатории, назвал это событие прорывным. Статья написана при участии Дэвида Шеппарда и Дерека Брауэра.

Их нетрудно обнаружить либо непосредственно с помощью нейтронных детекторов , либо косвенно поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации. В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры. Флейшман использовал связи на родине и убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет генерации нейтронов. Харуэлл располагал сверхчувствительными детекторами этих частиц, но они не показали ничего!

Поиск гамма-лучей соответствующей энергии тоже обернулся неудачей. К такому же заключению пришли и физики из Университета Юты. Сотрудники Массачусетского технологического института попытались воспроизвести эксперименты Флейшмана и Понса, но опять же безрезультатно. Поэтому не стоит удивляться, что заявка на великое открытие подверглась сокрушительному разгрому на конференции Американского физического общества АФО , которая состоялась в Балтиморе 1 мая того же года. В газете New York Times появилась разгромная статья, а к концу мая научное сообщество пришло к выводу, что претензии химиков из Юты — либо проявление крайней некомпетентности, либо элементарное жульничество. Но имелись и диссиденты, даже среди научной элиты. Эксцентричный нобелевский лауреат Джулиан Швингер, один из создателей квантовой электродинамики, настолько уверовал в открытие химиков из Солт-Лейк-Сити, что в знак протеста аннулировал свое членство в АФО. Тем не менее академическая карьера Флейшмана и Понса завершилась — быстро и бесславно. В 1992 году они ушли из Университета Юты и на японские деньги продолжали свои работы во Франции, пока не лишились и этого финансирования.

Однако в ходе недавнего эксперимента ученым из General Atomics компании, специализирующейся на ядерной физике удалось увеличить плотность плазмы, как никогда ранее, без ущерба для ее удержания. Подробности были опубликованы в журнале. Преодоление предела Гринвальда Теоретический предел, определяющий максимальную плотность плазмы, достижимую в реакторе токамак, известен как "предел Гринвальда". При превышении этого предела плазма может стать нестабильной, и некоторые заряженные частицы могут выйти из-под контроля ограничивающих их магнитных полей. Другими словами, превышение этой плотности чревато разрушением стенок реактора. Команда вводила дейтерий, чтобы замедлить термоядерную реакцию и контролировать ее поведение. Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке.

Компактные термоядерные реакторы: прорыв или просчёт?

Термоядерный синтез — это процесс, когда два легких атомных ядра объединяются в одно более тяжелое ядро, высвобождая большое количество энергии. Во вторник 13 декабря 2022 года учёные, исследующие термоядерный синтез в Ливерморской национальной лаборатории, объявили о достижении долгожданного этапа приручения этого типа энергии. Недавно Россия отправила в Европу катушку, которая будет вставлена в экспериментальную установку холодного синтеза. Термоядерный синтез заработал в плюс: американские учёные смогли запустить реакцию с положительным КПД.

Что не так с «японским ученым» и его холодным термоядом

Семихатов Алексей Михайлович доктор физико-математических наук, заведующий лабораторией, Физический институт им. Лебедева РАН «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Это научное достижение, показывающее, что достигнуто неплохое понимание поведения экстремально сжимаемой материи. Но до практического применения результатов еще далеко, поскольку полная энергия, потребляемая установкой, в десятки раз превышает энергию, полученную от синтеза». Духова «Событие, важное не только для мировой науки, для человечества — это термоядерный синтез с положительным выходом энергии. Американский "Национальный комплекс зажигания" National Ignition Facility, NIF в Ливерморской национальной лаборатории воспроизвел так называемый инерционный управляемый термоядерный синтез, предусматривающий облучение крошечной порции водородной плазмы самым большим в мире лазером».

А российские геологи до сих пор не используют эти разработки. Правительство страны только приняло их к сведению, но дальше этого дело не продвинулось. Поэтому приходится Охатрину работать на зарубежные организации. В последнее время академик больше занимается исследованием другого характера: как влияет купол на человека. Многие утверждают, что у него имеется обломок НЛО, упавшего в семьдесят седьмом году в Латвии. У него разработки такие же интересные, как и у Охатрина. Он пытался привлечь внимание правительства к своей работе, но от этого только врагов стало больше. Его изыскания тоже отнесли к лженауке. Была создана целая комиссия по борьбе с фальсификацией. Даже был представлен на обозрение проект закона о защите психосферы человека. Некоторые депутаты уверены, что есть генератор, который может действовать на психику. Ученый Иван Степанович Филимоненко и его открытия Вот и открытия нашего ученого-физика не нашли продолжения в науке. Его все знают как изобретателя летающей тарелки, которая передвигается при помощи магнитной тяги. И говорят, что был создан такой аппарат, который мог поднять пять тонн. Но некоторые утверждают, что тарелка не летает. Филимоненко создал прибор, который снижает радиоактивность некоторых объектов. В его установках используется энергия холодного термоядерного синтеза. Они делают неактивными радиоизлучения, а также производят энергию. Отходы у таких установок — это водород и кислород, а также пар высокого давления. Генератор холодного термоядерного синтеза может обеспечить целый поселок энергией, а также очистить озеро, на берегу которого будет расположен. Конечно, его работы поддерживали Королев и Курчатов, поэтому эксперименты проводились. Но довести до логического завершения их не удалось. Установка холодного термоядерного синтеза позволила бы каждый год экономить около двухсот миллиардов рублей. Деятельность академика была возобновлена только в восьмидесятые годы. В 1989-ом начали изготавливать опытные образцы. Был создан дуговой реактор холодного термоядерного синтеза для подавления радиации. Также в Челябинской области было сконструировано несколько установок, но в работе они не были. Даже в Чернобыле не пользовались установкой с термоядерным синтезом холодным. А ученый опять был уволен с работы. Жизнь на Родине В нашей стране не собирались развивать открытия ученого Филимоненко. Холодный термоядерный синтез, установка которого была завершена, могли бы продать за границу. Говорили, что в семидесятые годы кто-то вывез в Европу документы по установкам Филимоненко. Но у ученых за рубежом ничего не получилось, потому что Иван Степанович специально не дописал данные, по которым можно было создать реактор на холодном термоядерном синтезе.

Границей «легкости» служит ядро железа. Ядра тяжелее железа уже, строго говоря, метастабильны и, в принципе, способны к ядерному распаду с выделением энергии — чем тяжелее ядро, тем у него больше избыточной энергии практически эту энергию удаётся извлекать только в особых случаях очень тяжёлых ядер — уран, плутоний... Так вот: никель тяжелее железа, а потому для его слияния с протоном с образованием меди нужно затратить энергию! С другой стороны, в сообщении говорится о большом энергетическом выходе, который трудно подделать и в каковом факте трудно ошибиться. Поэтому я думаю, что вскоре эта история прояснится». Еще один характерный факт, связанный с Росси и Фокарди, заключается в том, что ни один рецензируемый журнал не принял их публикацию про холодный термояд к печати. Но результаты все же опубликованы: специально для этого Росси и Фокарди основали онлайн-журнал Journal of Nuclear Physics.

Токамак Т-15 МД размером с небольшой дачный домик полностью спроектировали и построили в России за 10 лет. Подобный термоядерный реактор должен помочь заменить атомные электростанции и работать на безопасном и доступном топливе — дейтерии и тритии. На несколько порядков больше, чем сжигание нефти или газа того же количества, в десятки тысяч раз», — сообщил научный руководитель комплекса термоядерной энергетики и плазменных технологий НИЦ «Курчатовский институт» Петр Хвостенко. Еще в 50-х годах прошлого века советские ученые придумали установку в форме тора, или бублика, где разогретую плазму удерживает магнитное поле. Тогда и родился термин «токамак» тороидальная камера с магнитной катушкой. Сегодня в работе с токамаками российские специалисты по-прежнему впереди планеты всей. В термоядерном синтезе множество задач, которые никому не удается решить уже десятки лет. Глава правительства Михаил Мишустин дал старт большому проекту класса «Мегасайенс», который должен помочь выйти за рамки современных научных догм. И, конечно, я сразу же хочу поздравить весь ваш дружный коллектив, который много лет работал над тем, чтобы продвинуться еще дальше. Появляется уникальная инфраструктура для научных исследований, для того, чтобы, как говорят ученые, управляемый термоядерный синтез все-таки создал неиссякаемый источник энергии», — сказал премьер Михаил Мишустин.

Разжечь Солнце на Земле. Россия первой запустит полноценный термоядерный реактор

Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза. «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. За одну реакцию термоядерного синтеза длительностью 5 секунд было получено 69 МДж энергии.

Российские физики рассказали о приручении термоядерного синтеза

Хорошие новости продолжают поступать в области исследований ядерного синтеза. Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза». Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. Холодный ядерный синтез: истории из жизни, советы, новости. К маю 2000 г. на тему холодного термоядерного синтеза в открытой научной печати было опубликовано более 2 тыс. работ, из которых примерно 10 % содержали достоверные указания на наличие эффекта ХС. Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. Министерство энергетики США (DOE) 13 декабря отметило важную веху в освоении энергии термоядерного синтеза, рассказав о том, как ученые впервые смогли произвести больше энергии, чем необходимо для его запуска.

Частный термоядерный синтез: фантазии или реальность?

Доказательством протекания реакции стало бы выделение энергии — в данном случае это выразилось бы в увеличении температуры воды - и регистрация потока нейтронов. Флейшман и Понс заявили, что в их установке наблюдалось и то и другое. Сообщение физиков вызвало чрезвычайно бурную реакцию научного сообщества и прессы. СМИ расписывали прелести жизни после повсеместного внедрения холодного ядерного синтеза, а физики и химики по всему миру принялись перепроверять их результаты.

Поначалу в нескольких лабораториях вроде бы смогли повторить эксперимент Флейшмана и Понса, о чем радостно сообщали газеты, однако постепенно стало выясняться, что при одних и тех же начальных условиях разные ученые получают совершенно несхожие результаты. После перепроверки расчетов выяснилось, что если бы реакция синтеза гелия из дейтерия шла бы так, как описали физики, то выделившийся поток нейтронов должен был бы немедленно убить их. Прорыв Флейшмана и Понса оказался просто неграмотно поставленным экспериментом.

И заодно научил исследователей доверять только результатам, сначала опубликованным в рецензируемых научных журналах, и только потом в газетах. После этой истории большинство серьезных исследователей прекратили работы по поиску путей осуществления холодного ядерного синтеза. Однако в 2002 году эта тема снова всплыла в научных дискуссиях и прессе.

Lahey, Jr. Они заявили, что смогли добиться необходимого для реакции сближения ядер, используя не палладий, а эффект кавитации. Кавитацией называют образование в жидкости полостей, или пузырьков, заполненных газом.

Образование пузырьков может быть, в частности, спровоцировано прохождением через жидкость звуковых волн. При определенных условиях пузырьки лопаются, выделяя большое количество энергии. Как пузырьки могут помочь в ядерном синтезе?

Очень просто: в момент "взрыва" температура внутри пузырька достигает десяти миллионов градусов по Цельсию — что сравнимо с температурой на Солнце, где свободно происходит ядерный синтез. Талейархан и Лейхи пропускали звуковые волны через ацетон, в котором легкий изотоп водорода протий был заменен на дейтерий. Им удалось зарегистрировать поток нейтронов высокой энергии, а также образование гелия и трития — еще одного продукта ядерного синтеза.

Несмотря на красоту и логичность экспериментальной схемы, научная общественность восприняла заявления физиков более чем прохладно. На ученых обрушилось огромное количество критики, касающейся постановки эксперимента и регистрации потока нейтронов.

Однако при высоких концентрациях исследователям не удалось получить стабильных образцов. Второй эксперимент был попыткой повторения опытов по бомбардировке палладия импульсами горячих ионов дейтерия, в результате которых якобы получается тритий. Третий вариант предполагал нагрев металлических порошков в обогащенной водородом среде. Авторам во всех случаях не удалось найти каких-либо свидетельств протекания холодной термоядерной реакции, но они осторожны в формулировках и не утверждают, что полностью исключили их возможность. В частности, им не удалось по всем параметрам приблизиться к условиям, которые называют наиболее благоприятными для протекания подобных реакций. Оба эксперимента с палладием требуют дополнительной работы: есть надежда на создание образцов с высокой концентрацией дейтерия, а опыты с тритием могут вызывать слишком слабый для регистрации эффект.

В любом случае проект нельзя назвать провальным, считают авторы. В частности, по их заявлениям они создали «лучший в мире калориметр», который использовали для регистрации выделений малейших количеств энергии в непростых экспериментальных условиях. Ученые собираются продолжить исследования в этом направлении.

Прорыв был совершен 5 декабря группой ученых из Национальной лаборатории Лоуренса Ливермора в Калифорнии. Новая эра началась? Термоядерный синтез — это процесс, который происходит в звездах, в том числе в нашем Солнце. В масштабах нашей планеты он мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. Однако, чтобы термоядерный синтез, подобный звездному, успешно протекал, необходимы колоссальные температуры и давление. На Земле создать такое уже давно возможно, однако для этого долгое время требовалось больше энергии, чем получалось на выходе.

Наш Т-15, увы, так по-настоящему и не заработал. Погубили его... Не сами по себе — причина тут чисто экономическая: для охлаждения сверхпроводников нужно было много жидкого гелия, который в то сложное время оказался слишком дорог для российских ученых. Сегодня вместо Т-15 строится новый токамак, без сверхпроводников, который обещают запустить в ближайшее время. В Великобритании и США же тем временем получили плазму с рекордными параметрами и провели первые эксперименты с использованием дейтерия и трития. Американцы спустя несколько лет утилизировали свою установку, чтобы построить на ее месте новый токамак, — такая у них политика. Но самым большим токамаком в мире на сегодняшний день пока по-прежнему остается JET. Почему так долго не удается запустить полноценную реакцию? Тем не менее до коммерческого реактора еще достаточно далеко. В числе причин — отсутствие ряда технологий, ресурс реактора, его размеры. Есть надежда, что в ИТЕРе нам все-таки удастся запустить самоподдерживающуюся реакцию. Кстати, в этом экспериментальном токамаке-реакторе будут использоваться те же сверхпроводники, которые когда-то стояли на нашем Т-15. Они позволят поддерживать поле в магнитных катушках без значительного расхода мощности. Реакция полностью контролируема. Энергетические сферы Параллельно с классическими токамаками в конце 80-х стало развиваться еще одно направление — сферических токамаков, форма которых больше напоминала уже не бублики, а пончики или шарики. Первая экспериментальная установка, построенная в Оксфордшире, рядом с JET, показала, что в такой конфигурации лучше удерживается плазма более высокой плотности. После этого интерес к таким установкам проявили в исследовательских центрах во многих странах мира. Когда установки были запущены, почти у всех трех была выявлена одна общая проблема — плохо удерживались заряженные частицы с большой энергией. Для исправления ситуации требовалось увеличить магнитное поле. В итоге все три «ушли» на модернизацию до 2016—2017 годов. Однако после перерыва, в 2018 году, запустить свой токамак удалось только ученым из Санкт-Петербурга. Их обновленный «Глобус» стал называться «Глобусом-М2». Конечно, это меньше, чем на большом торе у европейцев, но их показатели нельзя сравнивать из-за небольших размеров нашего «Глобуса», который имеет диаметр всего 36 сантиметров диаметр JET — около 3 метров. На «Глобусе-М2» мы пытаемся проверить правильность выбора сферической формы для термоядерного реактора, понять, будет ли у него преимущество по удержанию плазмы, будет ли он превосходить классический тор по энергозатратам. Но у него будет ряд принципиальных отличий. Прежде всего из-за увеличенных размеров качественно изменятся параметры плазмы. Кроме того, будут впервые испытаны в таком масштабе сверхпроводящая магнитная система, новые системы дополнительного нагрева плазмы и многое другое.

Похожие новости:

Оцените статью
Добавить комментарий