Часто десорбцию проводят подводом теплоты к абсорбенту через стенку (десорбция глухим паром). Десорбция — это явление, при котором вещество высвобождается с поверхности или через поверхность. Что такое десорбция и почему она так важна?
Что такое десорбция кратко
Сорбция и десорбция влаги в растительных продуктах, как видно из рисунка, характеризуются S-образными кривыми. Для одного и того же продукта они совпадают только при очень малых и очень больших значениях относительной влажности воздуха, при других значениях — не совпадают. При этом образуется площадь гистерезиса. Изотермы сорбции располагаются выше, чем изотермы десорбции и равновесное влагосодержание при одинаковом значении относительной влажности воздуха при десорбции влаги больше, чем при сорбции влаги. Причины гистерезиса для растительных продуктов заключаются в том, что в капиллярно-пористых материалах в капиллярах содержится воздух. Это уменьшает смачиваемость капилляров при сорбции влаги. Поэтому, если предварительно выдержать сухой материал в глубоком вакууме перед сорбцией, то площадь гистерезиса уменьшается или исчезает совсем, и кривая сорбции приближается или совпадает с кривой десорбции. Характер изотерм зависит от вида связи влаги с материалом.
Для капиллярно-пористых материалов S-образные изотермы сорбции и десорбции сначала в области малых значений обращены выпуклостью к оси абсцисс. Это соответствует мономолекулярной адсорбции.
Абсорбция — процесс поглощения одного вещества другим во всем объеме сорбента. Примером может служить растворение газов в жидкостях. Поглощаемое вещество в этом процессе называют абсорбатом, а поглощающее абсорбентом. Обратный процесс — выделение сорбата из сорбента называется десорбцией.
Она происходит, когда концентрация адсорбированного вещества в окружающей среде уменьшается или когда повышается температура. В этот момент адсорбированное вещество начинает «отпадать» от поверхности адсорбента, и мы можем удалить его, например, с помощью специальной ткани или раствора.
Десорбция является обратной адсорбции, то есть удаляет адсорбированное вещество с поверхности. Когда концентрация адсорбата падает до определенного уровня, молекулы начинают покидать поверхность адсорбента и возвращаться в окружающую среду. Этот процесс называется десорбцией и является обратным процессом к адсорбции.
Удаляемая влага при сушке определяется как разность влагосодержания продукта и равновесная влажность : 1 Равновесное влагосодержание зависит от влажности и температуры воздуха и способа достижения его равновесия. Графически зависимость между равновесным влагосодержанием продукта и влажностью воздуха при определенных постоянных значениях температуры называется изотермой сорбции или десорбции продукта. Если равновесие достигнуто путем поглощения влаги из окружающего воздуха, то получается изотерма сорбции.
Если же равновесие достигнуто при отдаче влаги продуктом окружающему воздуху, то образуется изотерма десорбции сушка. Равновесное влагосодержание определяется экспериментально по изотермам сорбции и десорбции влаги, так как различные формы связи влаги с материалом и разнообразие структур продуктов не позволяют определить его аналитическим путем. При определении равновесной влажности продукт выдерживают в воздушной среде с постоянной влажностью и температурой до равновесного состояния. Сорбция и десорбция влаги в растительных продуктах, как видно из рисунка, характеризуются S-образными кривыми. Для одного и того же продукта они совпадают только при очень малых и очень больших значениях относительной влажности воздуха, при других значениях — не совпадают. При этом образуется площадь гистерезиса.
Изотермы сорбции располагаются выше, чем изотермы десорбции и равновесное влагосодержание при одинаковом значении относительной влажности воздуха при десорбции влаги больше, чем при сорбции влаги.
Значение слова «Десорбция»
Это связано с наличием определенных химических свойств, которые позволяют адсорбентам притягивать и удерживать вещества. Такие сорбенты часто используются в химических и фармацевтических процессах. Ионообменные смолы: Ионообменные смолы представляют собой специальные материалы, способные обменивать ионы с растворами. Они часто используются для очистки и деминерализации воды, а также для удаления определенных ионов из растворов. Ионообменные смолы широко применяются в производстве пищевых продуктов, фармацевтике и других отраслях промышленности. Селективные сорбенты: Это специальные материалы, которые обладают свойством выборочного удержания определенных веществ. Они могут быть использованы для извлечения и концентрирования целевых компонентов из сложных смесей. Селективные сорбенты широко применяются в аналитической химии, медицине и окружающей среде. Фильтры: Фильтры являются одним из самых простых и распространенных видов сорбентов. Они состоят из материала с определенной пористостью, который позволяет удерживать вещества определенного размера. Фильтры часто используются в системах водоочистки, воздушных фильтрах и других приложениях, требующих удаления частиц из среды.
Рекомбинативная молекулярная десорбция обычно является процессом второго порядка то есть два атома водорода на поверхности десорбируются и образуют газообразную молекулу H 2. Поверхностная связь сорбента может быть разорвана термически, с помощью химических реакций или радиации, что может привести к десорбции частиц. Термодесорбция Восстановительная или окислительная десорбция Электронно-стимулированная десорбция Как только молекула десорбируется в вакуумный объем, она удаляется с помощью вакуумного откачивающего механизма повторная адсорбция незначительна.
Следовательно, для десорбции доступно меньше молекул, и для поддержания постоянной десорбции требуется все большее количество электронов.
Это процесс, обратный адсорбции, когда вещество оставляет поверхность и возвращается в свободное состояние. Десорбция может происходить под воздействием различных факторов, таких как повышение температуры, изменение давления, проведение электрического тока или облучение определенным типом излучения. Термическая десорбция является одним из наиболее распространенных способов десорбции. При нагревании поверхности твердого тела возрастает энергия молекул или атомов, что приводит к их освобождению и покиданию поверхности.
Такие сорбенты часто используются в химических и фармацевтических процессах.
Ионообменные смолы: Ионообменные смолы представляют собой специальные материалы, способные обменивать ионы с растворами. Они часто используются для очистки и деминерализации воды, а также для удаления определенных ионов из растворов. Ионообменные смолы широко применяются в производстве пищевых продуктов, фармацевтике и других отраслях промышленности. Селективные сорбенты: Это специальные материалы, которые обладают свойством выборочного удержания определенных веществ. Они могут быть использованы для извлечения и концентрирования целевых компонентов из сложных смесей. Селективные сорбенты широко применяются в аналитической химии, медицине и окружающей среде. Фильтры: Фильтры являются одним из самых простых и распространенных видов сорбентов.
Они состоят из материала с определенной пористостью, который позволяет удерживать вещества определенного размера. Фильтры часто используются в системах водоочистки, воздушных фильтрах и других приложениях, требующих удаления частиц из среды. Каждый вид сорбента имеет свои уникальные характеристики и применение, что делает их ценным инструментом в различных областях.
Сорбция и десорбция влаги
"Десорбция" - что это: значение слова | Изложенная теория процессов адсорбции и десорбции показывает, что для уменьшения количества адсорбированного на поверхности твердого тела газа следует повышать температуру материала. |
Изотермы сорбции и десорбции влаги | Адсорбция и десорбция Определение 1 Адсорбция – это процесс поглощения газов, паров или жидкостей. |
Что такое десорбция? Коагуляция?
Десорбцию острым водяным паром наиболее часто применяют в процессах рекуперации летучих растворителей на активном угле. В статье определена суть десорбции, рассмотрены механизмы этого явления, основные методы десорбции и области применения десорбционных технологий. В химической промышленности десорбция часто используется для отделения газов из смесей или для восстановления ценных веществ. Десорбция адсорбата (процесс обратный адсорбции) идет более полно и с большей скоростью при повышенной температуре и пониженном давлении.
Что такое десорбция простыми словами
Значение слова ДЕСОРБЦИЯ в Медицинских терминах | это физический процесс, при котором адсорбированные атомы или молекулы высвобождаются с поверхности в окружающий вакуум или жидкость. |
Десорбция - Desorption | Адсорбция и десорбция являются конкурирующими процессами, т.е. протекают одновременно. |
Популярные услуги
- 8.5. Десорбция
- Значение слова «Десорбция» в 10 онлайн словарях Даль, Ожегов, Ефремова и др. -
- Процесс десорбции
- Десорбция это простыми словами
Информация
- Что такое десорбция
- Адсорбция и десорбция газов
- Что такое Десорбция? Это... Значение на СловоПоиск.ру
- Сорбция и десорбция — Студопедия
десо́рбция
Десорбция играет важную роль в различных процессах, таких как каталитическая реакция, разделение газов и очистка загрязненных поверхностей. Понимание механизма десорбции имеет большое значение для разработки новых технологий и материалов. Вам также может понравиться.
Тогда из уравнения ,3-25 получаем время установления адсорбционного равновесия равным: 26 т. При уменьшении давления в вакуумной системе газ десорбируется с поверхности до тех пор, пока не устанавливается снова динамическое равновесие. При расчетах удобнее пользоваться формулой, полученной после логарифмирования уравнения 28 : 32 где Адес и Вдес - постоянные, причем и Необходимо указать, что постоянные коэффициенты K1, K2, Адес и Вдес в уравнениях 21 - 32 зависят от давления над поверхностью материала, которое обычно меняется в зависимости от газовыделения в вакуумной системе. Изложенная теория процессов адсорбции и десорбции показывает, что для уменьшения количества адсорбированного на поверхности твердого тела газа следует повышать температуру материала. Это ясно видно из соотношений 9 и 13.
В случае, если вакуумная полость ограничивается стенками, изготовленными из разных материалов, газовыделение должно суммироваться из газовыделений всех элементов, ограничивающих вакуумную систему. Время, необходимое для достижения заданного давления, проще всего найти графически. Затем через точку на оси ординат, соответствующую потоку газов, удаляемых вакуумной системой при заданном давлении, провести горизонтальную прямую до пересечения с кривой скорости газовыделения.
Дальнейшее выделение газа абсорбата из воздуха затруднительно, поэтому отгонку воздухом используют для газов, не предназначенных для дальнейшего использования вредные загрязняющие примеси. Водяной пар, как десорбирующий агент, применяют в случае отгонки нерастворимых в воде газов. Дальнейшее отделение нужного газа происходит в конденсаторе , где водяной пар конденсируется.
Вакуумная техника играет важную роль в процессе десорбции. Понижение давления до вакуумных условий позволяет ускорить процесс десорбции путем снижения количества молекул, которые могут адсорбироваться на поверхности. Примером процесса десорбции может служить нагревание катализатора.
При повышении температуры катализатора происходит десорбция адсорбированных газов и продуктов реакции, что способствует их выходу из системы. Фазы и механизмы десорбции Основные фазы десорбции включают физическую адсорбцию и химическую десорбцию. При физической адсорбции молекулы газа или пары физически поглощаются поверхностью и десорбируются при изменении условий, например, при повышении температуры или уменьшении давления. Химическая десорбция, с другой стороны, происходит в результате реакции с поверхностью и может быть вызвана изменением концентрации реагентов или температуры. Механизмы десорбции могут также включать различные процессы, такие как диффузия или сдвиг частиц по поверхности. Диффузия — это процесс перемещения молекул или атомов из одной точки в другую, вызванный разностью концентраций. Сдвиг частиц по поверхности может происходить под воздействием различных факторов, например, в результате приложения электрического поля, создания вакуума или воздействия тепла. Примером механизма десорбции может быть процесс испарения вакуумированного покрытия с поверхности твердого тела при повышении температуры. В результате нагревания твердого тела, молекулы покрытия начинают испаряться и покидать поверхность, переходя в газообразное состояние.
Этот процесс может быть ускорен с помощью вакуумного насоса, который удаляет газы из окружающей среды и создает низкое давление. Фаза 1: Разогревание При разогревании поверхность материала, покрытого адсорбированными частицами, подвергается нагреванию до определенной температуры. При повышении температуры, происходят различные физические изменения на поверхности, которые способствуют началу реакции десорбции. Увеличение температуры вызывает изменение энергетического состояния адсорбированных частиц. Адсорбированные молекулы обретают больше энергии и покидают поверхность материала, переходя в газообразное состояние. Это процесс, интенсивность которого зависит от разницы между энтальпией адсорбции и энтальпией десорбции, а также от температуры. Разогревание является важной фазой в процессе десорбции, поскольку влияет на скорость и эффективность последующих стадий. Определение оптимальной температуры для разогревания варьируется в зависимости от типа покрытия и требуемой скорости десорбции. Пример разогревания в промышленной сфере: перед очисткой поверхности печи от адсорбированных отложений, поверхность разогревают до определенной температуры, чтобы обеспечить эффективную десорбцию и удаление загрязнений.
Объяснение этапа разогревания Во время этого этапа, физический процесс реакции начинает ускоряться. При достижении определенной температуры, покрытие начинает разогреваться, вызывая отслоение адсорбированных частиц от поверхности. Это происходит из-за изменения сил притяжения между частицами и поверхностью. Разогревание позволяет освободить поверхность от адсорбированных частиц и восстановить ее свойства.
Значение слова "десорбция"
Для чего нужна десорбция Десорбция применяется для извлечения из адсорбентов поглощенных ими газов, паров или растворенных веществ, а также для регенерации адсорбента. В классической химии десорбция используется, чтобы разделить различные компоненты газовой смеси. В промышленности десорбцию используют для очистки воздуха, удаления загрязняющих веществ из сточных вод или для обработки газа перед последующим использованием на производстве. Преимущества использования десорбции Одним из главных преимуществ использования десорбции является возможность повторного использования адсорбента после регенерации. Это делает процесс более стоимостно-эффективным и экологически дружелюбным. Кроме того, процесс десорбции не требует сложного оборудования, что делает его доступным для различных промышленных секторов.
Как правильно проводить десорбцию Чтобы провести эффективную десорбцию, необходимо учитывать ряд факторов. Например, температуру и концентрацию адсорбируемого вещества в окружающей среде.
Описание механизмов Существует несколько механизмов десорбции, которые могут происходить в зависимости от свойств адсорбента и адсорбата: Термическая десорбция. При нагревании адсорбента происходит увеличение кинетической энергии молекул адсорбата, что способствует их выделению с поверхности адсорбента.
Десорбция при изменении давления. Изменение давления может привести к изменению равновесия между адсорбированными и свободными молекулами, что способствует выделению адсорбированных веществ. Десорбция при изменении pH. Изменение pH среды может влиять на заряд поверхности адсорбента и молекул адсорбата, что может способствовать их выделению.
Он выбирается в зависимости от вида анализируемых соединений и требований к разделению. Экстракция: Процесс извлечения аналитических соединений из образца, который может включать отделение их от других веществ. Усиление: Техника, при которой количество аналитической информации увеличивается. Например, использование дополнительных реагентов для улучшения чувствительности анализа. Чувствительность: Способность метода или прибора обнаружить или измерить аналитические соединения в очень низких концентрациях. Мобильная фаза: Жидкость или газ, которые переносят растворенные вещества через стационарную фазу в процессе десорбции. Она может быть выбрана с учетом требуемой химической селективности и устойчивости. Селективность: Способность метода выделять или измерять конкретное вещество в присутствии других компонентов образца. Эти понятия и методы играют важную роль в процессе десорбции, позволяя проводить анализ веществ с высокой чувствительностью и селективностью. Они являются основой для разработки и улучшения аналитических методов в различных областях, таких как фармацевтика, пищевая промышленность, экология и др.
Виды десорбции Десорбция является процессом выделения или высвобождения вещества, адсорбированного на поверхности материала. В аналитической химии десорбция применяется для извлечения и концентрирования анализируемых веществ из образцов. Существует несколько видов десорбции, которые различаются по механизму процесса и используемым методам. Ниже приведены основные виды десорбции: Стационарная десорбция — процесс выделения анализируемого вещества с помощью активной поверхности стационарной фазы. Этот метод применяется, например, в газовой хроматографии, где газовая фаза находится на поверхности стационарной фазы в колонке. Мобильная десорбция — процесс выделения анализируемого вещества с помощью мобильной фазы или растворителя. Этот метод применяется, например, в жидкостной хроматографии, где растворитель прокачивается через стационарную фазу. Ионизационная десорбция — процесс выделения анализируемых ионов с помощью ионизирующего излучения, такого как электронные пучки или лазерное излучение. Этот метод используется, например, в масс-спектрометрии, где анализируются ионизированные образцы. Селективная десорбция — процесс выделения конкретного вещества из смеси с помощью специфичной стационарной или мобильной фазы.
Этот метод позволяет улучшить чувствительность и селективность аналитического метода. Экстракционная десорбция — процесс выделения вещества из образца с помощью экстрагирующего растворителя или раствора. Этот метод используется, например, в экстракционных методах анализа, где анализируются высокоэкстракционные вещества. Усиленная десорбция — процесс усиления эффективности десорбции с помощью добавления специальных реагентов или техник. Этот метод позволяет повысить чувствительность и точность аналитического метода. В зависимости от конкретной задачи и типа образца, выбираются наиболее подходящие методы десорбции. Знание различных видов десорбции позволяет разработать эффективные и точные методы анализа различных веществ. Физическая десорбция Физическая десорбция — это процесс, при котором молекулы или атомы покидают поверхность твердого тела или погруженную вещество и переходят в газообразное состояние. Она является основным механизмом, применяемым в хроматографии для разделения и концентрации аналитов. Физическая десорбция осуществляется путем разрыва слабых сил привлечения между молекулами аналита и поверхностью матрицы.
Этот процесс может происходить под действием различных внешних воздействий или изменения условий окружающей среды. Одним из методов физической десорбции является термическая десорбция. При нагревании образца молекулы аналита получают достаточно энергии для преодоления сил адсорбции и выходят в газообразную фазу. Этот процесс обратен адсорбции и поэтому может быть использован для детектирования и извлечения аналитов из образца. Однако, в ряде случаев термическая десорбция недостаточно эффективна, так как она может разрушить образец или повлечь за собой потерю части аналита. В таких случаях используются другие методы физической десорбции, такие как десорбция с использованием растворителя или парогаза. Читайте также: Я описался - жутко стыдно было Как бы вы поступили в такой ситуации Для усиления чувствительности физической десорбции в хроматографии может применяться мобильная фаза, которая усиливает процесс десорбции и повышает селективность. Кроме того, различные методы ионизации, такие как электронная и ионная ионизация, могут быть использованы для улучшения детектирования аналитов.
Когда энергия превышает энергию связи, молекулы начинают отделяться от поверхности и перемещаться в газообразное состояние. Этот процесс называется термической десорбцией. Также десорбция может происходить под воздействием вакуума. При снижении давления газа над поверхностью материала, молекулы начинают покидать поверхность быстрее, чем адсорбируются на нее. Это происходит из-за разности концентраций газа на поверхности и в газовой фазе. Такой процесс называется вакуумной десорбцией. Кроме того, десорбция может быть вызвана физическими и химическими воздействиями. Например, при облучении поверхности энергетическими частицами или воздействии электрического поля молекулы могут приобретать достаточную энергию для десорбции. Таким образом, десорбция молекул — это процесс высвобождения молекул с поверхности материала в результате изменения внешних условий, таких как нагревание, снижение давления или физические и химические воздействия. Оцените статью.
Описание десорбции
- Что такое десорбция?
- Навигация по записям
- Сферы применения
- СОДЕРЖАНИЕ
- Что означает адсорб?
- Значение слова «Десорбция»
Что такое десорбция
Процесс, противоположный сорбции, в том числе абсорбции и адсорбции. Национальный стандарт Российской Федерации. Газоочистители абсорбционные. Требования… … Официальная терминология десорбция — сущ. Монография представляет собой первое в отечественной литературе обобщение масс-спектрометрических подходов к разностороннему исследованию высокомолекулярных синтетических органических… Подробнее Купить за 946 руб Статистическая теория явления переноса в процессах химической технологии , И.
Факторы, влияющие на десорбцию Десорбция — это процесс высвобождения сорбированного вещества с поверхности адсорбента.
Значительное влияние на процесс десорбции оказывают различные факторы. Устойчивость адсорбции: устойчивость сорбции является одним из главных факторов, влияющих на процесс десорбции. Вещества, которые прочно удерживаются на поверхности адсорбента, будут труднее высвободиться при десорбции. Стационарная фаза: свойства стационарной фазы, такие как химическая природа, размер частиц и поверхностная активность, также могут оказывать влияние на эффективность десорбции. Ионизация: ионизация вещества может повысить его аффинность к адсорбенту и увеличить степень сорбции.
Следовательно, ионизированные вещества могут иметь более низкую скорость десорбции по сравнению с неионизированными веществами. Селективность: селективность адсорбента может влиять на эффективность десорбции. Некоторые адсорбенты могут хорошо удерживать определенные вещества, в то время как другие могут быть менее эффективными для их десорбции. Экстракция: термин «экстракция» относится к выделению вещества из адсорбента с помощью растворителя. Выбор правильного растворителя и его концентрации может значительно повлиять на эффективность десорбции.
Мобильная фаза: свойства мобильной фазы, такие как тип и концентрация растворителя, скорость потока и pH, также могут оказывать влияние на процесс десорбции. Чувствительность адсорбента: некоторые адсорбенты могут быть более чувствительными к изменению условий десорбции. Это может привести к изменению эффективности десорбции в зависимости от условий эксперимента. Все указанные выше факторы могут оказывать влияние на эффективность процесса десорбции и должны быть учтены при планировании экспериментов и проведении анализа. Температура Температура является одним из важных параметров, влияющих на процесс десорбции.
При воздействии повышенной температуры на материал, происходит выделение и отделение адсорбированных изначально веществ от поверхности. Десорбция под действием температуры может быть проведена с использованием различных методов, таких как нагревание образца или пиролиз. Особенности процесса десорбции при различных температурах напрямую связаны с селективностью и усилением адсорбции. При повышении температуры происходит увеличение силы адсорбции, что приводит к более эффективному отделению адсорбированных веществ от поверхности материала. При этом чувствительность методов десорбции также может быть повышена, что позволяет обнаружить и измерить следы веществ с высокой точностью.
Температура также может использоваться для проведения экстракции адсорбированных веществ из материала. При определенной температуре происходит разрушение связей между адсорбированным веществом и поверхностью материала, что позволяет освободить адсорбированные вещества. Данный процесс может быть усилен с помощью ионизации, что позволяет мобильным адсорбированным веществам эффективно покинуть поверхность материала. При использовании методов десорбции с использованием температуры следует учитывать также устойчивость материала к нагреванию. Некоторые материалы могут быть подвержены деструкции при высоких температурах, что может привести к искажению результатов анализа или повреждению материала.
Влажность Влажность — это параметр, характеризующий количество водяного пара в окружающей среде. Измерение влажности имеет большое значение в различных областях, таких как метеорология, сельское хозяйство, фармацевтика и других. Одним из методов измерения влажности является десорбция. Для этого применяются различные датчики, основанные на принципе селективной экстракции влаги. Датчики позволяют усилить выборочное снятие влаги из окружающей среды и измерить ее содержание.
Процесс десорбции сопровождается ионизацией водяного пара, что позволяет увеличить его чувствительность при измерении. Это особенно важно для работы в суровых условиях, например, при низких температурах или на высокой высоте. Датчики влажности обладают высокой устойчивостью и стационарностью, что позволяет им работать в течение длительного времени без существенной потери своих характеристик. Кроме того, датчики обладают высокой чувствительностью и точностью измерений, что позволяет получить достоверные результаты. Таким образом, десорбция является эффективным методом измерения влажности.
Применение датчиков на основе этого принципа обеспечивает точное и надежное измерение влажности в различных областях применения. Размер частиц Размер частиц, используемых при десорбции, играет важную роль в процессе анализа.
Процесс проводят в аппаратах различной конструкции. На схеме представленной на рис. Сточная вода растекается в виде пленок по тарелкам, на которых происходит ее контакт с воздухом.
Затем воздух с выделенными веществами поступает в насадочную колонну, которая орошается раствором щелочи. На некоторых предприятиях дурнопахнущие сточные воды очищают продувкой острым паром. В целлюлозной промышленности воды загрязнены серосодержащими соединениями, а кроме того, метанолом и скипидаром. Отдувка паром позволяет очищать воду и от этих веществ. Основным аппаратом для обработки сточных вод паром является колонна с колпачковыми или сетчатыми тарелками.
Расход пара на 1 м3 сточной воды составляет 60 кг; для уменьшения расхода пара сточную воду подогревают. Промышленное применение имеет и хлорирование дурнопахнущих сточных вод. При этом происходит окисление хлором серосодержащих соединений. Для удаления запахов из сточных вод могут быть использованы процессы озонирования и адсорбции. Однако более эффективно происходит очистка при одновременном введении в воду озона или диоксида хлора и фильтровании воды через слой активного угля.
Дегазация Присутствие в сточных водах растворенных газов затрудняет очистку и использование сточных вод, усиливает коррозию трубопроводов и аппаратуры, придает воде неприятный завах.
Вещества, которые прочно удерживаются на поверхности адсорбента, будут труднее высвободиться при десорбции. Стационарная фаза: свойства стационарной фазы, такие как химическая природа, размер частиц и поверхностная активность, также могут оказывать влияние на эффективность десорбции. Ионизация: ионизация вещества может повысить его аффинность к адсорбенту и увеличить степень сорбции. Следовательно, ионизированные вещества могут иметь более низкую скорость десорбции по сравнению с неионизированными веществами. Селективность: селективность адсорбента может влиять на эффективность десорбции. Некоторые адсорбенты могут хорошо удерживать определенные вещества, в то время как другие могут быть менее эффективными для их десорбции. Экстракция: термин «экстракция» относится к выделению вещества из адсорбента с помощью растворителя. Выбор правильного растворителя и его концентрации может значительно повлиять на эффективность десорбции.
Мобильная фаза: свойства мобильной фазы, такие как тип и концентрация растворителя, скорость потока и pH, также могут оказывать влияние на процесс десорбции. Чувствительность адсорбента: некоторые адсорбенты могут быть более чувствительными к изменению условий десорбции. Это может привести к изменению эффективности десорбции в зависимости от условий эксперимента. Все указанные выше факторы могут оказывать влияние на эффективность процесса десорбции и должны быть учтены при планировании экспериментов и проведении анализа. Температура Температура является одним из важных параметров, влияющих на процесс десорбции. При воздействии повышенной температуры на материал, происходит выделение и отделение адсорбированных изначально веществ от поверхности. Десорбция под действием температуры может быть проведена с использованием различных методов, таких как нагревание образца или пиролиз. Особенности процесса десорбции при различных температурах напрямую связаны с селективностью и усилением адсорбции. При повышении температуры происходит увеличение силы адсорбции, что приводит к более эффективному отделению адсорбированных веществ от поверхности материала.
При этом чувствительность методов десорбции также может быть повышена, что позволяет обнаружить и измерить следы веществ с высокой точностью. Температура также может использоваться для проведения экстракции адсорбированных веществ из материала. При определенной температуре происходит разрушение связей между адсорбированным веществом и поверхностью материала, что позволяет освободить адсорбированные вещества. Данный процесс может быть усилен с помощью ионизации, что позволяет мобильным адсорбированным веществам эффективно покинуть поверхность материала. При использовании методов десорбции с использованием температуры следует учитывать также устойчивость материала к нагреванию. Некоторые материалы могут быть подвержены деструкции при высоких температурах, что может привести к искажению результатов анализа или повреждению материала. Влажность Влажность — это параметр, характеризующий количество водяного пара в окружающей среде. Измерение влажности имеет большое значение в различных областях, таких как метеорология, сельское хозяйство, фармацевтика и других. Одним из методов измерения влажности является десорбция.
Для этого применяются различные датчики, основанные на принципе селективной экстракции влаги. Датчики позволяют усилить выборочное снятие влаги из окружающей среды и измерить ее содержание. Процесс десорбции сопровождается ионизацией водяного пара, что позволяет увеличить его чувствительность при измерении. Это особенно важно для работы в суровых условиях, например, при низких температурах или на высокой высоте. Датчики влажности обладают высокой устойчивостью и стационарностью, что позволяет им работать в течение длительного времени без существенной потери своих характеристик. Кроме того, датчики обладают высокой чувствительностью и точностью измерений, что позволяет получить достоверные результаты. Таким образом, десорбция является эффективным методом измерения влажности. Применение датчиков на основе этого принципа обеспечивает точное и надежное измерение влажности в различных областях применения. Размер частиц Размер частиц, используемых при десорбции, играет важную роль в процессе анализа.
Экстракция и усиление аналитического сигнала с помощью десорбции зависят от размера частиц в матрице образца. Оптимальный размер частиц обеспечивает устойчивость ионизации и повышает селективность метода. Слишком крупные частицы могут препятствовать поглощению аналитов, а слишком мелкие частицы могут не обеспечить достаточную чувствительность анализа.
Значение слова «десорбция»
поглощаю) - удаление из жидкостей илитвердых тел веществ, поглощенных при адсорбции или абсорбции. Десорбция происходит при уменьшении концентрации адсорбата в среде, а также при повышении температуры. Сорбция и десорбция — это процессы взаимодействия вещества с поверхностью твердого материала, при которых происходит поглощение или выделение вещества. Что такое сорбция и десорбция. Процесс десорбции, или отгонки, проводят одним из следующих способов: в токе инертного газа, в вакууме, комбинированием указанных способов. Значение слова десорбция в словарях Энциклопедический словарь, 1998 г., Словарь медицинских терминов, Большая Советская Энциклопедия, Словарь кроссвордиста.
Десорбция это простыми словами
Изотермы сорбции располагаются выше, чем изотермы десорбции и равновесное влагосодержание при одинаковом значении относительной влажности воздуха при десорбции влаги больше, чем при сорбции влаги. Адсорбция и десорбция Определение 1 Адсорбция – это процесс поглощения газов, паров или жидкостей. Десорбцию острым водяным паром наиболее часто применяют в процессах рекуперации летучих растворителей на активном угле.