Новости коэффициент джини показывает

Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. Коэффициент Джини может принимать значения от 0 до 1. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно. Насколько равномерно происходил рост богатства швейцарцев показывает так называемый «коэффициент Джини» (Gini-Koeffizienten). В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках. В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно.

Что означает коэффициент Джини

  • Коэффициент Джини по странам и в России. Кривая Лоренца. Пример по годам
  • Что означает коэффициент Джини
  • Индекс Джини и неравенство доходов
  • РБК: Росстат зафиксировал рост концентрации доходов в 2023 году

Кривая Лоренца

Коэффициент Джини для США — 0,39 — пятый по величине среди 38 стран — участниц ОЭСР. Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения. Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини. Страны ближнего востока и северной Африки: Коэффициент Джини. Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе.

Что бы сделал Робин Гуд?

Пусть одни децили общества получают поменьше, а другие - побольше. График начинает выглядеть по-иному. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини. Если доходы равны, графики совпадут, а коэффициент будет равен нулю. Если доходы сосредоточит только одна доля населения, то коэффициент станет равен единице. Вот в этих пределах неравенство и считают.

Угольную, золотую, банковскую группы называют протоэлитами, отмечая их мощный потенциал при отсутствии постоянного внутригруппового взаимодействия и контактов. Подавляющее большинство граждан страны появление и постоянное увеличение численности долларовых миллиардеров на фоне нищеты значительной части населения воспринимают как вопиющую аномалию. При уровне ВВП на душу населения - 17 тысяч долларов за чертой бедности в России живут примерно 13 процентов человек, что, по мнению специалистов, является почти нонсенсом. Особенно, если учесть, что доля теневой экономики в нашей стране остается достаточно высокой - 25-30 процентов. Эти деньги не учитываются в ВВП, значит, его реальный уровень выше официального. При этом большая часть доходов от теневого сектора достается людям небедным, а, значит, и реальное расслоение общества выше. Один из способов искоренения неравенства доходов предполагает поддержку со стороны государства систем здравоохранения, социального обеспечения и образования. В этом случае люди с меньшими доходами могут получить удовлетворительное физическое состояние, уверенность в завтрашнем дне и образование. Такой подход предоставляет необходимые условия для жизни всем. Другой путь борьбы с неравенством предполагает изменения в налоговой системе и, в частности, системе прогрессивного подоходного налога.

Целью создания Системы является обеспечение доступа с использованием сети Интернет государственных органов, органов местного самоуправления, юридических и физических лиц к официальной статистической информации, включая метаданные, формируемой в соответствии с федеральным планом статистических работ. ЕМИСС представляет собой государственный информационный ресурс, объединяющий официальные государственные информационные статистические ресурсы, формируемые субъектами официального статистического учета в рамках реализации федерального плана статистических работ.

Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков.

Экономика. 10 класс

Индекс Джини это процентный аналог коэффициента Джини. Эта статистическая модель была предложена и разработана итальянским статистиком и демографом Коррадо Джини 1884—1965 и опубликована в 1912 году в его знаменитом труде «Вариативность и изменчивость признака» «Изменчивость и непостоянство».

Если мы введем налог на потребление мороженого в размере 20 рублей на один стаканчик, то ситуация на рынке кардинально поменяется: индивид А все еще будет потреблять мороженое, а вот индивид В откажется от его потребления. Суммарный потребительский излишек теперь будет равен только 10 рублям это излишек индивида А. Налоговые сборы при это составят 20 рублей их оплатит опять же только индивид А , и их получает государство. На этом простом примере мы убедились, что при налогообложении возникли безвозвратные потери в размере 10 рублей. И они возникают потому, что индивид В поменял свое экономическое поведение, полностью отказавшись от потребления мороженого. Таким же образом любые налоги приводят к безвозвратным потерям, поэтому можно смело утверждать, что любые налоги неэффективны в этом смысле. Задача экономистов заключается в том, чтобы найти такие налоги, которые будут минимально искажать стимулы людей, а значит, и приводить к минимальным безвозвратным потерям. Налоги могут взиматься по-разному в зависимости от величины дохода. Для того, чтобы оказать это, нам будут нужны два типа налоговых ставок: средняя налоговая ставка и предельная налоговая ставка.

У прогрессивного налога средняя ставка налога растет по мере увеличения дохода, а значит, предельная налоговая ставка превышают среднюю. Примеры прогрессивных налогов: налоги на доходы во Франции, налоги в Швеции, автомобильный налог в России. У пропорционального налога средняя ставка не изменяется с ростом дохода, а значит, средняя налоговая ставка совпадает с предельной. В случае, если индивиду предложена одинаковая налоговая ставка при существовании некоего налогонеоблагаемого минимума или же предоставлен налоговый вычет , то данная налоговая система является уже не пропорциональной, а прогрессивной. Индивид сначала вообще не платит налогов, а потом, после превышения налогонеоблагаемого минимума, начинает платить налог по одинаковой ставке. У регрессивных налогов средняя ставка падает с ростом дохода, а значит, предельная ставка налога оказывается ниже средней. Примеры регрессивных налогов: акцизы - поскольку человек оплачивает их при покупке товара вне зависимости от его дохода. Например, от 10 до 30 рублей в стоимости каждой пачки сигарет составляют акцизные сборы, и человек оплачивает их вне зависимости от величины дохода при покупке каждой пачки сигарет. Таким образом, для бедняка этот налог составляет существенную часть его дохода, а для миллионера он будет несущественным. Другие примеры регрессивных налогов — это любые фиксированные налоги и пошлины.

Например, в РФ человек вынужден заплатить фиксированную пошлину в размере около 1000 рублей при регистрации номерного знака автомобиля. Данный вид налога является регрессивным, поскольку пошлина оставляет большую часть дохода для бедного человека, и меньшую часть дохода для богатого человека. Какой из данных видов налогов является более справедливым? Популярной является точка зрения, что прогрессивные налоги являются более справедливыми, а регрессивные менее справедливыми. Но эта точка зрения ошибочна. Как мы показали раньше, все зависит от того, в рамках какой системы моральных ценностей мы будем говорить о справедливости. Рассмотрим простой пример. Налоговая шкала является регрессивной — средняя ставка падает при росте дохода. Но является ли она несправедливой? Посчитаем сумму налога, уплаченную каждым индивидом.

В результате индивид, зарабатывающий больше, платит и большую сумму налога. И в чем же здесь несправедливость? Для оценки справедливости налоговой системы выделяются следующие постулаты: Принцип получаемых выгод: индивиды должны платить налоги в соответствии с выгодой, которую они извлекают из услуг государства. На этом принципе может быть основана идея, что богатые люди должны платить больше налогов, чем бедные.

Он имеет ряд преимуществ, которые стоит отметить: позволяет сравнивать распределение признака в совокупностях с различным числом единиц например, регионы с разной численностью населения ; дополняет данные о ВВП и среднедушевом доходе. Служит своеобразной поправкой этих показателей; может использоваться для сравнения распределения признака между различными совокупностями например, разными странами , при этом нет зависимости от масштаба экономики сравниваемых стран; может использоваться для сравнения распределения признака по разным группам населения например, для сельского населения и городского населения ; позволяет отследить динамику неравномерности распределения признака в совокупности на разных этапах; анонимность, то есть нет необходимости знать, кто имеет какие доходы персонально [3]. Методы расчета коэффициента Джини.

Существует несколько способов расчета коэффициента: алгебраический и геометрический. Рассмотрим каждый подробнее. Коэффициент концентрации Джини G используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89]: где — накопленная частость доля численности единиц совокупности; — накопленная доля значений признака i-ой группы, приходящихся на все единицы совокупности. Иным способом расчета коэффициента является геометрический метод.

Min: Aggregates are set to the lowest available value for each time period.

Sum: Aggregates are calculated as the sum of available data for each time period. Sum 66: Aggregates are calculated as the sum of available data for each time period. Sums are not shown if more than one third of the observations in the series are missing. Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period. Weighted Mean 66: Aggregates are calculated as weighted averages of available data for each time period.

No aggregate is shown if missing data account for more than one third of the observations in the series. Weighted Mean 66POP: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if countries with missing data represent more than one third of the total population of your custom group. Note 1: In none of the above methodologies are missing values imputed.

Среди населения России растет доходное неравенство: почему ускорился этот процесс?

Кроме того, для плановой экономики этот коэффициент не применим. Выводы Коэффициент или индекс Джини — это число, показывающее распределение доходов населения. Оставить ответ Ваш адрес email не будет опубликован.

С 1950 по 1970 год неравенство имело тенденцию снижаться по мере того, как ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снижалось с ростом ВВП на душу населения, а затем резко возрастало.

Ограничения индекса Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от надежных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, представляет большую часть реального экономического производства в развивающихся странах и находится в нижней части распределения доходов внутри стран.

В обоих случаях это означает, что индекс Джини измеренных доходов будет завышать истинное неравенство доходов. Точные данные о богатстве получить еще труднее из-за популярности налоговых убежищ. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается свести двумерную область разрыв между кривой Лоренца и линией равенства к одному числу, он скрывает информацию о «форме» неравенства.

В бытовом плане это было бы похоже на описание содержимого фотографии исключительно ее длиной по одному краю или простым средним значением яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам. В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини. Например, большое количество пенсионеров повышает индекс Джини.

Попытки его копирования и использования без указания ссылок на автора будут преследоваться в соответствии с законодательством РФ и политикой поисковиков см. Построение кривой Лоренца удобнее всего рассмотреть на следующем примере: Представим экономику, состоящую из 3-х агентов: А, B, C. Доход агента А составляет 200 единиц, доход агента В составляет 300 единиц, доход агента С составляет 500 единиц. Для построения кривой Лоренца найдем доли индивидов в общем доходе. Общий доход составляет 1000. Затем включим в анализ более богатого индивида — индивида В. Далее включим в анализ еще более богатого индивида С.

Отметим полученные результаты на графике: Линия, соединяющая левую нижнюю точку и правую верхнюю точку графика, называется линией равномерного распределения доходов. Это гипотетическая линия, которая показывает, что было бы, если доходы в экономике распределяются равномерно. При неравномерном распределении доходов кривая Лоренца лежит левее этой линии, причем чем больше степень неравенства, тем сильнее изгиб кривой Лоренца. А чем ниже степень неравенства, тем более она приближена к линии абсолютного равенства. В нашем случае кривая Лоренца выглядит как кусочно-линейный график. Это получилось так, потому что в нашем анализе мы выделили только три группы населения. С ростом числа рассматриваемых групп населения кривая Лоренца будет выглядеть следующим образом: Кривая Лоренца позволяет судить о степени неравенства доходов в экономике о ее изгибу.

Для количественного измерения степени неравенства дохода по кривой Лоренца существует специальный коэффициент — коэффициент Джини. Коэффициент Джини равен отношению площади фигуры, ограниченной прямой абсолютного равенства и кривой Лоренца, к площади всего треугольника под кривой Лоренца. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно. Чем ближе коэффициент Джини к единице, тем больше изгиб кривой Лоренца, и доходы распределены менее равномерно. Рассчитаем коэффициент Джини для нашего примера с тремя индивидами. Площадь внутренней фигуры D быстрее всего можно посчитать путем вычитания из площади большого треугольника площади фигур А, В и С. В этом случае коэффициент Джини будет равен: Частный случай кривой Лоренца и коэффициента Джини: попарное сравнение.

Материалы данного раздела не публикуются на сайте, а доступны в полной версии данного пособия, которое я использую на занятиях с учениками. Как известно, любой статистический показатель имеет свои изъяны. Так же как и по показателю ВВП нельзя судить об уровне благосостояния экономики, и коэффициент Джини и другие показатели степени неравенства не могут дать в полной мере объективную картину степени неравенства доходов в экономике. Это происходит по нескольким причинам: Во-первых, уровень дохода индивидов не является постоянным и может резко изменяться с течением времени. Доходы молодых людей, которые только что закончили университет, как правило, являются минимальными, и затем начинают расти по мере того, как человек набирается опыта и наращивает человеческий капитал. Доходы людей, как правило, достигают пика между 40 и 50 годами, и затем резко снижаются, когда человек уходит на пенсию. Э то явление называется в экономике жизненным циклом.

Но человек имеет возможность компенсировать различие в доходах на разных этапах жизненного цикла с помощью финансового рынка — беря кредиты или делая сбережения. Так, молодые люди, находящиеся в самом начале жизненного цикла, охотно берут кредиты на образование или ипотечные кредиты. Люди, которые находятся ближе к окончанию экономического жизненного цикла, активно делают сбережения. Кривая Лоренца и коэффициент Джини не учитывают жизненный цикл, поэтому этот показатель степени неравенства доходов в обществе не является точной оценкой степени неравенства доходов. Во-вторых, на доходы индивидов влияет экономическая мобильность.

Если доходы каждой доли абсолютно одинаковы, получим вот такой график с прямой линией. А теперь изменим доходы.

Пусть одни децили общества получают поменьше, а другие - побольше. График начинает выглядеть по-иному. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини. Если доходы равны, графики совпадут, а коэффициент будет равен нулю.

Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства

Тут уместно провести параллели с коэффициентом Джини, который показывает имущественное расслоение населения. Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения. Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель.

Доверительный интервал коэффициента Джини. Что это?

The Gini coefficient measures inequality on a scale from 0 to 1. Higher values indicate higher inequality. Depending on the country and year, the data relates to income measured after taxes and benefits, or to consumption, per capita. Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. Коэффициент итальянского экономиста, статиста и демографа Коррадо Джини (более известный как индекс Джини) позволяет более точно, количественно измерить степень неравномерности распределения доходов населения.

Похожие новости:

Оцените статью
Добавить комментарий